Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 918
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105134, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562570

RESUMO

Membrane biophysical properties are critical to cell fitness and depend on unsaturated phospholipid acyl tails. These can only be produced in aerobic environments since eukaryotic desaturases require molecular oxygen. This raises the question of how cells maintain bilayer properties in anoxic environments. Using advanced microscopy, molecular dynamics simulations, and lipidomics by mass spectrometry we demonstrated the existence of an alternative pathway to regulate membrane fluidity that exploits phospholipid acyl tail length asymmetry, replacing unsaturated species in the membrane lipidome. We show that the fission yeast, Schizosaccharomyces japonicus, which can grow in aerobic and anaerobic conditions, is capable of utilizing this strategy, whereas its sister species, the well-known model organism Schizosaccharomyces pombe, cannot. The incorporation of asymmetric-tailed phospholipids might be a general adaptation to hypoxic environmental niches.


Assuntos
Adaptação Fisiológica , Anaerobiose , Fosfolipídeos , Schizosaccharomyces , Membrana Celular/metabolismo , Fluidez de Membrana/fisiologia , Simulação de Dinâmica Molecular , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Anaerobiose/fisiologia , Lipidômica , Regulação para Cima , Regulação Fúngica da Expressão Gênica , Temperatura , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Adaptação Fisiológica/genética
2.
Crit Care Med ; 52(8): 1239-1250, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578158

RESUMO

OBJECTIVES: Quantify the relationship between perioperative anaerobic lactate production, microcirculatory blood flow, and mitochondrial respiration in patients after cardiovascular surgery with cardiopulmonary bypass. DESIGN: Serial measurements of lactate-pyruvate ratio (LPR), microcirculatory blood flow, plasma tricarboxylic acid cycle cycle intermediates, and mitochondrial respiration were compared between patients with a normal peak lactate (≤ 2 mmol/L) and a high peak lactate (≥ 4 mmol/L) in the first 6 hours after surgery. Regression analysis was performed to quantify the relationship between clinically relevant hemodynamic variables, lactate, LPR, and microcirculatory blood flow. SETTING: This was a single-center, prospective observational study conducted in an academic cardiovascular ICU. PATIENTS: One hundred thirty-two patients undergoing elective cardiovascular surgery with cardiopulmonary bypass. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Patients with a high postoperative lactate were found to have a higher LPR compared with patients with a normal postoperative lactate (14.4 ± 2.5 vs. 11.7 ± 3.4; p = 0.005). Linear regression analysis found a significant, negative relationship between LPR and microcirculatory flow index ( r = -0.225; ß = -0.037; p = 0.001 and proportion of perfused vessels: r = -0.17; ß = -0.468; p = 0.009). There was not a significant relationship between absolute plasma lactate and microcirculation variables. Last, mitochondrial complex I and complex II oxidative phosphorylation were reduced in patients with high postoperative lactate levels compared with patients with normal lactate (22.6 ± 6.2 vs. 14.5 ± 7.4 pmol O 2 /s/10 6 cells; p = 0.002). CONCLUSIONS: Increased anaerobic lactate production, estimated by LPR, has a negative relationship with microcirculatory blood flow after cardiovascular surgery. This relationship does not persist when measuring lactate alone. In addition, decreased mitochondrial respiration is associated with increased lactate after cardiovascular surgery. These findings suggest that high lactate levels after cardiovascular surgery, even in the setting of normal hemodynamics, are not simply a type B phenomenon as previously suggested.


Assuntos
Ponte Cardiopulmonar , Ácido Láctico , Microcirculação , Mitocôndrias , Humanos , Microcirculação/fisiologia , Masculino , Estudos Prospectivos , Feminino , Ponte Cardiopulmonar/efeitos adversos , Ácido Láctico/sangue , Pessoa de Meia-Idade , Idoso , Mitocôndrias/metabolismo , Anaerobiose/fisiologia , Ácido Pirúvico/metabolismo , Ácido Pirúvico/sangue
3.
Mol Microbiol ; 115(6): 1181-1190, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33278050

RESUMO

The cell wall is considered an essential component for bacterial survival, providing structural support, and protection from environmental insults. Under normal growth conditions, filamentous actinobacteria insert new cell wall material at the hyphal tips regulated by the coordinated activity of cytoskeletal proteins and cell wall biosynthetic enzymes. Despite the importance of the cell wall, some filamentous actinobacteria can produce wall-deficient S-cells upon prolonged exposure to hyperosmotic stress. Here, we performed cryo-electron tomography and live cell imaging to further characterize S-cell extrusion in Kitasatospora viridifaciens. We show that exposure to hyperosmotic stress leads to DNA compaction, membrane and S-cell extrusion, and thinning of the cell wall at hyphal tips. Additionally, we find that the extrusion of S-cells is abolished in a cytoskeletal mutant strain that lacks the intermediate filament-like protein FilP. Furthermore, micro-aerobic culturing promotes the formation of S-cells in the wild type, but the limited oxygen still impedes S-cell formation in the ΔfilP mutant. These results demonstrate that S-cell formation is stimulated by oxygen-limiting conditions and dependent on functional cytoskeleton remodeling.


Assuntos
Parede Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Pressão Osmótica , Streptomycetaceae/metabolismo , Anaerobiose/fisiologia , Microscopia Crioeletrônica , Proteínas do Citoesqueleto/genética , Citoesqueleto/genética , Tomografia com Microscopia Eletrônica , Filamentos Intermediários/genética , Oxigênio/metabolismo , Microbiologia do Solo , Streptomycetaceae/genética
4.
Mol Microbiol ; 116(1): 29-40, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33706420

RESUMO

How anaerobic bacteria protect themselves against nitric oxide-induced stress is controversial, not least because far higher levels of stress were used in the experiments on which most of the literature is based than bacteria experience in their natural environments. This results in chemical damage to enzymes that inactivates their physiological function. This review illustrates how transcription control mechanisms reveal physiological roles of the encoded gene products. Evidence that the hybrid cluster protein, Hcp, is a major high affinity NO reductase in anaerobic bacteria is reviewed: if so, its trans-nitrosation activity is a nonspecific secondary consequence of chemical inactivation. Whether the flavorubredoxin, NorV, is equally effective at such low [NO] is unknown. YtfE is proposed to be an enzyme rather than a source of iron for the repair of iron-sulfur proteins damaged by nitrosative stress. Any reaction catalyzed by YtfE needs to be revealed. The concentration of NO that accumulates in the cytoplasm of anaerobic bacteria is unknown, but indirect evidence indicates that it is in the pM to low nM range. Also unknown are the functions of the NO-inducible cytoplasmic proteins YgbA, YeaR, or YoaG. Experiments to resolve some of these questions are proposed.


Assuntos
Bactérias Anaeróbias/metabolismo , Óxido Nítrico/metabolismo , Estresse Nitrosativo/fisiologia , Oxirredutases/metabolismo , Anaerobiose/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Transcrição Gênica/genética
5.
Mar Drugs ; 20(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35200656

RESUMO

Phaeodactylum tricornutum is the marine diatom best known for high-value compounds that are useful in aquaculture and food area. In this study, fucoxanthin was first extracted from the diatom using supercritical fluid extraction (SFE) and then using the extracted diatom-like substrate to produce bioenergy through anaerobic digestion (AD) processes. Factors such as temperature (30 °C and 50 °C), pressure (20, 30, and 40 MPa), and ethanol (co-solvent concentration from 10% to 50% v/v) were optimized for improving the yield, purity, and recovery of fucoxanthin extracted using SFE. The highest yield (24.41% w/w) was obtained at 30 MPa, 30 °C, and 30% ethanol but the highest fucoxanthin purity and recovery (85.03mg/g extract and 66.60% w/w, respectively) were obtained at 30 MPa, 30 °C, and 40%ethanol. Furthermore, ethanol as a factor had the most significant effect on the overall process of SFE. Subsequently, P.tricornutum biomass and SFE-extracted diatom were used as substrates for biogas production through AD. The effect of fucoxanthin was studied on the yield of AD, which resulted in 77.15 ± 3.85 LSTP CH4/kg volatile solids (VS) and 56.66 ± 1.90 LSTP CH4/kg VS for the whole diatom and the extracted P.tricornutum, respectively. Therefore, P.tricornutuman can be considered a potential source of fucoxanthin and methane and both productions will contribute to the sustainability of the algae-biorefinery processes.


Assuntos
Biocombustíveis , Diatomáceas/metabolismo , Xantofilas/isolamento & purificação , Anaerobiose/fisiologia , Biomassa , Cromatografia com Fluido Supercrítico/métodos , Etanol/química , Solventes/química , Temperatura
6.
Proc Natl Acad Sci U S A ; 116(14): 6653-6658, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30886103

RESUMO

Microbial anaerobic oxidation of hydrocarbons is a key process potentially involved in a myriad of geological and biochemical environments yet has remained notoriously difficult to identify and quantify in natural environments. We performed position-specific carbon isotope analysis of propane from cracking and incubation experiments. Anaerobic bacterial oxidation of propane leads to a pronounced and previously unidentified 13C enrichment in the central position of propane, which contrasts with the isotope signature associated with the thermogenic process. This distinctive signature allows the detection and quantification of anaerobic oxidation of hydrocarbons in diverse natural gas reservoirs and suggests that this process may be more widespread than previously thought. Position-specific isotope analysis can elucidate the fate of natural gas hydrocarbons and provide insight into a major but previously cryptic process controlling the biogeochemical cycling of globally significant greenhouse gases.


Assuntos
Bactérias/metabolismo , Gás Natural/microbiologia , Propano/metabolismo , Anaerobiose/fisiologia , Isótopos de Carbono/metabolismo , Oxirredução
7.
Dev Biol ; 461(1): 66-74, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945343

RESUMO

Neuronal activity often leads to alterations in gene expression and cellular architecture. The nematode Caenorhabditis elegans, owing to its compact translucent nervous system, is a powerful system in which to study conserved aspects of the development and plasticity of neuronal morphology. Here we focus on one pair of sensory neurons, termed URX, which the worm uses to sense and avoid high levels of environmental oxygen. Previous studies have reported that the URX neuron pair has variable branched endings at its dendritic sensory tip. By controlling oxygen levels and analyzing mutants, we found that these microtubule-rich branched endings grow over time as a consequence of neuronal activity in adulthood. We also find that the growth of these branches correlates with an increase in cellular sensitivity to particular ranges of oxygen that is observable in the behavior of older worms. Given the strengths of C. elegans as a model organism, URX may serve as a potent system for uncovering genes and mechanisms involved in activity-dependent morphological changes in neurons and possible adaptive changes in the aging nervous system.


Assuntos
Caenorhabditis elegans/metabolismo , Sistema Nervoso/metabolismo , Células Receptoras Sensoriais/fisiologia , Envelhecimento/fisiologia , Anaerobiose/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Plasticidade Celular/fisiologia , Dendritos/fisiologia , Oxigênio/metabolismo , Células Receptoras Sensoriais/citologia
8.
J Cell Physiol ; 236(7): 5080-5097, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33305831

RESUMO

Naked mole-rats are among the mammalian champions of hypoxia tolerance. They evolved adaptations centered around reducing metabolic rate to overcome the challenges experienced in their underground burrows. In this study, we used next-generation sequencing to investigate one of the factors likely supporting hypoxia tolerance in naked mole-rat brains, posttranscriptional microRNAs (miRNAs). Of the 212 conserved miRNAs identified using small RNA sequencing, 18 displayed significant differential expression during hypoxia. Bioinformatic enrichment revealed that hypoxia-mediated miRNAs were suppressing energy expensive processes including de novo protein translation and cellular proliferation. This suppression occurred alongside the activation of neuroprotective and neuroinflammatory pathways, and the induction of central signal transduction pathways including HIF-1α and NFκB via miR-335, miR-101, and miR-155. MiRNAs also coordinated anaerobic glycolytic fuel sources, where hypoxia-upregulated miR-365 likely suppressed protein levels of ketohexokinase, the enzyme responsible for catalyzing the first committed step of fructose catabolism. This was further supported by a hypoxia-mediated reduction in glucose transporter 5 proteins that import fructose into the cell. Yet, messenger RNA and protein levels of lactate dehydrogenase, which converts pyruvate to lactate in the absence of oxygen, were elevated during hypoxia. Together, this demonstrated the induction of anaerobic glycolysis despite a lack of reliance on fructose as the primary fuel source, suggesting that hypoxic brains are metabolically different than anoxic naked mole-rat brains that were previously found to shift to fructose-based glycolysis. Our findings contribute to the growing body of oxygen-responsive miRNAs "OxymiRs" that facilitate natural miRNA-mediated mechanisms for successful hypoxic exposures.


Assuntos
Hipóxia Celular/fisiologia , Glicólise/fisiologia , Hipóxia Encefálica/metabolismo , MicroRNAs/genética , Neuroproteção/genética , Adaptação Fisiológica , Anaerobiose/fisiologia , Animais , Encéfalo , Proliferação de Células/fisiologia , Metabolismo Energético/fisiologia , Frutoquinases/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Ratos-Toupeira , Biossíntese de Proteínas/fisiologia , Transdução de Sinais/fisiologia
9.
Am J Physiol Lung Cell Mol Physiol ; 321(4): L675-L685, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346780

RESUMO

Humans and animals with pulmonary hypertension (PH) show right ventricular (RV) capillary growth, which positively correlates with overall RV hypertrophy. However, molecular drivers of RV vascular augmentation in PH are unknown. Prolyl hydroxylase (PHD2) is a regulator of hypoxia-inducible factors (HIFs), which transcriptionally activates several proangiogenic genes, including the glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). We hypothesized that a signaling axis of PHD2-HIF1α-PFKFB3 contributes to adaptive coupling between the RV vasculature and tissue volume to maintain appropriate vascular density in PH. We used design-based stereology to analyze endothelial cell (EC) proliferation and the absolute length of the vascular network in the RV free wall, relative to the tissue volume in mice challenged with hypoxic PH. We observed increased RV EC proliferation starting after 6 h of hypoxia challenge. Using parabiotic mice, we found no evidence for a contribution of circulating EC precursors to the RV vascular network. Mice with transgenic deletion or pharmacological inhibition of PHD2, HIF1α, or PFKFB3 all had evidence of impaired RV vascular adaptation following hypoxia PH challenge. PHD2-HIF1α-PFKFB3 contributes to structural coupling between the RV vascular length and tissue volume in hypoxic mice, consistent with homeostatic mechanisms that maintain appropriate vascular density. Activating this pathway could help augment the RV vasculature and preserve RV substrate delivery in PH, as an approach to promote RV function.


Assuntos
Vasos Coronários/crescimento & desenvolvimento , Ventrículos do Coração/patologia , Hipertensão Pulmonar/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Fosfofrutoquinase-2/metabolismo , Anaerobiose/fisiologia , Animais , Células Endoteliais/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia
10.
Mol Microbiol ; 114(2): 333-347, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32301184

RESUMO

Bacteroides thetaiotaomicron was examined to determine whether its obligate anaerobiosis is imposed by endogenous reactive oxygen species or by molecular oxygen itself. Previous analyses established that aerated B. thetaiotaomicron loses some enzyme activities due to a high rate of endogenous superoxide formation. However, the present study establishes that another key step in central metabolism is poisoned by molecular oxygen itself. Pyruvate dissimilation was shown to depend upon two enzymes, pyruvate:formate lyase (PFL) and pyruvate:ferredoxin oxidoreductase (PFOR), that lose activity upon aeration. PFL is a glycyl-radical enzyme whose vulnerability to oxygen is already understood. The rate of PFOR damage was unaffected by the level of superoxide or peroxide, showing that molecular oxygen itself is the culprit. The cell cannot repair PFOR, which amplifies the impact of damage. The rates of PFOR and fumarase inactivation are similar, suggesting that superoxide dismutase is calibrated so the oxygen- and superoxide-sensitive enzymes are equally sensitive to aeration. The physiological purpose of PFL and PFOR is to degrade pyruvate without disrupting the redox balance, and they do so using catalytic mechanisms that are intrinsically vulnerable to oxygen. In this way, the anaerobic excellence and oxygen sensitivity of B. thetaiotaomicron are two sides of the same coin.


Assuntos
Anaerobiose/fisiologia , Bacteroides thetaiotaomicron/metabolismo , Oxigênio/metabolismo , Acetiltransferases/metabolismo , Anaerobiose/genética , Peróxido de Hidrogênio/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Oxigênio/fisiologia , Piruvato Sintase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
11.
Arch Biochem Biophys ; 701: 108796, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33609536

RESUMO

The discovery of a new energy-coupling mechanism termed flavin-based electron bifurcation (FBEB) in 2008 revealed a novel field of application for flavins in biology. The key component is the bifurcating flavin endowed with strongly inverted one-electron reduction potentials (FAD/FAD•- ≪ FAD•-/FADH-) that cooperatively transfers in its reduced state one low and one high-energy electron into different directions and thereby drives an endergonic with an exergonic reduction reaction. As energy splitting at the bifurcating flavin apparently implicates one-electron chemistry, the FBEB machinery has to incorporate prior to and behind the central bifurcating flavin 2e-to-1e and 1e-to-2e switches, frequently also flavins, for oxidizing variable medium-potential two-electron donating substrates and for reducing high-potential two-electron accepting substrates. The one-electron carriers ferredoxin or flavodoxin serve as low-potential (high-energy) electron acceptors, which power endergonic processes almost exclusively in obligate anaerobic microorganisms to increase the efficiency of their energy metabolism. In this review, we outline the global organization of FBEB enzymes, the functions of the flavins therein and the surrounding of the isoalloxazine rings by which their reduction potentials are specifically adjusted in a finely tuned energy landscape.


Assuntos
Elétrons , Metabolismo Energético/fisiologia , Flavina-Adenina Dinucleotídeo/metabolismo , Flavodoxina/metabolismo , Anaerobiose/fisiologia , Transporte de Elétrons/fisiologia
12.
Proc Natl Acad Sci U S A ; 115(37): 9098-9103, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150407

RESUMO

Ladderane lipids are unique to anaerobic ammonium-oxidizing (anammox) bacteria and are enriched in the membrane of the anammoxosome, an organelle thought to compartmentalize the anammox process, which involves the toxic intermediate hydrazine (N2H4). Due to the slow growth rate of anammox bacteria and difficulty of isolating pure ladderane lipids, experimental evidence of the biological function of ladderanes is lacking. We have synthesized two natural and one unnatural ladderane phosphatidylcholine lipids and compared their thermotropic properties in self-assembled bilayers to distinguish between [3]- and [5]-ladderane function. We developed a hydrazine transmembrane diffusion assay using a water-soluble derivative of a hydrazine sensor and determined that ladderane membranes are as permeable to hydrazine as straight-chain lipid bilayers. However, pH equilibration across ladderane membranes occurs 5-10 times more slowly than across straight-chain lipid membranes. Langmuir monolayer analysis and the rates of fluorescence recovery after photobleaching suggest that dense ladderane packing may preclude formation of proton/hydroxide-conducting water wires. These data support the hypothesis that ladderanes prevent the breakdown of the proton motive force rather than blocking hydrazine transmembrane diffusion in anammox bacteria.


Assuntos
Bactérias/química , Permeabilidade da Membrana Celular , Membrana Celular/química , Hidrazinas/química , Hidróxidos/química , Fosfolipídeos/química , Prótons , Anaerobiose/fisiologia , Bactérias/metabolismo , Membrana Celular/metabolismo , Hidrazinas/metabolismo , Hidróxidos/metabolismo , Fosfolipídeos/metabolismo
13.
Int J Sports Med ; 42(8): 708-715, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33461230

RESUMO

We investigated the effects of hypoxia on matched-severe intensity exercise and on the parameters of the power-duration relationship. Fifteen trained subjects performed in both normoxia and normobaric hypoxia (FiO2=0.13, ~3000 m) a maximal incremental test, a 3 min all-out test (3AOT) and a transition from rest to an exercise performed to exhaustion (Tlim) at the same relative intensity (80%∆). Respiratory and pulmonary gas-exchange variables were continuously measured (K5, Cosmed, Italy). Tlim test's V̇O2 kinetics was calculated using a two-component exponential model. V̇O2max (44.1±5.1 vs. 58.7±6.4 ml.kg-1.min-1, p<0.001) was decreased in hypoxia. In Tlim, time-to-exhaustion sustained was similar (454±130 vs. 484±169 s) despite that V̇O2 kinetics was slower (τ1: 31.1±5.8 vs. 21.6±4.7 s, p<0.001) and the amplitude of the V̇O2 slow component lower (12.4±5.4 vs. 20.2±5.7 ml.kg-1.min-1, p<0.05) in hypoxia. CP was reduced (225±35 vs. 270±49 W, p<0.001) but W' was unchanged (11.3±2.9 vs. 11.4±2.7 kJ) in hypoxia. The changes in CP/V̇O2max were positively correlated with changes in W' (r = 0.58, p<0.05). The lower oxygen availability had an impact on aerobic related physiological parameters, but exercise tolerance is similar between hypoxia and normoxia when the relative intensity is matched despite a slower V̇O2 kinetics in hypoxia.


Assuntos
Tolerância ao Exercício/fisiologia , Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Consumo de Oxigênio/fisiologia , Adulto , Altitude , Anaerobiose/fisiologia , Pressão Atmosférica , Humanos , Masculino , Troca Gasosa Pulmonar/fisiologia , Respiração , Descanso/fisiologia , Fatores de Tempo
14.
J Fish Biol ; 98(3): 723-732, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33206373

RESUMO

Highly variable thermal environments, such as coral reef flats, are challenging for marine ectotherms and are thought to invoke the use of behavioural strategies to avoid extreme temperatures and seek out thermal environments close to their preferred temperatures. Common to coral reef flats, the epaulette shark (Hemiscyllium ocellatum) possesses physiological adaptations to hypoxic and hypercapnic conditions, such as those experienced on reef flats, but little is known regarding the thermal strategies used by these sharks. We investigated whether H. ocellatum uses behavioural thermoregulation (i.e., movement to occupy thermally favourable microhabitats) or tolerates the broad range of temperatures experienced on the reef flat. Using an automated shuttlebox system, we determined the preferred temperature of H. ocellatum under controlled laboratory conditions and then compared this preferred temperature to 6 months of in situ environmental and body temperatures of individual H. ocellatum across the Heron Island reef flat. The preferred temperature of H. ocellatum under controlled conditions was 20.7 ± 1.5°C, but the body temperatures of individual H. ocellatum on the Heron Island reef flat mirrored environmental temperatures regardless of season or month. Despite substantial temporal variation in temperature on the Heron Island reef flat (15-34°C during 2017), there was a lack of spatial variation in temperature across the reef flat between sites or microhabitats. This limited spatial variation in temperature creates a low-quality thermal habitat limiting the ability of H. ocellatum to behaviourally thermoregulate. Behavioural thermoregulation is assumed in many shark species, but it appears that H. ocellatum may utilize other physiological strategies to cope with extreme temperature fluctuations on coral reef flats. While H. ocellatum appears to be able to tolerate acute exposure to temperatures well outside of their preferred temperature, it is unclear how this, and other, species will cope as temperatures continue to rise and approach their critical thermal limits. Understanding how species will respond to continued warming and the strategies they may use will be key to predicting future populations and assemblages.


Assuntos
Adaptação Fisiológica/fisiologia , Recifes de Corais , Oxigênio/metabolismo , Tubarões/fisiologia , Temperatura , Anaerobiose/fisiologia , Animais , Regulação da Temperatura Corporal/fisiologia , Estações do Ano , Termotolerância/fisiologia , Água/química
15.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805783

RESUMO

In anaerobic bioreactors, the electrons produced during the oxidation of organic matter can potentially be used for the biological reduction of pharmaceuticals in wastewaters. Common electron transfer limitations benefit from the acceleration of reactions through utilization of redox mediators (RM). This work explores the potential of carbon nanomaterials (CNM) as RM on the anaerobic removal of ciprofloxacin (CIP). Pristine and tailored carbon nanotubes (CNT) were first tested for chemical reduction of CIP, and pristine CNT was found as the best material, so it was further utilized in biological anaerobic assays with anaerobic granular sludge (GS). In addition, magnetic CNT were prepared and also tested in biological assays, as they are easier to be recovered and reused. In biological tests with CNM, approximately 99% CIP removal was achieved, and the reaction rates increased ≈1.5-fold relatively to the control without CNM. In these experiments, CIP adsorption onto GS and CNM was above 90%. Despite, after applying three successive cycles of CIP addition, the catalytic properties of magnetic CNT were maintained while adsorption decreased to 29 ± 3.2%, as the result of CNM overload by CIP. The results suggest the combined occurrence of different mechanisms for CIP removal: adsorption on GS and/or CNM, and biological reduction or oxidation, which can be accelerated by the presence of CNM. After biological treatment with CNM, toxicity towards Vibrio fischeri was evaluated, resulting in ≈ 46% detoxification of CIP solution, showing the advantages of combining biological treatment with CNM for CIP removal.


Assuntos
Ciprofloxacina/metabolismo , Elétrons , Nanopartículas de Magnetita/química , Nanotubos de Carbono/química , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo , Adsorção , Aliivibrio fischeri/efeitos dos fármacos , Aliivibrio fischeri/crescimento & desenvolvimento , Anaerobiose/fisiologia , Biodegradação Ambiental , Reatores Biológicos , Ciprofloxacina/isolamento & purificação , Humanos , Nanopartículas de Magnetita/ultraestrutura , Methanobacterium/metabolismo , Methanobrevibacter/metabolismo , Methanosarcinales/metabolismo , Methanospirillum/metabolismo , Testes de Sensibilidade Microbiana , Nanotubos de Carbono/ultraestrutura , Oxirredução , Poluentes Químicos da Água/isolamento & purificação
16.
Molecules ; 26(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34833881

RESUMO

This study investigated acid splitting wastewater (ASW) and interphase (IF) from soapstock splitting, as well as matter organic non glycerol (MONG) from glycerol processing, as potential substrates for biogas production. Batch and semicontinuous thermophilic anaerobic digestion experiments were conducted, and the substrates were preliminary treated using commercial enzymes kindly delivered by Novozymes A/C. The greatest enhancement in the batch digestion efficiency was achieved when three preparations; EversaTransform, NovoShape, and Lecitase were applied in the hydrolysis stage, which resulted in the maximum methane yields of 937 NL/kg VS and 915 NL/kg VS obtained from IF and MONG, respectively. The co-digestion of 68% ASW, 16% IF, and 16% MONG (wet weight basis) performed at an organic loading rate (OLR) of 1.5 kg VS/m3/day provided an average methane yield of 515 NLCH4/kg VSadded and a volatile solid reduction of nearly 95%. A relatively high concentration of sulfates in the feed did not significantly affect the digestion performance but resulted in an increased hydrogen sulfide concentration in the biogas with the peak of 4000 ppm.


Assuntos
Metano/biossíntese , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Anaerobiose/fisiologia , Biocombustíveis/análise , Reatores Biológicos , Brassica napus/metabolismo , Glicerol/metabolismo , Hidrólise , Resíduos Industriais/economia , Resíduos Industriais/prevenção & controle , Águas Residuárias/análise
17.
Mol Microbiol ; 112(5): 1440-1452, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31420965

RESUMO

Pectobacterium atrosepticum SCRI1043 is a phytopathogenic Gram-negative enterobacterium. Genomic analysis has identified that genes required for both respiration and fermentation are expressed under anaerobic conditions. One set of anaerobically expressed genes is predicted to encode an important but poorly understood membrane-bound enzyme termed formate hydrogenlyase-2 (FHL-2), which has fascinating evolutionary links to the mitochondrial NADH dehydrogenase (Complex I). In this work, molecular genetic and biochemical approaches were taken to establish that FHL-2 is fully functional in P. atrosepticum and is the major source of molecular hydrogen gas generated by this bacterium. The FHL-2 complex was shown to comprise a rare example of an active [NiFe]-hydrogenase-4 (Hyd-4) isoenzyme, itself linked to an unusual selenium-free formate dehydrogenase in the final complex. In addition, further genetic dissection of the genes encoding the predicted membrane arm of FHL-2 established surprisingly that the majority of genes encoding this domain are not required for physiological hydrogen production activity. Overall, this study presents P. atrosepticum as a new model bacterial system for understanding anaerobic formate and hydrogen metabolism in general, and FHL-2 function and structure in particular.


Assuntos
Formiato Desidrogenases/metabolismo , Formiatos/metabolismo , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Complexos Multienzimáticos/metabolismo , Pectobacterium/metabolismo , Anaerobiose/fisiologia , Formiato Desidrogenases/genética , Hidrogenase/genética , Complexos Multienzimáticos/genética , NADH Desidrogenase/metabolismo , Oxirredução , Pectobacterium/enzimologia , Pectobacterium/genética , Plantas/microbiologia
18.
Environ Microbiol ; 22(2): 766-782, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31814267

RESUMO

Methanotrophic bacteria play a key role in limiting methane emissions from lakes. It is generally assumed that methanotrophic bacteria are mostly active at the oxic-anoxic transition zone in stratified lakes, where they use oxygen to oxidize methane. Here, we describe a methanotroph of the genera Methylobacter that is performing high-rate (up to 72 µM day-1 ) methane oxidation in the anoxic hypolimnion of the temperate Lacamas Lake (Washington, USA), stimulated by both nitrate and sulfate addition. Oxic and anoxic incubations both showed active methane oxidation by a Methylobacter species, with anoxic rates being threefold higher. In anoxic incubations, Methylobacter cell numbers increased almost two orders of magnitude within 3 days, suggesting that this specific Methylobacter species is a facultative anaerobe with a rapid response capability. Genomic analysis revealed adaptations to oxygen-limitation as well as pathways for mixed-acid fermentation and H2 production. The denitrification pathway was incomplete, lacking the genes narG/napA and nosZ, allowing only for methane oxidation coupled to nitrite-reduction. Our data suggest that Methylobacter can be an important driver of the conversion of methane in oxygen-limited lake systems and potentially use alternative electron acceptors or fermentation to remain active under oxygen-depleted conditions.


Assuntos
Lagos/microbiologia , Metano/metabolismo , Methylococcaceae/metabolismo , Nitratos/análise , Sulfatos/análise , Anaerobiose/fisiologia , Desnitrificação/genética , Methylococcaceae/crescimento & desenvolvimento , Nitritos/análise , Oxirredução , Oxigênio/metabolismo , Washington
19.
Environ Microbiol ; 22(8): 3478-3493, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510798

RESUMO

ortho-Phthalate derives from industrially produced phthalate esters, which are massively used as plasticizers and constitute major emerging environmental pollutants. The pht pathway for the anaerobic bacterial biodegradation of o-phthalate involves its activation to phthaloyl-CoA followed by decarboxylation to benzoyl-CoA. Here, we have explored further the pht peripheral pathway in denitrifying bacteria and shown that it requires also an active transport system for o-phthalate uptake that belongs to the poorly characterized class of TAXI-TRAP transporters. The construction of a fully functional pht cassette combining both catabolic and transport genes allowed to expand the o-phthalate degradation ecological trait to heterologous hosts. Unexpectedly, the pht cassette also allowed the aerobic conversion of o-phthalate to benzoyl-CoA when coupled to a functional box central pathway. Hence, the pht pathway may constitute an evolutionary acquisition for o-phthalate degradation by bacteria that thrive either in anoxic environments or in environments that face oxygen limitations and that rely on benzoyl-CoA, rather than on catecholic central intermediates, for the aerobic catabolism of aromatic compounds. Finally, the recombinant pht cassette was used both to screen for functional aerobic box pathways in bacteria and to engineer recombinant biocatalysts for o-phthalate bioconversion into sustainable bioplastics, e.g., polyhydroxybutyrate, in plastic recycling industrial processes.


Assuntos
Bactérias Anaeróbias/metabolismo , Biodegradação Ambiental , Transporte Biológico Ativo/fisiologia , Ácidos Ftálicos/metabolismo , Plásticos/metabolismo , Acil Coenzima A/biossíntese , Anaerobiose/fisiologia , Oxigênio/metabolismo , Plásticos/química
20.
Environ Microbiol ; 22(8): 3049-3065, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32216020

RESUMO

Most of the oil in low temperature, non-uplifted reservoirs is biodegraded due to millions of years of microbial activity, including via methanogenesis from crude oil. To evaluate stimulating additional methanogenesis in already heavily biodegraded oil reservoirs, oil sands samples were amended with nutrients and electron acceptors, but oil sands bitumen was the only organic substrate. Methane production was monitored for over 3000 days. Methanogenesis was observed in duplicate microcosms that were unamended, amended with sulfate or that were initially oxic, however methanogenesis was not observed in nitrate-amended controls. The highest rate of methane production was 0.15 µmol CH4 g-1 oil d-1 , orders of magnitude lower than other reports of methanogenesis from lighter crude oils. Methanogenic Archaea and several potential syntrophic bacterial partners were detected following the incubations. GC-MS and FTICR-MS revealed no significant bitumen alteration for any specific compound or compound class, suggesting that the very slow methanogenesis observed was coupled to bitumen biodegradation in an unspecific manner. After 3000 days, methanogenic communities were amended with benzoate resulting in methanogenesis rates that were 110-fold greater. This suggests that oil-to-methane conversion is limited by the recalcitrant nature of oil sands bitumen, not the microbial communities resident in heavy oil reservoirs.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Euryarchaeota/metabolismo , Metano/metabolismo , Petróleo/metabolismo , Anaerobiose/fisiologia , Crescimento Quimioautotrófico/fisiologia , Hidrocarbonetos/química , Microbiota , Campos de Petróleo e Gás , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA