Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(4): 771-783.e18, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29358050

RESUMO

As in eukaryotes, bacterial genomes are not randomly folded. Bacterial genetic information is generally carried on a circular chromosome with a single origin of replication from which two replication forks proceed bidirectionally toward the opposite terminus region. Here, we investigate the higher-order architecture of the Escherichia coli genome, showing its partition into two structurally distinct entities by a complex and intertwined network of contacts: the replication terminus (ter) region and the rest of the chromosome. Outside of ter, the condensin MukBEF and the ubiquitous nucleoid-associated protein (NAP) HU promote DNA contacts in the megabase range. Within ter, the MatP protein prevents MukBEF activity, and contacts are restricted to ∼280 kb, creating a domain with distinct structural properties. We also show how other NAPs contribute to nucleoid organization, such as H-NS, which restricts short-range interactions. Combined, these results reveal the contributions of major evolutionarily conserved proteins in a bacterial chromosome organization.


Assuntos
Adenosina Trifosfatases , Cromossomos Bacterianos , Proteínas de Ligação a DNA , Escherichia coli K12 , Complexos Multiproteicos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Cromossomos Bacterianos/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Escherichia coli K12/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Estrutura Quaternária de Proteína , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
2.
Nature ; 630(8018): 1003-1011, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38926614

RESUMO

Transposases drive chromosomal rearrangements and the dissemination of drug-resistance genes and toxins1-3. Although some transposases act alone, many rely on dedicated AAA+ ATPase subunits that regulate site selectivity and catalytic function through poorly understood mechanisms. Using IS21 as a model transposase system, we show how an ATPase regulator uses nucleotide-controlled assembly and DNA deformation to enable structure-based site selectivity, transposase recruitment, and activation and integration. Solution and cryogenic electron microscopy studies show that the IstB ATPase self-assembles into an autoinhibited pentamer of dimers that tightly curves target DNA into a half-coil. Two of these decamers dimerize, which stabilizes the target nucleic acid into a kinked S-shaped configuration that engages the IstA transposase at the interface between the two IstB oligomers to form an approximately 1 MDa transpososome complex. Specific interactions stimulate regulator ATPase activity and trigger a large conformational change on the transposase that positions the catalytic site to perform DNA strand transfer. These studies help explain how AAA+ ATPase regulators-which are used by classical transposition systems such as Tn7, Mu and CRISPR-associated elements-can remodel their substrate DNA and cognate transposases to promote function.


Assuntos
Domínio AAA , Adenosina Trifosfatases , Transposases , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Domínio Catalítico , Microscopia Crioeletrônica , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Elementos de DNA Transponíveis/genética , Ativação Enzimática , Modelos Moleculares , Multimerização Proteica , Transposases/metabolismo , Transposases/química
3.
Nature ; 629(8011): 467-473, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471529

RESUMO

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Assuntos
Bacillus cereus , Proteínas de Bactérias , Bacteriófagos , Microscopia Crioeletrônica , Imunidade Inata , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Apoproteínas/química , Apoproteínas/imunologia , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Bacteriófagos/imunologia , DNA/metabolismo , DNA/química , Clivagem do DNA , Magnésio/química , Magnésio/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Viabilidade Microbiana , Bacillus cereus/química , Bacillus cereus/imunologia , Bacillus cereus/metabolismo , Bacillus cereus/ultraestrutura , Estrutura Quaternária de Proteína , DNA Primase/química , DNA Primase/metabolismo , DNA Primase/ultraestrutura , DNA Topoisomerases/química , DNA Topoisomerases/metabolismo , DNA Topoisomerases/ultraestrutura
4.
Nature ; 634(8033): 432-439, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39112702

RESUMO

Bacteria and their viruses (bacteriophages or phages) are engaged in an intense evolutionary arms race1-5. While the mechanisms of many bacterial antiphage defence systems are known1, how these systems avoid toxicity outside infection yet activate quickly after infection is less well understood. Here we show that the bacterial phage anti-restriction-induced system (PARIS) operates as a toxin-antitoxin system, in which the antitoxin AriA sequesters and inactivates the toxin AriB until triggered by the T7 phage counterdefence protein Ocr. Using cryo-electron microscopy, we show that AriA is related to SMC-family ATPases but assembles into a distinctive homohexameric complex through two oligomerization interfaces. In uninfected cells, the AriA hexamer binds to up to three monomers of AriB, maintaining them in an inactive state. After Ocr binding, the AriA hexamer undergoes a structural rearrangement, releasing AriB and allowing it to dimerize and activate. AriB is a toprim/OLD-family nuclease, the activation of which arrests cell growth and inhibits phage propagation by globally inhibiting protein translation through specific cleavage of a lysine tRNA. Collectively, our findings reveal the intricate molecular mechanisms of a bacterial defence system triggered by a phage counterdefence protein, and highlight how an SMC-family ATPase has been adapted as a bacterial infection sensor.


Assuntos
Toxinas Bacterianas , Bacteriófago T7 , Proteínas de Escherichia coli , Escherichia coli , Sistemas Toxina-Antitoxina , Proteínas Virais , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Bacteriófago T7/química , Bacteriófago T7/fisiologia , Bacteriófago T7/ultraestrutura , Microscopia Crioeletrônica , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Escherichia coli/virologia , Modelos Moleculares , Ligação Proteica , Biossíntese de Proteínas , Multimerização Proteica , RNA de Transferência de Lisina , Sistemas Toxina-Antitoxina/fisiologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura
5.
Nat Rev Mol Cell Biol ; 17(7): 399-412, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27075410

RESUMO

SMC (structural maintenance of chromosomes) complexes - which include condensin, cohesin and the SMC5-SMC6 complex - are major components of chromosomes in all living organisms, from bacteria to humans. These ring-shaped protein machines, which are powered by ATP hydrolysis, topologically encircle DNA. With their ability to hold more than one strand of DNA together, SMC complexes control a plethora of chromosomal activities. Notable among these are chromosome condensation and sister chromatid cohesion. Moreover, SMC complexes have an important role in DNA repair. Recent mechanistic insight into the function and regulation of these universal chromosomal machines enables us to propose molecular models of chromosome structure, dynamics and function, illuminating one of the fundamental entities in biology.


Assuntos
Adenosina Trifosfatases/fisiologia , Cromossomos/fisiologia , Proteínas de Ligação a DNA/fisiologia , Complexos Multiproteicos/fisiologia , Adenosina Trifosfatases/ultraestrutura , Animais , Montagem e Desmontagem da Cromatina , Cromossomos/ultraestrutura , DNA/fisiologia , DNA/ultraestrutura , Reparo do DNA , Proteínas de Ligação a DNA/ultraestrutura , Instabilidade Genômica , Humanos , Complexos Multiproteicos/ultraestrutura
6.
Mol Cell ; 78(2): 250-260.e5, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32097603

RESUMO

Structural maintenance of chromosomes (SMC) complexes organize chromosomes ubiquitously, thereby contributing to their faithful segregation. We demonstrate that under conditions of increased chromosome occupancy of the Escherichia coli SMC complex, MukBEF, the chromosome is organized as a series of loops around a thin (<130 nm) MukBEF axial core, whose length is ∼1,100 times shorter than the chromosomal DNA. The linear order of chromosomal loci is maintained in the axial cores, whose formation requires MukBEF ATP hydrolysis. Axial core structure in non-replicating chromosomes is predominantly linear (1 µm) but becomes circular (1.5 µm) in the absence of MatP because of its failure to displace MukBEF from the 800 kbp replication termination region (ter). Displacement of MukBEF from ter by MatP in wild-type cells directs MukBEF colocalization with the replication origin. We conclude that MukBEF individualizes and compacts the chromosome lengthwise, demonstrating a chromosome organization mechanism similar to condensin in mitotic chromosome formation.


Assuntos
Proteínas Cromossômicas não Histona/genética , Cromossomos Bacterianos/genética , Proteínas de Escherichia coli/genética , Proteínas Repressoras/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/genética , Proteínas Cromossômicas não Histona/ultraestrutura , Segregação de Cromossomos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Mitose/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Origem de Replicação/genética , Proteínas Repressoras/ultraestrutura
7.
Nature ; 599(7885): 497-502, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759315

RESUMO

Canonical CRISPR-Cas systems provide adaptive immunity against mobile genetic elements1. However, type I-F, I-B and V-K systems have been adopted by Tn7-like transposons to direct RNA-guided transposon insertion2-7. Type V-K CRISPR-associated transposons rely on the pseudonuclease Cas12k, the transposase TnsB, the AAA+ ATPase TnsC and the zinc-finger protein TniQ7, but the molecular mechanism of RNA-directed DNA transposition has remained elusive. Here we report cryo-electron microscopic structures of a Cas12k-guide RNA-target DNA complex and a DNA-bound, polymeric TnsC filament from the CRISPR-associated transposon system of the photosynthetic cyanobacterium Scytonema hofmanni. The Cas12k complex structure reveals an intricate guide RNA architecture and critical interactions mediating RNA-guided target DNA recognition. TnsC helical filament assembly is ATP-dependent and accompanied by structural remodelling of the bound DNA duplex. In vivo transposition assays corroborate key features of the structures, and biochemical experiments show that TniQ restricts TnsC polymerization, while TnsB interacts directly with TnsC filaments to trigger their disassembly upon ATP hydrolysis. Together, these results suggest that RNA-directed target selection by Cas12k primes TnsC polymerization and DNA remodelling, generating a recruitment platform for TnsB to catalyse site-specific transposon insertion. Insights from this work will inform the development of CRISPR-associated transposons as programmable site-specific gene insertion tools.


Assuntos
Sistemas CRISPR-Cas , Cianobactérias , Elementos de DNA Transponíveis/genética , Edição de Genes/métodos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Biopolímeros , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Microscopia Crioeletrônica , Cianobactérias/enzimologia , Cianobactérias/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Bacteriano/ultraestrutura , Modelos Moleculares , Mutagênese Insercional , Polimerização , RNA/genética , RNA/metabolismo , Especificidade por Substrato , Transposases/metabolismo , Transposases/ultraestrutura , Dedos de Zinco
8.
Nature ; 579(7799): 448-451, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32188943

RESUMO

Chromatin-remodelling complexes of the SWI/SNF family function in the formation of nucleosome-depleted, transcriptionally active promoter regions (NDRs)1,2. In the yeast Saccharomyces cerevisiae, the essential SWI/SNF complex RSC3 contains 16 subunits, including the ATP-dependent DNA translocase Sth14,5. RSC removes nucleosomes from promoter regions6,7 and positions the specialized +1 and -1 nucleosomes that flank NDRs8,9. Here we present the cryo-electron microscopy structure of RSC in complex with a nucleosome substrate. The structure reveals that RSC forms five protein modules and suggests key features of the remodelling mechanism. The body module serves as a scaffold for the four flexible modules that we call DNA-interacting, ATPase, arm and actin-related protein (ARP) modules. The DNA-interacting module binds extra-nucleosomal DNA and is involved in the recognition of promoter DNA elements8,10,11 that influence RSC functionality12. The ATPase and arm modules sandwich the nucleosome disc with the Snf2 ATP-coupling (SnAC) domain and the finger helix, respectively. The translocase motor of the ATPase module engages with the edge of the nucleosome at superhelical location +2. The mobile ARP module may modulate translocase-nucleosome interactions to regulate RSC activity5. The RSC-nucleosome structure provides a basis for understanding NDR formation and the structure and function of human SWI/SNF complexes that are frequently mutated in cancer13.


Assuntos
Microscopia Crioeletrônica , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Saccharomyces cerevisiae/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Sequência de Aminoácidos , Animais , Transporte Biológico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Drosophila melanogaster , Humanos , Camundongos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Nucleossomos/química , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Xenopus laevis
9.
Nature ; 576(7786): 321-325, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597161

RESUMO

Host infection by pathogenic mycobacteria, such as Mycobacterium tuberculosis, is facilitated by virulence factors that are secreted by type VII secretion systems1. A molecular understanding of the type VII secretion mechanism has been hampered owing to a lack of three-dimensional structures of the fully assembled secretion apparatus. Here we report the cryo-electron microscopy structure of a membrane-embedded core complex of the ESX-3/type VII secretion system from Mycobacterium smegmatis. The core of the ESX-3 secretion machine consists of four protein components-EccB3, EccC3, EccD3 and EccE3, in a 1:1:2:1 stoichiometry-which form two identical protomers. The EccC3 coupling protein comprises a flexible array of four ATPase domains, which are linked to the membrane through a stalk domain. The domain of unknown function (DUF) adjacent to the stalk is identified as an ATPase domain that is essential for secretion. EccB3 is predominantly periplasmatic, but a small segment crosses the membrane and contacts the stalk domain. This suggests that conformational changes in the stalk domain-triggered by substrate binding at the distal end of EccC3 and subsequent ATP hydrolysis in the DUF-could be coupled to substrate secretion to the periplasm. Our results reveal that the architecture of type VII secretion systems differs markedly from that of other known secretion machines2, and provide a structural understanding of these systems that will be useful for the design of antimicrobial strategies that target bacterial virulence.


Assuntos
Microscopia Crioeletrônica , Mycobacterium smegmatis/química , Sistemas de Secreção Tipo VII/química , Sistemas de Secreção Tipo VII/ultraestrutura , Actinobacteria/química , Actinobacteria/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/ultraestrutura , Domínios Proteicos , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Relação Estrutura-Atividade , Thermomonospora , Sistemas de Secreção Tipo VII/isolamento & purificação
10.
Nature ; 570(7762): 538-542, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31189955

RESUMO

Ribosome-associated quality control (RQC) provides a rescue pathway for eukaryotic cells to process faulty proteins after translational stalling of cytoplasmic ribosomes1-6. After dissociation of ribosomes, the stalled tRNA-bound peptide remains associated with the 60S subunit and extended by Rqc2 by addition of C-terminal alanyl and threonyl residues (CAT tails)7-9, whereas Vms1 catalyses cleavage and release of the peptidyl-tRNA before or after addition of CAT tails10-12. In doing so, Vms1 counteracts CAT-tailing of nuclear-encoded mitochondrial proteins that otherwise drive aggregation and compromise mitochondrial and cellular homeostasis13. Here we present structural and functional insights into the interaction of Saccharomyces cerevisiae Vms1 with 60S subunits in pre- and post-peptidyl-tRNA cleavage states. Vms1 binds to 60S subunits with its Vms1-like release factor 1 (VLRF1), zinc finger and ankyrin domains. VLRF1 overlaps with the Rqc2 A-tRNA position and interacts with the ribosomal A-site, projecting its catalytic GSQ motif towards the CCA end of the tRNA, its Y285 residue dislodging the tRNA A73 for nucleolytic cleavage. Moreover, in the pre-state, we found the ABCF-type ATPase Arb1 in the ribosomal E-site, which stabilizes the delocalized A73 of the peptidyl-tRNA and stimulates Vms1-dependent tRNA cleavage. Our structural analysis provides mechanistic insights into the interplay of the RQC factors Vms1, Rqc2 and Arb1 and their role in the protection of mitochondria from the aggregation of toxic proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Homeostase , Proteínas Mitocondriais/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/ultraestrutura , Sequência de Aminoácidos , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Modelos Moleculares , Proteoma/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/química , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura
11.
Cell ; 138(5): 911-22, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19737519

RESUMO

The dynein-related AAA ATPase Rea1 is a preribosomal factor that triggers an unknown maturation step in 60S subunit biogenesis. Using electron microscopy, we show that Rea1's motor domain is docked to the pre-60S particle and its tail-like structure, harboring a metal ion-dependent adhesion site (MIDAS), protrudes from the preribosome. Typically, integrins utilize a MIDAS to bind extracellular ligands, an interaction that is strengthened under applied tensile force. Likewise, the Rea1 MIDAS binds the preribosomal factor Rsa4, which is located on the pre-60S subunit at a site that is contacted by the flexible Rea1 tail. The MIDAS-Rsa4 interaction is essential for ATP-dependent dissociation of a group of non-ribosomal factors from the pre-60S particle. Thus, Rea1 aligns with its interacting partners on the preribosome to effect a necessary step on the path to the export-competent 60S subunit.


Assuntos
Adenosina Trifosfatases/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/metabolismo , Citoplasma/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura
12.
Nature ; 549(7672): 414-417, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28902838

RESUMO

Human transcription factor IIH (TFIIH) is part of the general transcriptional machinery required by RNA polymerase II for the initiation of eukaryotic gene transcription. Composed of ten subunits that add up to a molecular mass of about 500 kDa, TFIIH is also essential for nucleotide excision repair. The seven-subunit TFIIH core complex formed by XPB, XPD, p62, p52, p44, p34, and p8 is competent for DNA repair, while the CDK-activating kinase subcomplex, which includes the kinase activity of CDK7 as well as the cyclin H and MAT1 subunits, is additionally required for transcription initiation. Mutations in the TFIIH subunits XPB, XPD, and p8 lead to severe premature ageing and cancer propensity in the genetic diseases xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy, highlighting the importance of TFIIH for cellular physiology. Here we present the cryo-electron microscopy structure of human TFIIH at 4.4 Å resolution. The structure reveals the molecular architecture of the TFIIH core complex, the detailed structures of its constituent XPB and XPD ATPases, and how the core and kinase subcomplexes of TFIIH are connected. Additionally, our structure provides insight into the conformational dynamics of TFIIH and the regulation of its activity.


Assuntos
Microscopia Crioeletrônica , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/ultraestrutura , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/metabolismo , Humanos , Modelos Moleculares , Mutação , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase II/química , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Iniciação da Transcrição Genética
13.
Nature ; 546(7659): 504-509, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28554189

RESUMO

ABCG2 is a constitutively expressed ATP-binding cassette (ABC) transporter that protects many tissues against xenobiotic molecules. Its activity affects the pharmacokinetics of commonly used drugs and limits the delivery of therapeutics into tumour cells, thus contributing to multidrug resistance. Here we present the structure of human ABCG2 determined by cryo-electron microscopy, providing the first high-resolution insight into a human multidrug transporter. We visualize ABCG2 in complex with two antigen-binding fragments of the human-specific, inhibitory antibody 5D3 that recognizes extracellular loops of the transporter. We observe two cholesterol molecules bound in the multidrug-binding pocket that is located in a central, hydrophobic, inward-facing translocation pathway between the transmembrane domains. Combined with functional in vitro analyses, our results suggest a multidrug recognition and transport mechanism of ABCG2, rationalize disease-causing single nucleotide polymorphisms and the allosteric inhibition by the 5D3 antibody, and provide the structural basis of cholesterol recognition by other G-subfamily ABC transporters.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Microscopia Crioeletrônica , Proteínas de Neoplasias/química , Proteínas de Neoplasias/ultraestrutura , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Sequência de Aminoácidos , Anticorpos/química , Anticorpos/imunologia , Anticorpos/ultraestrutura , Sítios de Ligação , Transporte Biológico , Colesterol/química , Colesterol/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Modelos Moleculares , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Domínios Proteicos
14.
Nature ; 550(7677): 539-542, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29019976

RESUMO

Chromatin-remodelling factors change nucleosome positioning and facilitate DNA transcription, replication, and repair. The conserved remodelling factor chromodomain-helicase-DNA binding protein 1(Chd1) can shift nucleosomes and induce regular nucleosome spacing. Chd1 is required for the passage of RNA polymerase IIthrough nucleosomes and for cellular pluripotency. Chd1 contains the DNA-binding domains SANT and SLIDE, a bilobal motor domain that hydrolyses ATP, and a regulatory double chromodomain. Here we report the cryo-electron microscopy structure of Chd1 from the yeast Saccharomyces cerevisiae bound to a nucleosome at a resolution of 4.8 Å. Chd1 detaches two turns of DNA from the histone octamer and binds between the two DNA gyres in a state poised for catalysis. The SANT and SLIDE domains contact detached DNA around superhelical location (SHL) -7 of the first DNA gyre. The ATPase motor binds the second DNA gyre at SHL +2 and is anchored to the N-terminal tail of histone H4, as seen in a recent nucleosome-Snf2 ATPase structure. Comparisons with published results reveal that the double chromodomain swings towards nucleosomal DNA at SHL +1, resulting in ATPase closure. The ATPase can then promote translocation of DNA towards the nucleosome dyad, thereby loosening the first DNA gyre and remodelling the nucleosome. Translocation may involve ratcheting of the two lobes of the ATPase, which is trapped in a pre- or post-translocation state in the absence or presence, respectively, of transition state-mimicking compounds.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Ativação Enzimática , Histonas/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Nucleossomos/química , Ligação Proteica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química
15.
Nature ; 544(7651): 440-445, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28424519

RESUMO

Chromatin remodellers are helicase-like, ATP-dependent enzymes that alter chromatin structure and nucleosome positions to allow regulatory proteins access to DNA. Here we report the cryo-electron microscopy structure of chromatin remodeller Switch/sucrose non-fermentable (SWI2/SNF2) from Saccharomyces cerevisiae bound to the nucleosome. The structure shows that the two core domains of Snf2 are realigned upon nucleosome binding, suggesting activation of the enzyme. The core domains contact each other through two induced Brace helices, which are crucial for coupling ATP hydrolysis to chromatin remodelling. Snf2 binds to the phosphate backbones of one DNA gyre of the nucleosome mainly through its helicase motifs within the major domain cleft, suggesting a conserved mechanism of substrate engagement across different remodellers. Snf2 contacts the second DNA gyre via a positively charged surface, providing a mechanism to anchor the remodeller at a fixed position of the nucleosome. Snf2 locally deforms nucleosomal DNA at the site of binding, priming the substrate for the remodelling reaction. Together, these findings provide mechanistic insights into chromatin remodelling.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Nucleossomos/química , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Modelos Moleculares , Nucleossomos/ultraestrutura , Ligação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição/ultraestrutura
16.
Nature ; 551(7682): 653-657, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29168508

RESUMO

Eukaryotic transcription-coupled repair (TCR) is an important and well-conserved sub-pathway of nucleotide excision repair that preferentially removes DNA lesions from the template strand that block translocation of RNA polymerase II (Pol II). Cockayne syndrome group B (CSB, also known as ERCC6) protein in humans (or its yeast orthologues, Rad26 in Saccharomyces cerevisiae and Rhp26 in Schizosaccharomyces pombe) is among the first proteins to be recruited to the lesion-arrested Pol II during the initiation of eukaryotic TCR. Mutations in CSB are associated with the autosomal-recessive neurological disorder Cockayne syndrome, which is characterized by progeriod features, growth failure and photosensitivity. The molecular mechanism of eukaryotic TCR initiation remains unclear, with several long-standing unanswered questions. How cells distinguish DNA lesion-arrested Pol II from other forms of arrested Pol II, the role of CSB in TCR initiation, and how CSB interacts with the arrested Pol II complex are all unknown. The lack of structures of CSB or the Pol II-CSB complex has hindered our ability to address these questions. Here we report the structure of the S. cerevisiae Pol II-Rad26 complex solved by cryo-electron microscopy. The structure reveals that Rad26 binds to the DNA upstream of Pol II, where it markedly alters its path. Our structural and functional data suggest that the conserved Swi2/Snf2-family core ATPase domain promotes the forward movement of Pol II, and elucidate key roles for Rad26 in both TCR and transcription elongation.


Assuntos
Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Microscopia Crioeletrônica , Reparo do DNA , RNA Polimerase II/metabolismo , RNA Polimerase II/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/ultraestrutura , Transcrição Gênica , Adenosina Trifosfatases/química , DNA/química , DNA/genética , DNA/metabolismo , DNA/ultraestrutura , Domínios Proteicos , RNA Polimerase II/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Elongação da Transcrição Genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
17.
Nature ; 542(7641): 377-380, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28076345

RESUMO

The spliceosome excises introns from pre-mRNAs in two sequential transesterifications-branching and exon ligation-catalysed at a single catalytic metal site in U6 small nuclear RNA (snRNA). Recently reported structures of the spliceosomal C complex with the cleaved 5' exon and lariat-3'-exon bound to the catalytic centre revealed that branching-specific factors such as Cwc25 lock the branch helix into position for nucleophilic attack of the branch adenosine at the 5' splice site. Furthermore, the ATPase Prp16 is positioned to bind and translocate the intron downstream of the branch point to destabilize branching-specific factors and release the branch helix from the active site. Here we present, at 3.8 Å resolution, the cryo-electron microscopy structure of a Saccharomyces cerevisiae spliceosome stalled after Prp16-mediated remodelling but before exon ligation. While the U6 snRNA catalytic core remains firmly held in the active site cavity of Prp8 by proteins common to both steps, the branch helix has rotated by 75° compared to the C complex and is stabilized in a new position by Prp17, Cef1 and the reoriented Prp8 RNase H-like domain. This rotation of the branch helix removes the branch adenosine from the catalytic core, creates a space for 3' exon docking, and restructures the pairing of the 5' splice site with the U6 snRNA ACAGAGA region. Slu7 and Prp18, which promote exon ligation, bind together to the Prp8 RNase H-like domain. The ATPase Prp22, bound to Prp8 in place of Prp16, could interact with the 3' exon, suggesting a possible basis for mRNA release after exon ligation. Together with the structure of the C complex, our structure of the C* complex reveals the two major conformations of the spliceosome during the catalytic stages of splicing.


Assuntos
Microscopia Crioeletrônica , Éxons , Splicing de RNA , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Spliceossomos/ultraestrutura , Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Biocatálise , Domínio Catalítico , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Éxons/genética , Ligação Proteica , Domínios Proteicos , RNA Helicases/metabolismo , RNA Helicases/ultraestrutura , Sítios de Splice de RNA/genética , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/ultraestrutura , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Ribonuclease H/química , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/ultraestrutura , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteína Nuclear Pequena U5/ultraestrutura , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Spliceossomos/química
18.
Mol Cell ; 54(6): 975-986, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24813946

RESUMO

RNA-specific polynucleotide kinases of the Clp1 subfamily are key components of various RNA maturation pathways. However, the structural basis explaining their substrate specificity and the enzymatic mechanism is elusive. Here, we report crystal structures of Clp1 from Caenorhabditis elegans (ceClp1) in a number of nucleotide- and RNA-bound states along the reaction pathway. The combined structural and biochemical analysis of ceClp1 elucidates the RNA specificity and lets us derive a general model for enzyme catalysis of RNA-specific polynucleotide kinases. We identified an RNA binding motif referred to as "clasp" as well as a conformational switch that involves the essential Walker A lysine (Lys127) and regulates the enzymatic activity of ceClp1. Structural comparison with other P loop proteins, such as kinases, adenosine triphosphatases (ATPases), and guanosine triphosphatases (GTPases), suggests that the observed conformational switch of the Walker A lysine is a broadly relevant mechanistic feature.


Assuntos
Caenorhabditis elegans/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , RNA Ligase (ATP)/ultraestrutura , Proteínas de Ligação a RNA/química , Adenosina Trifosfatases/ultraestrutura , Animais , Sítios de Ligação/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans , Catálise , Cristalografia por Raios X , GTP Fosfo-Hidrolases/ultraestrutura , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/ultraestrutura , Estrutura Terciária de Proteína , RNA/biossíntese , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/ultraestrutura , Especificidade por Substrato
19.
Nucleic Acids Res ; 48(12): 6980-6995, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32453425

RESUMO

DNA unwinding in eukaryotic replication is performed by the Cdc45-MCM-GINS (CMG) helicase. Although the CMG architecture has been elucidated, its mechanism of DNA unwinding and replisome interactions remain poorly understood. Here we report the cryoEM structure at 3.3 Å of human CMG bound to fork DNA and the ATP-analogue ATPγS. Eleven nucleotides of single-stranded (ss) DNA are bound within the C-tier of MCM2-7 AAA+ ATPase domains. All MCM subunits contact DNA, from MCM2 at the 5'-end to MCM5 at the 3'-end of the DNA spiral, but only MCM6, 4, 7 and 3 make a full set of interactions. DNA binding correlates with nucleotide occupancy: five MCM subunits are bound to either ATPγS or ADP, whereas the apo MCM2-5 interface remains open. We further report the cryoEM structure of human CMG bound to the replisome hub AND-1 (CMGA). The AND-1 trimer uses one ß-propeller domain of its trimerisation region to dock onto the side of the helicase assembly formed by Cdc45 and GINS. In the resulting CMGA architecture, the AND-1 trimer is closely positioned to the fork DNA while its CIP (Ctf4-interacting peptide)-binding helical domains remain available to recruit partner proteins.


Assuntos
Proteínas de Ciclo Celular/ultraestrutura , DNA/ultraestrutura , Proteínas de Manutenção de Minicromossomo/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/ultraestrutura , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/genética , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Conformação de Ácido Nucleico , Conformação Proteica
20.
Proc Natl Acad Sci U S A ; 116(2): 534-539, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30559193

RESUMO

Proteasomes occur in all three domains of life, and are the principal molecular machines for the regulated degradation of intracellular proteins. They play key roles in the maintenance of protein homeostasis, and control vital cellular processes. While the eukaryotic 26S proteasome is extensively characterized, its putative evolutionary precursor, the archaeal proteasome, remains poorly understood. The primordial archaeal proteasome consists of a 20S proteolytic core particle (CP), and an AAA-ATPase module. This minimal complex degrades protein unassisted by non-ATPase subunits that are present in a 26S proteasome regulatory particle (RP). Using cryo-EM single-particle analysis, we determined structures of the archaeal CP in complex with the AAA-ATPase PAN (proteasome-activating nucleotidase). Five conformational states were identified, elucidating the functional cycle of PAN, and its interaction with the CP. Coexisting nucleotide states, and correlated intersubunit signaling features, coordinate rotation of the PAN-ATPase staircase, and allosterically regulate N-domain motions and CP gate opening. These findings reveal the structural basis for a sequential around-the-ring ATPase cycle, which is likely conserved in AAA-ATPases.


Assuntos
Adenosina Trifosfatases/ultraestrutura , Proteínas Arqueais/ultraestrutura , Archaeoglobus fulgidus/enzimologia , Microscopia Crioeletrônica , Complexo de Endopeptidases do Proteassoma/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA