Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 147(4)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32001436

RESUMO

Proper organ development depends on coordinated communication between multiple cell types. Retinoic acid (RA) is an autocrine and paracrine signaling molecule essential for the development of most organs, including the lung. Despite extensive work detailing effects of RA deficiency in early lung morphogenesis, little is known about how RA regulates late gestational lung maturation. Here, we investigate the role of the RA catabolizing protein Cyp26b1 in the lung. Cyp26b1 is highly enriched in lung endothelial cells (ECs) throughout development. We find that loss of Cyp26b1 leads to reduction of alveolar type 1 cells, failure of alveolar inflation and early postnatal lethality in mouse. Furthermore, we observe expansion of distal epithelial progenitors, but no appreciable changes in proximal airways, ECs or stromal populations. Exogenous administration of RA during late gestation partially mimics these defects; however, transcriptional analyses comparing Cyp26b1-/- with RA-treated lungs reveal overlapping, but distinct, responses. These data suggest that defects observed in Cyp26b1-/- lungs are caused by both RA-dependent and RA-independent mechanisms. This work reports crucial cellular crosstalk during lung development involving Cyp26b1-expressing endothelium and identifies a novel RA modulator in lung development.


Assuntos
Epitélio/embriologia , Pulmão/embriologia , Alvéolos Pulmonares/embriologia , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/fisiologia , Animais , Sistemas CRISPR-Cas , Diferenciação Celular , Células Endoteliais/citologia , Células Epiteliais/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Organogênese/efeitos dos fármacos , Gravidez , Prenhez , Transdução de Sinais , Células-Tronco/citologia , Tretinoína/farmacologia
2.
Development ; 146(15)2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31331942

RESUMO

Postnatal alveolar formation is the most important and the least understood phase of lung development. Alveolar pathologies are prominent in neonatal and adult lung diseases. The mechanisms of alveologenesis remain largely unknown. We inactivated Pdgfra postnatally in secondary crest myofibroblasts (SCMF), a subpopulation of lung mesenchymal cells. Lack of Pdgfra arrested alveologenesis akin to bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. The transcriptome of mutant SCMF revealed 1808 altered genes encoding transcription factors, signaling and extracellular matrix molecules. Elastin mRNA was reduced, and its distribution was abnormal. Absence of Pdgfra disrupted expression of elastogenic genes, including members of the Lox, Fbn and Fbln families. Expression of EGF family members increased when Tgfb1 was repressed in mouse. Similar, but not identical, results were found in human BPD lung samples. In vitro, blocking PDGF signaling decreased elastogenic gene expression associated with increased Egf and decreased Tgfb family mRNAs. The effect was reversible by inhibiting EGF or activating TGFß signaling. These observations demonstrate the previously unappreciated postnatal role of PDGFA/PDGFRα in controlling elastogenic gene expression via a secondary tier of signaling networks composed of EGF and TGFß.


Assuntos
Família de Proteínas EGF/metabolismo , Miofibroblastos/metabolismo , Alvéolos Pulmonares/embriologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Displasia Broncopulmonar/patologia , Proteínas de Ligação ao Cálcio/biossíntese , Diferenciação Celular/fisiologia , Células Cultivadas , Elastina/genética , Proteínas da Matriz Extracelular/biossíntese , Fibrilina-1/biossíntese , Humanos , Camundongos , Camundongos Knockout , Proteína-Lisina 6-Oxidase/biossíntese , RNA Mensageiro/genética , Fator de Crescimento Transformador beta1/biossíntese
3.
Development ; 146(2)2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651296

RESUMO

Organ growth and tissue homeostasis rely on the proliferation and differentiation of progenitor cell populations. In the developing lung, localized Fgf10 expression maintains distal Sox9-expressing epithelial progenitors and promotes basal cell differentiation in the cartilaginous airways. Mesenchymal Fgf10 expression is induced by Wnt signaling but inhibited by Shh signaling, and epithelial Fgf10 signaling activates ß-catenin signaling. The Hippo pathway is a well-conserved signaling cascade that regulates organ size and stem/progenitor cell behavior. Here, we show that Hippo signaling promotes lineage commitment of lung epithelial progenitors by curbing Fgf10 and ß-catenin signaling. Our findings show that both inactivation of the Hippo pathway (nuclear Yap) or ablation of Yap result in increased ß-catenin and Fgf10 signaling, suggesting a cytoplasmic role for Yap in epithelial lineage commitment. We further demonstrate redundant and non-redundant functions for the two nuclear effectors of the Hippo pathway, Yap and Taz, during lung development.


Assuntos
Linhagem da Célula , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Pulmão/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Diferenciação Celular , Citoplasma/metabolismo , Feminino , Via de Sinalização Hippo , Pulmão/embriologia , Masculino , Camundongos , Modelos Biológicos , Organogênese , Fenótipo , Fosfoproteínas/metabolismo , Alvéolos Pulmonares/embriologia , Transativadores , Proteínas de Sinalização YAP
4.
Dev Dyn ; 250(4): 482-496, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33169483

RESUMO

Lung alveologenesis, formation of the alveolar region, allows sufficient gas exchange surface to be packed inside the chest cavity yet with orderly connection to the trachea. The real-life alveolar region, however, bears little resemblance to idealized cartoons owing to its three-dimensional nature, nonuniform shape, and mostly air-filled void. This morphological complexity is matched by its cellular complexity-comprised of intermixed and often tangled cells of the epithelial, mesenchymal, endothelial, and immune lineages. Modern imaging, genetics, and genomics are shedding light on and updating traditional views of alveologenesis. Accordingly, this review describes a cell-centric 3-phase definition of alveologenesis and discusses its failure in diseases and possible reactivation during regeneration.


Assuntos
Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/embriologia , Animais , Humanos , Organogênese , Alvéolos Pulmonares/fisiologia , Regeneração
5.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L814-L826, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431413

RESUMO

Accurate fluid pressure in the fetal lung is critical for its development, especially at the beginning of the saccular stage when alveolar epithelial type 1 (AT1) and type 2 (AT2) cells differentiate from the epithelial progenitors. Despite our growing understanding of the role of physical forces in lung development, the molecular mechanisms that regulate the transduction of mechanical stretch to alveolar differentiation remain elusive. To simulate lung distension, we optimized both an ex vivo model with precision cut lung slices and an in vivo model of fetal tracheal occlusion. Increased mechanical tension showed to improve alveolar maturation and differentiation toward AT1. By manipulating ROCK pathway, we demonstrate that stretch-induced Yap/Taz activation promotes alveolar differentiation toward AT1 phenotype via ROCK activity. Our findings show that balanced ROCK-Yap/Taz signaling is essential to regulate AT1 differentiation in response to mechanical stretching of the fetal lung, which might be helpful in improving lung development and regeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Epiteliais Alveolares/fisiologia , Mecanotransdução Celular/fisiologia , Alvéolos Pulmonares/embriologia , Quinases Associadas a rho/metabolismo , Células Epiteliais Alveolares/citologia , Animais , Contagem de Células , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Camundongos , Microscopia Eletrônica de Varredura , Organogênese/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Sinalização YAP
6.
Development ; 145(7)2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636361

RESUMO

Platelet-derived growth factor A (PDGF-A) signaling through PDGF receptor α is essential for alveogenesis. Previous studies have shown that Pdgfa-/- mouse lungs have enlarged alveolar airspace with absence of secondary septation, both distinctive features of bronchopulmonary dysplasia. To study how PDGF-A signaling is involved in alveogenesis, we generated lung-specific Pdgfa knockout mice (Pdgfafl/-; Spc-cre) and characterized their phenotype postnatally. Histological differences between mutant mice and littermate controls were visible after the onset of alveogenesis and maintained until adulthood. Additionally, we generated Pdgfafl/-; Spc-cre; PdgfraGFP/+ mice in which Pdgfra+ cells exhibit nuclear GFP expression. In the absence of PDGF-A, the number of PdgfraGFP+ cells was significantly decreased. In addition, proliferation of PdgfraGFP+ cells was reduced. During alveogenesis, PdgfraGFP+ myofibroblasts failed to form the α-smooth muscle actin rings necessary for alveolar secondary septation. These results indicate that PDGF-A signaling is involved in myofibroblast proliferation and migration. In addition, we show an increase in both the number and proliferation of alveolar type II cells in Pdgfafl/-; Spc-cre lungs, suggesting that the increased alveolar airspace is not caused solely by deficient myofibroblast function.


Assuntos
Pulmão/metabolismo , Organogênese/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Alvéolos Pulmonares/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/embriologia , Camundongos , Camundongos Knockout , Miofibroblastos/metabolismo , Alvéolos Pulmonares/embriologia , Reação em Cadeia da Polimerase em Tempo Real , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais
7.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1165-L1171, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32292070

RESUMO

Bronchopulmonary dysplasia (BPD), a long-term respiratory morbidity of prematurity, is characterized by attenuated alveolar and vascular development. Supplemental oxygen and immature antioxidant defenses contribute to BPD development. Our group identified thioredoxin reductase-1 (TXNRD1) as a therapeutic target to prevent BPD. The present studies evaluated the impact of the TXNRD1 inhibitor aurothioglucose (ATG) on pulmonary responses and gene expression in newborn C57BL/6 pups treated with saline or ATG (25 mg/kg ip) within 12 h of birth and exposed to room air (21% O2) or hyperoxia (>95% O2) for 72 h. Purified RNA from lung tissues was sequenced, and differential expression was evaluated. Hyperoxic exposure altered ~2,000 genes, including pathways involved in glutathione metabolism, intrinsic apoptosis signaling, and cell cycle regulation. The isolated effect of ATG treatment was limited primarily to genes that regulate angiogenesis and vascularization. In separate studies, pups were treated as described above and returned to room air until 14 days. Vascular density analyses were performed, and ANOVA indicated an independent effect of hyperoxia on vascular density and alveolar architecture at 14 days. Consistent with RNA-seq analyses, ATG significantly increased vascular density in room air, but not in hyperoxia-exposed pups. These findings provide insights into the mechanisms by which TXNRD1 inhibitors may enhance lung development.


Assuntos
Ar , Aurotioglucose/farmacologia , Hiperóxia/patologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Doença Aguda , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/genética , DNA/biossíntese , Glutationa/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/embriologia , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/embriologia , Alvéolos Pulmonares/patologia , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos
8.
Development ; 144(1): 151-162, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913639

RESUMO

In lung development, the apically constricted columnar epithelium forms numerous buds during the pseudoglandular stage. Subsequently, these epithelial cells change shape into the flat or cuboidal pneumocytes that form the air sacs during the canalicular and saccular (canalicular-saccular) stages, yet the impact of cell shape on tissue morphogenesis remains unclear. Here, we show that the expression of Wnt components is decreased in the canalicular-saccular stages, and that genetically constitutive activation of Wnt signaling impairs air sac formation by inducing apical constriction in the epithelium as seen in the pseudoglandular stage. Organ culture models also demonstrate that Wnt signaling induces apical constriction through apical actomyosin cytoskeletal organization. Mathematical modeling reveals that apical constriction induces bud formation and that loss of apical constriction is required for the formation of an air sac-like structure. We identify MAP/microtubule affinity-regulating kinase 1 (Mark1) as a downstream molecule of Wnt signaling and show that it is required for apical cytoskeletal organization and bud formation. These results suggest that Wnt signaling is required for bud formation by inducing apical constriction during the pseudoglandular stage, whereas loss of Wnt signaling is necessary for air sac formation in the canalicular-saccular stages.


Assuntos
Pulmão/embriologia , Organogênese , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/embriologia , Via de Sinalização Wnt/fisiologia , Animais , Diferenciação Celular , Polaridade Celular/fisiologia , Forma Celular , Citoesqueleto/fisiologia , Embrião de Mamíferos , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Modelos Teóricos , Tamanho do Órgão , Organogênese/genética
9.
Development ; 144(24): 4563-4572, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29122839

RESUMO

Alveologenesis, the final step of lung development, is characterized by the formation of millions of alveolar septa that constitute the vast gas-exchange surface area. The genetic network driving alveologenesis is poorly understood compared with earlier steps in lung development. FGF signaling through receptors Fgfr3 and Fgfr4 is crucial for alveologenesis, but the mechanisms through which they mediate this process remain unclear. Here we show that in Fgfr3;Fgfr4 (Fgfr3;4) global mutant mice, alveolar simplification is first observed at the onset of alveologenesis at postnatal day 3. This is preceded by disorganization of elastin, indicating defects in the extracellular matrix (ECM). Although Fgfr3 and Fgfr4 are expressed in the mesenchyme and epithelium, inactivation in the mesenchyme, but not the epithelium, recapitulated the defects. Expression analysis of components of the elastogenesis machinery revealed that Mfap5 (also known as Magp2), which encodes an elastin-microfibril bridging factor, is upregulated in Fgfr3;4 mutants. Mfap5 mutation in the Fgfr3;4 mutant background partially attenuated the alveologenesis defects. These data demonstrate that, during normal lung maturation, FGF signaling restricts expression of the elastogenic machinery in the lung mesenchyme to control orderly formation of the elastin ECM, thereby driving alveolar septa formation to increase the gas-exchange surface.


Assuntos
Proteínas Contráteis/biossíntese , Proteínas da Matriz Extracelular/biossíntese , Organogênese/fisiologia , Alvéolos Pulmonares/embriologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Proteínas Contráteis/genética , Epitélio/metabolismo , Matriz Extracelular/patologia , Proteínas da Matriz Extracelular/genética , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Alvéolos Pulmonares/citologia , Fatores de Processamento de RNA , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/fisiologia
10.
Blood ; 132(11): 1167-1179, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-29853539

RESUMO

Platelets participate in not only thrombosis and hemostasis but also other pathophysiological processes, including tumor metastasis and inflammation. However, the putative role of platelets in the development of solid organs has not yet been described. Here, we report that platelets regulate lung development through the interaction between the platelet-activation receptor, C-type lectin-like receptor-2 (Clec-2; encoded by Clec1b), and its ligand, podoplanin, a membrane protein. Clec-2 deletion in mouse platelets led to lung malformation, which caused respiratory failure and neonatal lethality. In these embryos, α-smooth muscle actin-positive alveolar duct myofibroblasts (adMYFs) were almost absent in the primary alveolar septa, which resulted in loss of alveolar elastic fibers and lung malformation. Our data suggest that the lack of adMYFs is caused by abnormal differentiation of lung mesothelial cells (luMCs), the major progenitor of adMYFs. In the developing lung, podoplanin expression is detected in alveolar epithelial cells (AECs), luMCs, and lymphatic endothelial cells (LECs). LEC-specific podoplanin knockout mice showed neonatal lethality and Clec1b-/--like lung developmental abnormalities. Notably, these Clec1b-/--like lung abnormalities were also observed after thrombocytopenia or transforming growth factor-ß depletion in fetuses. We propose that the interaction between Clec-2 on platelets and podoplanin on LECs stimulates adMYF differentiation of luMCs through transforming growth factor-ß signaling, thus regulating normal lung development.


Assuntos
Plaquetas/metabolismo , Diferenciação Celular/fisiologia , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Alvéolos Pulmonares/embriologia , Transdução de Sinais/fisiologia , Animais , Plaquetas/citologia , Células Endoteliais , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Lectinas Tipo C/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Alvéolos Pulmonares/citologia , Mucosa Respiratória/citologia , Mucosa Respiratória/embriologia
11.
Dev Biol ; 444 Suppl 1: S325-S336, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29792856

RESUMO

Although the basic schema of the body plan is similar among different species of amniotes (mammals, birds, and reptiles), the lung is an exception. Here, anatomy and physiology are considerably different, particularly between mammals and birds. In mammals, inhaled and exhaled airs mix in the airways, whereas in birds the inspired air flows unidirectionally without mixing with the expired air. This bird-specific respiration system is enabled by the complex tubular structures called parabronchi where gas exchange takes place, and also by the bellow-like air sacs appended to the main part of the lung. That the lung is predominantly governed by the parasympathetic nervous system has been shown mostly by physiological studies in mammals. However, how the parasympathetic nervous system in the lung is established during late development has largely been unexplored both in mammals and birds. In this study, by combining immunocytochemistry, the tissue-clearing CUBIC method, and ink-injection to airways, we have visualized the 3-D distribution patterns of parasympathetic nerves and ganglia in the lung at late developmental stages of mice and chickens. These patterns were further compared between these species, and three prominent similarities emerged: (1) parasympathetic postganglionic fibers and ganglia are widely distributed in the lung covering the proximal and distal portions, (2) the gas exchange units, alveoli in mice and parabronchi in chickens, are devoid of parasympathetic nerves, (3) parasympathetic nerves are in close association with smooth muscle cells, particularly at the base of the gas exchange units. These observations suggest that despite gross differences in anatomy, the basic mechanisms underlying parasympathetic control of smooth muscles and gas exchange might be conserved between mammals and birds.


Assuntos
Pulmão/embriologia , Pulmão/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Animais , Embrião de Galinha , Galinhas , Gânglios/embriologia , Mamíferos/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Sistema Nervoso Parassimpático/embriologia , Alvéolos Pulmonares/embriologia , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/fisiologia
12.
Physiol Rev ; 92(1): 367-520, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22298659

RESUMO

It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.


Assuntos
Hipóxia/fisiopatologia , Alvéolos Pulmonares/irrigação sanguínea , Vasoconstrição/fisiologia , Doença da Altitude/fisiopatologia , Comunicação Celular , Humanos , Hipertensão Pulmonar/fisiopatologia , Recém-Nascido , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Alvéolos Pulmonares/embriologia , Alvéolos Pulmonares/crescimento & desenvolvimento , Troca Gasosa Pulmonar/fisiologia
13.
J Cell Biochem ; 120(10): 16876-16887, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144392

RESUMO

Bronchopulmonary dysplasia (BPD) is a common and refractory disease affecting newborn children and infants with alveolar dysplasia and declined pulmonary function. Several microRNAs (miRNAs) have been found to be differentially expressed in BPD progression. This study further explores the role of miR-421 via fibroblast growth factor 10 (Fgf10) in mice with BPD. A mouse model of BPD was established through the induction of hyperoxia, in which the expression pattern of miR-421 and Fgf10 was identified. Furthermore, adenovirus-packed vectors were injected in mice to intervene miR-421 and Fgf10 expression, including miR-421 mimics or inhibitors, and si-Fgf10 to explore the role of miR-421 and Fgf10 in BPD. The target relationship between miR-421 and Fgf10 was investigated. Inflammatory response and cell apoptosis were observed in the mice, with inflammatory cytokines and apoptosis-related factors detected by applying Reverse transcription quantitative polymerase chain reaction, Western blot analysis, and enzyme-linked immunosorbent assay. Fgf10 was confirmed as a target gene of miR-421. Elevated expression of miR-421 was evident, while Fgf10 was poorly expressed in BPD. upregulation of miR-421 and silence of Fgf10 aggravated inflammatory response in lung tissue and promoted lung cell apoptosis in BPD. The aforementioned alterations could be reversed by downregulation of miR-421. Collectively, inhibition of miR-421 can assist in the development of BPD in mice BPD by upregulating Fgf10. Therefore, the present study provides a probable target for the treatment of BPD.


Assuntos
Apoptose/genética , Displasia Broncopulmonar/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , MicroRNAs/genética , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Inativação Gênica , Hiperóxia/fisiopatologia , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Endogâmicos , Alvéolos Pulmonares/embriologia
14.
Development ; 143(1): 54-65, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26586225

RESUMO

Alveolar type 1 (AT1) cells cover >95% of the gas exchange surface and are extremely thin to facilitate passive gas diffusion. The development of these highly specialized cells and its coordination with the formation of the honeycomb-like alveolar structure are poorly understood. Using new marker-based stereology and single-cell imaging methods, we show that AT1 cells in the mouse lung form expansive thin cellular extensions via a non-proliferative two-step process while retaining cellular plasticity. In the flattening step, AT1 cells undergo molecular specification and remodel cell junctions while remaining connected to their epithelial neighbors. In the folding step, AT1 cells increase in size by more than 10-fold and undergo cellular morphogenesis that matches capillary and secondary septa formation, resulting in a single AT1 cell spanning multiple alveoli. Furthermore, AT1 cells are an unexpected source of VEGFA and their normal development is required for alveolar angiogenesis. Notably, a majority of AT1 cells proliferate upon ectopic SOX2 expression and undergo stage-dependent cell fate reprogramming. These results provide evidence that AT1 cells have both structural and signaling roles in alveolar maturation and can exit their terminally differentiated non-proliferative state. Our findings suggest that AT1 cells might be a new target in the pathogenesis and treatment of lung diseases associated with premature birth.


Assuntos
Células Epiteliais Alveolares/citologia , Plasticidade Celular/fisiologia , Reprogramação Celular/fisiologia , Pneumopatias/patologia , Alvéolos Pulmonares/embriologia , Animais , Diferenciação Celular , Células Cultivadas , Células Epiteliais/citologia , Imageamento Tridimensional , Hibridização in Situ Fluorescente , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica/fisiologia , Alvéolos Pulmonares/citologia , Fatores de Transcrição SOXB1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Am J Respir Crit Care Med ; 197(6): 776-787, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29268623

RESUMO

RATIONALE: Pregnancies complicated by antenatal stress, including preeclampsia (PE) and chorioamnionitis (CA), increase the risk for bronchopulmonary dysplasia (BPD) in preterm infants, but biologic mechanisms linking prenatal factors with BPD are uncertain. Levels of sFlt-1 (soluble fms-like tyrosine kinase 1), an endogenous antagonist to VEGF (vascular endothelial growth factor), are increased in amniotic fluid and maternal blood in PE and associated with CA. OBJECTIVES: Because impaired VEGF signaling has been implicated in the pathogenesis of BPD, we hypothesized that fetal exposure to sFlt-1 decreases lung growth and causes abnormal lung structure and pulmonary hypertension during infancy. METHODS: To test this hypothesis, we studied the effects of anti-sFlt-1 monoclonal antibody (mAb) treatment on lung growth in two established antenatal models of BPD that mimic PE and CA induced by intraamniotic (i.a.) injections of sFlt-1 or endotoxin, respectively. In experimental PE, mAb was administered by three different approaches, including antenatal treatment by either i.a. instillation or maternal uterine artery infusion, or by postnatal intraperitoneal injections. RESULTS: With each strategy, mAb therapy improved infant lung structure as assessed by radial alveolar count, vessel density, right ventricular hypertrophy, and lung function. As found in the PE model, the adverse lung effects of i.a. endotoxin were also reduced by antenatal or postnatal mAb therapy. CONCLUSIONS: We conclude that treatment with anti-sFlt-1 mAb preserves lung structure and function and prevents right ventricular hypertrophy in two rat models of BPD of antenatal stress and speculate that early mAb therapy may provide a novel strategy for the prevention of BPD.


Assuntos
Displasia Broncopulmonar/fisiopatologia , Endotélio Vascular/crescimento & desenvolvimento , Pulmão/crescimento & desenvolvimento , Alvéolos Pulmonares/crescimento & desenvolvimento , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/embriologia , Modelos Animais de Doenças , Endotélio Vascular/embriologia , Feminino , Humanos , Pulmão/embriologia , Gravidez , Alvéolos Pulmonares/embriologia , Ratos , Ratos Sprague-Dawley
16.
Mol Pharmacol ; 92(6): 676-693, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025966

RESUMO

Lung development is mediated by assorted signaling proteins and orchestrated by complex mesenchymal-epithelial interactions. Notch signaling is an evolutionarily conserved cell-cell communication mechanism that exhibits a pivotal role in lung development. Notably, both aberrant expression and loss of regulation of Notch signaling are critically linked to the pathogenesis of various lung diseases, in particular, pulmonary fibrosis, lung cancer, pulmonary arterial hypertension, and asthmatic airway remodeling; implying that precise regulation of intensity and duration of Notch signaling is imperative for appropriate lung development. Moreover, evidence suggests that Notch signaling links embryonic lung development and asthmatic airway remodeling. Herein, we summarized all-recent advances associated with the mechanistic role of Notch signaling in lung development, consequences of aberrant expression or deletion of Notch signaling in linking early-impaired lung development and asthmatic airway remodeling, and all recently investigated potential therapeutic strategies to treat asthmatic airway remodeling.


Assuntos
Remodelação das Vias Aéreas , Asma/metabolismo , Pulmão/embriologia , Pulmão/metabolismo , Receptores Notch/fisiologia , Animais , Asma/tratamento farmacológico , Asma/patologia , Comunicação Celular , Diferenciação Celular , Desenvolvimento Embrionário , Transição Epitelial-Mesenquimal , Células Caliciformes/patologia , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Microvasos/embriologia , Microvasos/patologia , Terapia de Alvo Molecular , Células Neuroendócrinas/patologia , Alvéolos Pulmonares/embriologia , Alvéolos Pulmonares/patologia , Mucosa Respiratória/embriologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais
17.
Dev Biol ; 414(2): 161-9, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27141870

RESUMO

The commitment and differentiation of the alveolar type I (AT1) cell lineage is a critical step for the formation of distal lung saccules, which are the primitive alveolar units required for postnatal respiration. How AT1 cells arise from the distal lung epithelial progenitor cells prior to birth and whether this process depends on a developmental niche instructed by mesenchymal cells is poorly understood. We show that mice lacking histone deacetylase 3 specifically in the developing lung mesenchyme display lung hypoplasia including decreased mesenchymal proliferation and a severe impairment of AT1 cell differentiation. This is correlated with a decrease in Wnt/ß-catenin signaling in the lung epithelium. We demonstrate that inhibition of Wnt signaling causes defective AT1 cell lineage differentiation ex vivo. Importantly, systemic activation of Wnt signaling at specific stages of lung development can partially rescue the AT1 cell differentiation defect in vivo. These studies show that histone deacetylase 3 expression generates an important developmental niche in the lung mesenchyme through regulation of Wnt signaling, which is required for proper AT1 cell differentiation and lung sacculation.


Assuntos
Células Epiteliais Alveolares/fisiologia , Histona Desacetilases/fisiologia , Alvéolos Pulmonares/embriologia , Nicho de Células-Tronco/fisiologia , Via de Sinalização Wnt/fisiologia , Animais , Diferenciação Celular , Endoderma/citologia , Genes Letais , Histona Desacetilases/deficiência , Histona Desacetilases/genética , Cloreto de Lítio/farmacologia , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C57BL , Alvéolos Pulmonares/anormalidades , Via de Sinalização Wnt/efeitos dos fármacos
18.
Development ; 141(24): 4751-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25395457

RESUMO

Integrin-dependent interactions between cells and extracellular matrix regulate lung development; however, specific roles for ß1-containing integrins in individual cell types, including epithelial cells, remain incompletely understood. In this study, the functional importance of ß1 integrin in lung epithelium during mouse lung development was investigated by deleting the integrin from E10.5 onwards using surfactant protein C promoter-driven Cre. These mutant mice appeared normal at birth but failed to gain weight appropriately and died by 4 months of age with severe hypoxemia. Defects in airway branching morphogenesis in association with impaired epithelial cell adhesion and migration, as well as alveolarization defects and persistent macrophage-mediated inflammation were identified. Using an inducible system to delete ß1 integrin after completion of airway branching, we showed that alveolarization defects, characterized by disrupted secondary septation, abnormal alveolar epithelial cell differentiation, excessive collagen I and elastin deposition, and hypercellularity of the mesenchyme occurred independently of airway branching defects. By depleting macrophages using liposomal clodronate, we found that alveolarization defects were secondary to persistent alveolar inflammation. ß1 integrin-deficient alveolar epithelial cells produced excessive monocyte chemoattractant protein 1 and reactive oxygen species, suggesting a direct role for ß1 integrin in regulating alveolar homeostasis. Taken together, these studies define distinct functions of epithelial ß1 integrin during both early and late lung development that affect airway branching morphogenesis, epithelial cell differentiation, alveolar septation and regulation of alveolar homeostasis.


Assuntos
Células Epiteliais/metabolismo , Integrina beta1/metabolismo , Pulmão/embriologia , Organogênese/fisiologia , Alvéolos Pulmonares/embriologia , Animais , Lavagem Broncoalveolar , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Quimiocina CCL2/metabolismo , Ensaio de Imunoadsorção Enzimática , Matriz Extracelular/metabolismo , Integrases/metabolismo , Camundongos , Microscopia Confocal , Proteína C Associada a Surfactante Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico
19.
Development ; 141(2): 296-306, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24353064

RESUMO

The lung mesenchyme consists of a widely heterogeneous population of cells that play crucial roles during development and homeostasis after birth. These cells belong to myogenic, adipogenic, chondrogenic, neuronal and other lineages. Yet, no clear hierarchy for these lineages has been established. We have previously generated a novel Fgf10(iCre) knock-in mouse line that allows lineage tracing of Fgf10-positive cells during development and postnatally. Using these mice, we hereby demonstrate the presence of two waves of Fgf10 expression during embryonic lung development: the first wave, comprising Fgf10-positive cells residing in the submesothelial mesenchyme at early pseudoglandular stage (as well as their descendants); and the second wave, comprising Fgf10-positive cells from late pseudoglandular stage (as well as their descendants). Our lineage-tracing data reveal that the first wave contributes to the formation of parabronchial and vascular smooth muscle cells as well as lipofibroblasts at later developmental stages, whereas the second wave does not give rise to smooth muscle cells but to lipofibroblasts as well as an Nkx2.1(-) E-Cad(-) Epcam(+) Pro-Spc(+) lineage that requires further in-depth analysis. During alveologenesis, Fgf10-positive cells give rise to lipofibroblasts rather than alveolar myofibroblasts, and during adult life, a subpopulation of Fgf10-expressing cells represents a pool of resident mesenchymal stromal (stem) cells (MSCs) (Cd45(-) Cd31(-) Sca-1(+)). Taken together, we show for the first time that Fgf10-expressing cells represent a pool of mesenchymal progenitors in the embryonic and postnatal lung. Our findings suggest that Fgf10-positive cells could be useful for developing stem cell-based therapies for treating interstitial lung diseases.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Pulmão/embriologia , Pulmão/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Linhagem da Célula , Movimento Celular , Feminino , Fator 10 de Crescimento de Fibroblastos/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Pulmão/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Gravidez , Alvéolos Pulmonares/embriologia , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/metabolismo
20.
Cell Tissue Res ; 367(3): 427-444, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28144783

RESUMO

To fulfill the task of gas exchange, the lung possesses a huge inner surface and a tree-like system of conducting airways ventilating the gas exchange area. During lung development, the conducting airways are formed first, followed by the formation and enlargement of the gas exchange area. The latter (alveolarization) continues until young adulthood. During organogenesis, the left and right lungs have their own anlage, an outpouching of the foregut. Each lung bud starts a repetitive process of outgrowth and branching (branching morphogenesis) that forms all of the future airways mainly during the pseudoglandular stage. During the canalicular stage, the differentiation of the epithelia becomes visible and the bronchioalveolar duct junction is formed. The location of this junction stays constant throughout life. Towards the end of the canalicular stage, the first gas exchange may take place and survival of prematurely born babies becomes possible. Ninety percent of the gas exchange surface area will be formed by alveolarization, a process where existing airspaces are subdivided by the formation of new walls (septa). This process requires a double-layered capillary network at the basis of the newly forming septum. However, in parallel to alveolarization, the double-layered capillary network of the immature septa fuses to a single-layered network resulting in an optimized setup for gas exchange. Alveolarization still continues, because, at sites where new septa are lifting off preexisting mature septa, the required second capillary layer will be formed instantly by angiogenesis. The latter confirms a lifelong ability of alveolarization, which is important for any kind of lung regeneration.


Assuntos
Desenvolvimento Embrionário , Pulmão/embriologia , Animais , Humanos , Organogênese , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/embriologia , Alvéolos Pulmonares/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA