Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.269
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Virol ; 97(8): e0038823, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37540019

RESUMO

The influenza A virus (IAV) M2 protein has proton channel activity, which plays a role in virus uncoating and may help to preserve the metastable conformation of the IAV hemagglutinin (HA). In contrast to the highly conserved M2 proteins of conventional IAV, the primary sequences of bat IAV H17N10 and H18N11 M2 proteins show remarkable divergence, suggesting that these proteins may differ in their biological function. We, therefore, assessed the proton channel activity of bat IAV M2 proteins and investigated its role in virus replication. Here, we show that the M2 proteins of bat IAV did not fully protect acid-sensitive HA of classical IAV from low pH-induced conformational change, indicating low proton channel activity. Interestingly, the N31S substitution not only rendered bat IAV M2 proteins sensitive to inhibition by amantadine but also preserved the metastable conformation of acid-sensitive HA to a greater extent. In contrast, the acid-stable HA of H18N11 did not rely on such support by M2 protein. When mutant M2(N31S) protein was expressed in the context of chimeric H18N11/H5N1(6:2) encoding HA and NA of avian IAV H5N1, amantadine significantly inhibited virus entry, suggesting that ion channel activity supported virus uncoating. Finally, the cytoplasmic domain of the H18N11 M2 protein mediated rapid internalization of the protein from the plasma membrane leading to low-level expression at the cell surface. However, cell surface levels of H18N11 M2 protein were significantly enhanced in cells infected with the chimeric H18N11/H5N1(6:2) virus. The potential role of the N1 sialidase in arresting M2 internalization is discussed. IMPORTANCE Bat IAV M2 proteins not only differ from the homologous proteins of classical IAV by their divergent primary sequence but are also unable to preserve the metastable conformation of acid-sensitive HA, indicating low proton channel activity. This unusual feature may help to avoid M2-mediated cytotoxic effects and inflammation in bats infected with H17N10 or H18N11. Unlike classical M2 proteins, bat IAV M2 proteins with the N31S substitution mediated increased protection of HA from acid-induced conformational change. This remarkable gain of function may help to understand how single point mutations can modulate proton channel activity. In addition, the cytoplasmic domain was found to be responsible for the low cell surface expression level of bat IAV M2 proteins. Given that the M2 cytoplasmic domain of conventional IAV is well known to participate in virus assembly at the plasma membrane, this atypical feature might have consequences for bat IAV budding and egress.


Assuntos
Quirópteros , Vírus da Influenza A , Animais , Amantadina/farmacologia , Linhagem Celular , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/fisiologia , Virus da Influenza A Subtipo H5N1/metabolismo , Prótons
2.
PLoS Pathog ; 18(10): e1010892, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36191050

RESUMO

Many viruses encode ion channel proteins that oligomerize to form hydrophilic pores in membranes of virus-infected cells and the viral membrane in some enveloped viruses. Alphavirus 6K, human immunodeficiency virus type 1 Vpu (HIV-Vpu), influenza A virus M2 (IAV-M2), and hepatitis C virus P7 (HCV-P7) are transmembrane ion channel proteins that play essential roles in virus assembly, budding, and entry. While the oligomeric structures and mechanisms of ion channel activity are well-established for M2 and P7, these remain unknown for 6K. Here we investigated the functional role of the ion channel activity of 6K in alphavirus assembly by utilizing a series of Sindbis virus (SINV) ion channel chimeras expressing the ion channel helix from Vpu or M2 or substituting the entire 6K protein with full-length P7, in cis. We demonstrate that the Vpu helix efficiently complements 6K, whereas M2 and P7 are less efficient. Our results indicate that while SINV is primarily insensitive to the M2 ion channel inhibitor amantadine, the Vpu inhibitor 5-N, N-Hexamethylene amiloride (HMA), significantly reduces SINV release, suggesting that the ion channel activity of 6K similar to Vpu, promotes virus budding. Using live-cell imaging of SINV with a miniSOG-tagged 6K and mCherry-tagged E2, we further demonstrate that 6K and E2 colocalize with the Golgi apparatus in the secretory pathway. To contextualize the localization of 6K in the Golgi, we analyzed cells infected with SINV and SINV-ion channel chimeras using transmission electron microscopy. Our results provide evidence for the first time for the functional role of 6K in type II cytopathic vacuoles (CPV-II) formation. We demonstrate that in the absence of 6K, CPV-II, which originates from the Golgi apparatus, is not detected in infected cells, with a concomitant reduction in the glycoprotein transport to the plasma membrane. Substituting a functional ion channel, M2 or Vpu localizing to Golgi, restores CPV-II production, whereas P7, retained in the ER, is inadequate to induce CPV-II formation. Altogether our results indicate that ion channel activity of 6K is required for the formation of CPV-II from the Golgi apparatus, promoting glycoprotein spike transport to the plasma membrane and efficient virus budding.


Assuntos
Sindbis virus , Liberação de Vírus , Amantadina/farmacologia , Glicoproteínas/metabolismo , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Sindbis virus/genética , Sindbis virus/metabolismo
3.
J Virol ; 96(18): e0064622, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36040176

RESUMO

Hepatitis A virus (HAV) infection is a major cause of acute viral hepatitis worldwide. Furthermore, HAV causes acute liver failure or acute-on-chronic liver failure. However, no potent anti-HAV drugs are currently available in the clinical situations. There have been some reports that amantadine, a broad-spectrum antiviral, suppresses HAV replication in vitro. Therefore, we examined the effects of amantadine and rimantadine, derivates of adamantane, on HAV replication, and investigated the mechanisms of these drugs. In the present study, we evaluated the effects of amantadine and rimantadine on HAV HM175 genotype IB subgenomic replicon replication and HAV HA11-1299 genotype IIIA replication in cell culture infection systems. Amantadine and rimantadine significantly inhibited HAV replication at the post-entry stage in Huh7 cells. HAV infection inhibited autophagy by suppressing the autophagy marker light chain 3 and reducing number of lysosomes. Proteomic analysis on HAV-infected Huh7 cells treated by amantadine and rimantadine revealed the changes of the expression levels in 42 of 373 immune response-related proteins. Amantadine and rimantadine inhibited HAV replication, partially through the enhancement of autophagy. Taken together, our results suggest a novel mechanism by which HAV replicates along with the inhibition of autophagy and that amantadine and rimantadine inhibit HAV replication by enhancing autophagy. IMPORTANCE Amantadine, a nonspecific antiviral medication, also effectively inhibits HAV replication. Autophagy is an important cellular mechanism in several virus-host cell interactions. The results of this study provide evidence indicating that autophagy is involved in HAV replication and plays a role in the HAV life cycle. In addition, amantadine and its derivative rimantadine suppress HAV replication partly by enhancing autophagy at the post-entry phase of HAV infection in human hepatocytes. Amantadine may be useful for the control of acute HAV infection by inhibiting cellular autophagy pathways during HAV infection processes.


Assuntos
Amantadina , Autofagia , Vírus da Hepatite A , Hepatite A , Rimantadina , Replicação Viral , Amantadina/farmacologia , Amantadina/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Autofagia/efeitos dos fármacos , Linhagem Celular , Hepatite A/tratamento farmacológico , Anticorpos Anti-Hepatite A , Vírus da Hepatite A/efeitos dos fármacos , Humanos , Proteômica , Rimantadina/farmacologia , Rimantadina/uso terapêutico , Replicação Viral/efeitos dos fármacos
4.
Bioorg Chem ; 130: 106223, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356372

RESUMO

Eight hybrids of amantadine (ATD) with a natural modulator gardenamide A (GA) via an alkylene carbonyl bridge or alkylene bridge have been designed and synthesized. Evaluated by electrophysiological assay, compound 5b was confirmed an enhanced NMDAR antagonist compared to ATD with IC50 value of 10.2 ± 1.2 µM. 5b has been demonstrated to reverse the damages of behavioral performance, the loss of dopaminergic neurons, the reduction of TH positive, and the increase of α-synuclein in both MPTP-treated mice and zebrafish models. In both ethological and ecological experiments, the activity of 5b was confirmed better than ATD or ATD/GA combination, and was almost equal to the positive selegiline. In vivo and in vitro, 5b is shown to reverse the ascend of NR1 and i-NOS levels. This candidate was also demonstrated the activity to down-regulated MPTP-increased Ca2+ influx in SH-SY5Y cells in a steep and sharp mode. It is displayed that 5b exerts neuroprotective effect partly by activating the PI3K/Akt signaling pathway. Taken all together, our data support that 5b is a more promising agent against PD than ATD.


Assuntos
N-Metilaspartato , Neuroblastoma , Humanos , Camundongos , Animais , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Fosfatidilinositol 3-Quinases/metabolismo , Peixe-Zebra/metabolismo , Camundongos Endogâmicos C57BL , Amantadina/farmacologia
5.
J Enzyme Inhib Med Chem ; 38(1): 138-155, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36325591

RESUMO

An important drug used in the treatment of Parkinson's disease is amantadine. We are the first to perform a comprehensive study based on various glycation and oxidation factors, determining the impact of amantadine on protein glycoxidation. Sugars (glucose, fructose, galactose) and aldehydes (glyoxal, methylglyoxal) were used as glycation agents, and chloramine T was used as an oxidant. Glycoxidation biomarkers in albumin treated with amantadine were generally not different from the control group (glycation/oxidation factors), indicating that the drug did not affect oxidation and glycation processes. Molecular docking analysis did not reveal strong binding sites of amantadine on the bovine serum albumin structure. Although amantadine poorly scavenged hydroxyl radical and hydrogen peroxide, it had significantly lower antioxidant and antiglycation effect than all protein oxidation and glycation inhibitors. In some cases, amantadine even demonstrated glycoxidant, proglycation, and prooxidant properties. In summary, amantadine exhibited weak antioxidant properties and a lack of antiglycation activity.


Assuntos
Antioxidantes , Produtos Finais de Glicação Avançada , Antioxidantes/química , Simulação de Acoplamento Molecular , Soroalbumina Bovina/química , Amantadina/farmacologia
6.
J Med Virol ; 94(6): 2588-2597, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35170774

RESUMO

Amantadine, an antiviral drug, has been widely used in human anti-influenza treatments. However, several highly pathogenic avian influenza viruses show amantadine-resistance mutations in the viral matrix 2 (M2) protein. Here we analyzed global H5N1 sequencing data and calculate possible correlations between frequencies of key mutations in M2 and the mortality rates. We found that the frequency of L26I/V27A mutation in M2 (isolated from both human and avian hosts) is linearly correlated with the mortality rates of human H5N1 infections. The significant correlation between M2 mutations in avians and the mortality rates in humans suggests that the pre-existence of L26I/V27A in birds may determine patient fatalities after transinfections from avian to human hosts. 100% prevalence of L26I/V27A mutation increased the mortality rates from 51% (95% confidence interval [CI] 37%-65%) to 89% (95% CI 88%-90%). Mutations involving Leu26 or Val27 were identified to be the major mutations emerging from drug selection pressure. Thus the emergence of the super H5N1 virus with a fatality of over 90% may be attributed to the abuse of amantadine in poultry, especially in some southeast Asian countries. A more stringent control to antiviral veterinary drugs is imperative.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Amantadina/farmacologia , Amantadina/uso terapêutico , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Aves , Farmacorresistência Viral/genética , Humanos , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Filogenia , Aves Domésticas , Proteínas da Matriz Viral/genética
7.
Br J Clin Pharmacol ; 88(11): 4937-4940, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35665950

RESUMO

Ketamine and dextromethorphan are widely abused psychoactive substances. Inhibition of N-methyl-d-aspartate receptors (NMDARs) results in neurobehavioural effects including hallucinations, "out of body" sensations and dissociative effects. However, little is known about a possible extended addictive class effect linked to pharmacologically-related amino-adamantane derivatives (e.g., amantadine and memantine). Using a quasi-Bayesian analytic method, we investigated the potential association between the use of approved NMDAR antagonists (i.e., dextromethorphan, ketamine, amantadine and memantine) and the reporting of drug abuse and dependence in the WHO pharmacovigilance database (VigiBase®), which includes >21 million individual case safety reports collected from >130 countries. This disproportionality analysis identified a significant association for all investigated drugs: dextromethorphan (IC = 3.03 [2.97-3.09]), ketamine (IC = 1.70 [1.57-1.83]), amantadine (IC = 0.21 [0.06-0.35]) and memantine (IC = 0.27 [0.13-0.40]), suggesting a class effect for drug abuse and dependence. This first signal requires further investigations, but health professionals need to be alert to the potential of abuse of NMDAR antagonists, especially in the current "opioid epidemic" context, due to their growing interest as non-opioid antinociceptive drugs.


Assuntos
Ketamina , Transtornos Relacionados ao Uso de Substâncias , Amantadina/farmacologia , Analgésicos , Teorema de Bayes , Dextrometorfano/efeitos adversos , Humanos , Ketamina/efeitos adversos , Memantina/efeitos adversos , Farmacovigilância , Receptores de N-Metil-D-Aspartato , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Organização Mundial da Saúde
8.
Metab Brain Dis ; 37(6): 2067-2075, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35666396

RESUMO

In the present study, antidepressant like effect of amantadine was studied in mice using tail suspension test (TST) and forced swim test (FST). Further the effect of amantadine treatment on the brain nitrite, glutamate and serotonin levels was also determined. Amantadine (AMT) (50, 100 and 150 mg/kg, i.p.) was administered to the mice and after 30 min of administration the mice were subjected to TST and FST. It was observed that the administration of AMT (100 and 150 mg/kg, i.p.) decreased the immobility period of mice in TST and FST significantly as compared to control. The findings from the whole brain neurochemical assay suggested that the AMT (100 and 150 mg/kg, i.p.) treatment decreased the brain nitrite and glutamate level but increased the brain serotonin significantly as compared to control. Further the influence of NO-cGMP signaling in the antidepressant like effect of amantadine was also determined. It was observed that the NO donor (i.e. L-Arginine (50 mg/kg, i.p.)) potentiated the effect elicited by AMT (50 mg/kg, i.p.) in FST and decreased the brain serotonin level of AMT (50 mg/kg, i.p.) treated mice. Further the pretreatment of cGMP modulator (i.e. Sildenafil (1 mg/kg, i.p.)) potentiated the behavioral effect elicited by AMT (50 mg/kg, i.p.) in TST and FST and decreased the brain nitrite and glutamate level of AMT (50 mg/kg, i.p.) treated mice. In conclusion, amantadine exerted antidepressant like effect in mice and NO-cGMP signaling influences the antidepressant like effect of amantadine in mice.


Assuntos
Nitritos , Serotonina , Amantadina/farmacologia , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , GMP Cíclico , Depressão/tratamento farmacológico , Ácido Glutâmico , Elevação dos Membros Posteriores , Camundongos , Óxido Nítrico , Natação
9.
J Fish Dis ; 45(3): 451-459, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34962648

RESUMO

Outbreaks of viral encephalopathy and retinopathy (VER) in marine and freshwater species severely devastate the aquaculture worldwide. The causative agent of VER is nervous necrosis virus (NNV), which mainly infects the early developmental stages of fish, limiting the effectiveness of vaccines. To counter this case, the anti-NNV potentials of nine drugs with broad-spectrum antiviral activity were explored using ribavirin as a positive drug. Toxicity of the selected drugs to SSN-1 cells and grouper was firstly evaluated to determine the safety concentrations. For screening in vitro, amantadine and oseltamivir phosphate can relieve the cytopathic effects and inhibit NNV replication with the 90% inhibitory concentrations (IC90 ) of 38.74 and 106.75 mg/L, respectively. Amantadine has a stronger anti-NNV activity than ribavirin at the with- and post-NNV infection stages, indicating that it is a potential therapeutic agent against VER by acting directly on NNV. Similarly, amantadine also has a strong anti-NNV activity in vivo with the IC90 of 27.91 mg/L at the 7 days post-infection, while that was 73.25 mg/L for ribavirin. Following exposure to amantadine (40 mg/L) and ribavirin (100 mg/L) for 7 days, the survival rates of NNV-infected grouper were increased to 44% and 39%, respectively. The maximum amantadine content (11.88 mg/Kg) in grouper brain was reached following exposure for 24 hr, and amantadine can be quickly excreted from fish, reducing the risk of drug residue. Results so far indicated that amantadine is a promising therapeutic agent against NNV in aquaculture, providing an effective strategy for VER control at the early developmental stages of fish.


Assuntos
Encefalopatias , Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Doenças Retinianas , Amantadina/farmacologia , Amantadina/uso terapêutico , Animais , Doenças dos Peixes/tratamento farmacológico , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/veterinária
10.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886997

RESUMO

Patients with Parkinson's disease are prone to a higher incidence of melanoma. Amantadine (an anti-Parkinson drug) possesses the antiproliferative potential that can be favorable when combined with other chemotherapeutics. Cisplatin (CDDP) and mitoxantrone (MTO) are drugs used in melanoma chemotherapy, but they have many side effects. (1) Clinical observations revealed a high incidence of malignant melanoma in patients with Parkinson's disease. Amantadine as an anti-Parkinson drug alleviates symptoms of Parkinson's disease and theoretically, it should have anti-melanoma properties. (2) To characterize the interaction profile for combinations of amantadine with CDDP and MTO in four human melanoma cell lines (A375, SK-MEL 28, FM55P and FM55M2), type I isobolographic analysis was used in the MTT test. (3) Amantadine produces the anti-proliferative effects in various melanoma cell lines. Flow cytometry analysis indicated that amantadine induced apoptosis and G1/S phase cell cycle arrest. Western blotting analysis showed that amantadine markedly decreased cyclin-D1 protein levels and increased p21 levels. Additionally, amantadine significantly increased the Bax/Bcl-2 ratio. The combined application of amantadine with CDDP at the fixed-ratio of 1:1 exerted an additive interaction in the four studied cell lines in the MTT test. In contrast, the combination of amantadine with MTO (ratio of 1:1) produced synergistic interaction in the FM55M2 cell line in the MTT (* p < 0.05). The combination of amantadine with MTO was also additive in the remaining tested cell lines (A375, FM55P and SK-MEL28) in the MTT test. (4) Amantadine combined with MTO exerted the most desirable synergistic interaction, as assessed isobolographically. Additionally, the exposure of melanoma cell lines to amantadine in combination with CDDP or MTO augmented the induction of apoptosis mediated by amantadine alone.


Assuntos
Citostáticos , Melanoma , Doença de Parkinson , Amantadina/farmacologia , Amantadina/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Citostáticos/farmacologia , Humanos , Melanoma/metabolismo
11.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35409297

RESUMO

Influenza virus is an acute and highly contagious respiratory pathogen that causes great concern to public health and for which there is a need for extensive drug discovery. The small chemical compound ABMA and its analog DABMA, containing an adamantane or a dimethyl-adamantane group, respectively, have been demonstrated to inhibit multiple toxins (diphtheria toxin, Clostridium difficile toxin B, Clostridium sordellii lethal toxin) and viruses (Ebola, rabies virus, HSV-2) by acting on the host's vesicle trafficking. Here, we showed that ABMA and DABMA have antiviral effects against both amantadine-sensitive influenza virus subtypes (H1N1 and H3N2), amantadine-resistant subtypes (H3N2), and influenza B virus with EC50 values ranging from 2.83 to 7.36 µM (ABMA) and 1.82 to 6.73 µM (DABMA), respectively. ABMA and DABMA inhibited the replication of influenza virus genomic RNA and protein synthesis by interfering with the entry stage of the virus. Molecular docking evaluation together with activity against amantadine-resistant influenza virus strains suggested that ABMA and DABMA were not acting as M2 ion channel blockers. Subsequently, we found that early internalized H1N1 virions were retained in accumulated late endosome compartments after ABMA treatment. Additionally, ABMA disrupted the early stages of the H1N1 life cycle or viral RNA synthesis by interfering with autophagy. ABMA and DABMA protected mice from an intranasal H1N1 challenge with an improved survival rate of 67%. The present study suggests that ABMA and DABMA are potential antiviral leads for the development of a host-directed treatment against influenza virus infection.


Assuntos
Adamantano , Vírus da Influenza A Subtipo H1N1 , Amantadina/farmacologia , Animais , Antivirais/química , Antivirais/farmacologia , Autofagia , Endossomos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2 , Camundongos , Simulação de Acoplamento Molecular , p-Dimetilaminoazobenzeno/análogos & derivados
12.
Biophys J ; 120(1): 168-177, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33248127

RESUMO

Copper(II) is known to bind in the influenza virus His37 cluster in the homotetrameric M2 proton channel and block the proton current needed for uncoating. Copper complexes based on iminodiacetate also block the M2 proton channel and show reduced cytotoxicity and zebrafish-embryo toxicity. In voltage-clamp oocyte studies using the ubiquitous amantadine-insensitive M2 S31N variant, the current block showed fast and slow phases, in contrast to the single phase found for amantadine block of wild-type M2. Here, we evaluate the mechanism of block by copper adamantyl iminodiacitate and copper cyclooctyl iminodiacitate complexes and address whether the complexes can coordinate with one or more of the His37 imidazoles. The current traces were fitted to parametrized master equations. The energetics of binding and the rate constants suggest that the first step is copper complex binding within the channel, and the slow step in the current block is the formation of a Cu-histidine coordination complex. Solution-phase isothermal titration calorimetry and density functional theory (DFT) calculations indicate that imidazole binds to the copper complexes. Structural optimization using DFT reveals that the complexes fit inside the channel and project the Cu(II) toward the His37 cluster, allowing one imidazole to form a coordination complex with Cu(II). Electrophysiology and DFT studies also show that the complexes block the G34E amantadine-resistant mutant despite some crowding in the binding site by the glutamates.


Assuntos
Vírus da Influenza A , Influenza Humana , Amantadina/farmacologia , Animais , Antivirais/farmacologia , Cobre , Farmacorresistência Viral , Cinética , Proteínas da Matriz Viral , Peixe-Zebra
13.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33709903

RESUMO

The p7 viroporin of the hepatitis C virus (HCV) forms an intracellular proton-conducting transmembrane channel in virus-infected cells, shunting the pH of intracellular compartments and thus helping virus assembly and release. This activity is essential for virus infectivity, making viroporins an attractive target for drug development. The protein sequence and drug sensitivity of p7 vary between the seven major genotypes of the hepatitis C virus, but the essential channel activity is preserved. Here, we investigated the effect of several inhibitors on recombinant HCV p7 channels corresponding to genotypes 1a-b, 2a-b, 3a and 4a using patch-clamp electrophysiology and cell-based assays. We established a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based cell viability assay for recombinant p7 expressed in HEK293 cells to assess channel activity and its sensitivity to inhibitors. The results from the cell viability assay were consistent with control measurements using established assays of haemadsorption and intracellular pH, and agreed with data from patch-clamp electrophysiology. Hexamethylene amiloride (HMA) was the most potent inhibitor of p7 activity, but possessed cytotoxic activity at higher concentrations. Rimantadine was active against p7 of all genotypes, while amantadine activity was genotype-dependent. The alkyl-chain iminosugars NB-DNJ, NN-DNJ and NN-DGJ were tested and their activity was found to be genotype-specific. In the current study, we introduce cell viability assays as a rapid and cost-efficient technique to assess viroporin activity and identify channel inhibitors as potential novel antiviral drugs.


Assuntos
Hepacivirus/genética , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética , Montagem de Vírus , Liberação de Vírus , Amantadina/farmacologia , Sequência de Aminoácidos , Antivirais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Hepacivirus/efeitos dos fármacos , Humanos , Técnicas de Patch-Clamp , Rimantadina/farmacologia
14.
Anal Chem ; 93(48): 16273-16281, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34813702

RESUMO

Viroporins are small viral ion channels that play important roles in the viral infection cycle and are proven antiviral drug targets. Matrix protein 2 from influenza A (AM2) is the best-characterized viroporin, and the current paradigm is that AM2 forms monodisperse tetramers. Here, we used native mass spectrometry and other techniques to characterize the oligomeric state of both the full-length and transmembrane (TM) domain of AM2 in a variety of different pH and detergent conditions. Unexpectedly, we discovered that AM2 formed a range of different oligomeric complexes that were strongly influenced by the local chemical environment. Native mass spectrometry of AM2 in nanodiscs with different lipids showed that lipids also affected the oligomeric states of AM2. Finally, nanodiscs uniquely enabled the measurement of amantadine binding stoichiometries to AM2 in the intact lipid bilayer. These unexpected results reveal that AM2 can form a wider range of oligomeric states than previously thought possible, which may provide new potential mechanisms of influenza pathology and pharmacology.


Assuntos
Influenza Humana , Amantadina/farmacologia , Antivirais/farmacologia , Humanos , Bicamadas Lipídicas , Proteínas da Matriz Viral
15.
Ann Neurol ; 87(1): 84-96, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675128

RESUMO

OBJECTIVE: Generalized convulsive status epilepticus is associated with high mortality. We tested whether α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor plasticity plays a role in sustaining seizures, seizure generalization, and mortality observed during focal onset status epilepticus. We also determined whether modified AMPA receptors generated during status epilepticus could be targeted with a drug. METHODS: Electrically induced status epilepticus was characterized by electroencephalogram and behavior in GluA1 knockout mice and in transgenic mice with selective knockdown of the GluA1 subunit in hippocampal principal neurons. Excitatory and inhibitory synaptic transmission in CA1 neurons was studied using patch clamp electrophysiology. The dose response of N,N,H,-trimethyl-5-([tricyclo(3.3.1.13,7)dec-1-ylmethyl]amino)-1-pentanaminiumbromide hydrobromide (IEM-1460), a calcium-permeable AMPA receptor antagonist, was determined. RESULTS: Global removal of the GluA1 subunit did not affect seizure susceptibility; however, it reduced susceptibility to status epilepticus. GluA1 subunit knockout also reduced mortality, severity, and duration of status epilepticus. Absence of the GluA1 subunit prevented enhancement of glutamatergic synaptic transmission associated with status epilepticus; however, γ-aminobutyric acidergic synaptic inhibition was compromised. Selective removal of the GluA1 subunit from hippocampal principal neurons also reduced mortality, severity, and duration of status epilepticus. IEM-1460 rapidly terminated status epilepticus in a dose-dependent manner. INTERPRETATION: AMPA receptor plasticity mediated by the GluA1 subunit plays a critical role in sustaining and amplifying seizure activity and contributes to mortality. Calcium-permeable AMPA receptors modified during status epilepticus can be inhibited to terminate status epilepticus. ANN NEUROL 2020;87:84-96.


Assuntos
Plasticidade Neuronal/fisiologia , Receptores de AMPA/fisiologia , Estado Epiléptico/fisiopatologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Amantadina/farmacologia , Animais , Atropina/farmacologia , Região CA1 Hipocampal/fisiologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Feminino , Técnicas de Silenciamento de Genes , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Knockout , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/genética , Estado Epiléptico/mortalidade , Transmissão Sináptica/fisiologia
16.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885728

RESUMO

This article describes the design and synthesis of a series of novel amantadine-thiourea conjugates (3a-j) as Jack bean urease inhibitors. The synthesized hybrids were assayed for their in vitro urease inhibition. Accordingly, N-(adamantan-1-ylcarbamothioyl)octanamide (3j) possessing a 7-carbon alkyl chain showed excellent activity with IC50 value 0.0085 ± 0.0011 µM indicating that the long alkyl chain plays a vital role in enzyme inhibition. Whilst N-(adamantan-1-ylcarbamothioyl)-2-chlorobenzamide (3g) possessing a 2-chlorophenyl substitution was the next most efficient compound belonging to the aryl series with IC50 value of 0.0087 ± 0.001 µM. The kinetic mechanism analyzed by Lineweaver-Burk plots revealed the non-competitive mode of inhibition for compound 3j. Moreover, in silico molecular docking against target protein (PDBID 4H9M) indicated that most of the synthesized compounds exhibit good binding affinity with protein. The compound 3j forms two hydrogen bonds with amino acid residue VAL391 having a binding distance of 1.858 Å and 2.240 Å. The interaction of 3j with amino acid residue located outside the catalytic site showed its non-competitive mode of inhibition. Based upon these results, it is anticipated that compound 3j may serve as a lead structure for the design of more potent urease inhibitors.


Assuntos
Inibidores Enzimáticos/química , Infecções por Helicobacter/tratamento farmacológico , Relação Estrutura-Atividade , Urease/química , Amantadina/análogos & derivados , Amantadina/química , Amantadina/farmacologia , Domínio Catalítico/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/enzimologia , Helicobacter pylori/patogenicidade , Humanos , Ligação de Hidrogênio/efeitos dos fármacos , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Tioureia/química , Tioureia/farmacologia , Urease/antagonistas & inibidores
17.
Molecules ; 26(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576998

RESUMO

A new series of conjugates of aminoadamantane and γ-carboline, which are basic scaffolds of the known neuroactive agents, memantine and dimebon (Latrepirdine) was synthesized and characterized. Conjugates act simultaneously on several biological structures and processes involved in the pathogenesis of Alzheimer's disease and some other neurodegenerative disorders. In particular, these compounds inhibit enzymes of the cholinesterase family, exhibiting higher inhibitory activity against butyrylcholinesterase (BChE), but having almost no effect on the activity of carboxylesterase (anti-target). The compounds serve as NMDA-subtype glutamate receptor ligands, show mitoprotective properties by preventing opening of the mitochondrial permeability transition (MPT) pore, and act as microtubule stabilizers, stimulating the polymerization of tubulin and microtubule-associated proteins. Structure-activity relationships were studied, with particular attention to the effect of the spacer on biological activity. The synthesized conjugates showed new properties compared to their prototypes (memantine and dimebon), including the ability to bind to the ifenprodil-binding site of the NMDA receptor and to occupy the peripheral anionic site of acetylcholinesterase (AChE), which indicates that these compounds can act as blockers of AChE-induced ß-amyloid aggregation. These new attributes of the conjugates represent improvements to the pharmacological profiles of the separate components by conferring the potential to act as neuroprotectants and cognition enhancers with a multifunctional mode of action.


Assuntos
Amantadina/química , Amantadina/farmacologia , Carbolinas/química , Carbolinas/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase/química , Amantadina/análogos & derivados , Animais , Butirilcolinesterase/química , Carboxilesterase/química , Domínio Catalítico , Linhagem Celular , Inibidores da Colinesterase/síntese química , Cavalos , Humanos , Cinética , Ligantes , Memantina/química , Memantina/farmacologia , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria/efeitos dos fármacos , Simulação de Acoplamento Molecular , Propídio/química , Ratos , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade , Suínos , Tubulina (Proteína)/efeitos dos fármacos , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
18.
Pol Merkur Lekarski ; 49(289): 67-70, 2021 02 24.
Artigo em Polonês | MEDLINE | ID: mdl-33713098

RESUMO

Amantadine and memantine, apart from their action on cholinergic receptors and dopamine secretion, have a significant influence on the inflammatory process, including the so-called "cytokine storm" and reduction of apoptosis and oxidative stress. Amantadine also inhibits the induction of inflammatory factors such as RANTES, activates kinase p38 of mitogen-activated protein (MAP) and c-Jun-NH2-terminal kinases (JNK), which inhibit viral replication. It also significantly inhibits the entry of SARS-CoV-2 into the bronchial epithelial cell and blocks the viroporin proton channel of the virus. In addition, it has the ability to pass through the membrane of lysosomes into their interior and act as an alkalizing agent, which prevents the release of viral RNA into the cell, which may be a key element in therapeutic management. Memantine also reduces inflammation, mainly in the nervous system, but also acts as a lysosomotropic factor, inhibiting viral replication. However, it is important to bear in mind when undertaking amantadine or memantine therapy with side effects that may overlap with COVID- 19 symptoms, worsening the condition of patients. Currently, the effectiveness of amantadine and memantine in the treatment of patients with COVID-19 symptoms has been demonstrated in a few clinical trials, mainly in patients treated for neurodegenerative diseases. The obtained results are of considerable value, but require confirmation in further studies.


Assuntos
COVID-19 , Memantina , Amantadina/farmacologia , Amantadina/uso terapêutico , Anti-Inflamatórios , Humanos , Memantina/farmacologia , Memantina/uso terapêutico , SARS-CoV-2
19.
Biophys J ; 119(9): 1811-1820, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33080223

RESUMO

The ubiquitous mutation from serine (WT) to asparagine at residue 31 (S31N) in the influenza A M2 channel renders it insensitive to amantadine (AMT) and rimantadine (RMT) block, but it is unknown whether the inhibition results from weak binding or incomplete block. Two-electrode voltage clamp (TEVC) of transfected Xenopus oocytes revealed that the M2 S31N channel is essentially fully blocked by AMT at 10 mM, demonstrating that, albeit weak, AMT binding in a channel results in complete block of its proton current. In contrast, RMT achieves only a modest degree of block in the M2 S31N channel at 1 mM, with very little increase in block at 10 mM, indicating that the RMT binding site in the channel saturates with only modest block. From exponential curve fits to families of proton current wash-in and wash-out traces, the association rate constant (k1) is somewhat decreased for both AMT and RMT in the S31N, but the dissociation rate constant (k2) is dramatically increased compared with WT. The potentials of mean force (PMF) from adaptive biasing force (ABF) molecular dynamics simulations predict that rate constants should be exquisitely sensitive to the charge state of the His37 selectivity filter of M2. With one exception out of eight cases, predictions from the simulations with one and three charged side chains bracket the experimental rate constants, as expected for the acidic bath used in the TEVC assay. From simulations, the weak binding can be accounted for by changes in the potentials of mean force, but the partial block by RMT remains unexplained.


Assuntos
Influenza Humana , Rimantadina , Amantadina/farmacologia , Antivirais/farmacologia , Transtornos Dissociativos , Humanos , Proteínas da Matriz Viral/genética
20.
Neurobiol Dis ; 134: 104646, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669673

RESUMO

L-dopa induced dyskinesia (LID) is a debilitating side-effect of the primary treatment used in Parkinson's disease (PD), l-dopa. Here we investigate the effect of HU-308, a cannabinoid CB2 receptor agonist, on LIDs. Utilizing a mouse model of PD and LIDs, induced by 6-OHDA and subsequent l-dopa treatment, we show that HU-308 reduced LIDs as effectively as amantadine, the current frontline treatment. Furthermore, treatment with HU-308 plus amantadine resulted in a greater anti-dyskinetic effect than maximally achieved with HU-308 alone, potentially suggesting a synergistic effect of these two treatments. Lastly, we demonstrated that treatment with HU-308 and amantadine either alone, or in combination, decreased striatal neuroinflammation, a mechanism which has been suggested to contribute to LIDs. Taken together, our results suggest pharmacological treatments with CB2 agonists merit further investigation as therapies for LIDs in PD patients. Furthermore, since CB2 receptors are thought to be primarily expressed on, and signal through, glia, our data provide weight to suggestion that neuroinflammation, or more specifically, altered glial function, plays a role in development of LIDs.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Discinesia Induzida por Medicamentos , Levodopa/toxicidade , Transtornos Parkinsonianos , Receptor CB2 de Canabinoide/agonistas , Amantadina/farmacologia , Animais , Antiparkinsonianos/toxicidade , Canfanos/farmacologia , Modelos Animais de Doenças , Dopaminérgicos/farmacologia , Discinesia Induzida por Medicamentos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA