Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 572
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Blood ; 141(25): 3039-3054, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37084386

RESUMO

Red blood cell disorders can result in severe anemia. One such disease congenital dyserythropoietic anemia IV (CDA IV) is caused by the heterozygous mutation E325K in the transcription factor KLF1. However, studying the molecular basis of CDA IV is severely impeded by the paucity of suitable and adequate quantities of material from patients with anemia and the rarity of the disease. We, therefore, took a novel approach, creating a human cellular disease model system for CDA IV that accurately recapitulates the disease phenotype. Next, using comparative proteomics, we reveal extensive distortion of the proteome and a wide range of disordered biological processes in CDA IV erythroid cells. These include downregulated pathways the governing cell cycle, chromatin separation, DNA repair, cytokinesis, membrane trafficking, and global transcription, and upregulated networks governing mitochondrial biogenesis. The diversity of such pathways elucidates the spectrum of phenotypic abnormalities that occur with CDA IV and impairment to erythroid cell development and survival, collectively explaining the CDA IV disease phenotype. The data also reveal far more extensive involvement of KLF1 in previously assigned biological processes, along with novel roles in the regulation of intracellular processes not previously attributed to this transcription factor. Overall, the data demonstrate the power of such a model cellular system to unravel the molecular basis of disease and how studying the effects of a rare mutation can reveal fundamental biology.


Assuntos
Anemia Diseritropoética Congênita , Humanos , Anemia Diseritropoética Congênita/genética , Mutação , Regulação da Expressão Gênica , Fenótipo , Fatores de Transcrição/genética
2.
Blood Cells Mol Dis ; 106: 102838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413287

RESUMO

Diamond-Blackfan anemia (DBA) was the first ribosomopathy described in humans. DBA is a congenital hypoplastic anemia, characterized by macrocytic aregenerative anemia, manifesting by differentiation blockage between the BFU-e/CFU-e developmental erythroid progenitor stages. In 50 % of the DBA cases, various malformations are noted. Strikingly, for a hematological disease with a relative erythroid tropism, DBA is due to ribosomal haploinsufficiency in 24 different ribosomal protein (RP) genes. A few other genes have been described in DBA-like disorders, but they do not fit into the classical DBA phenotype (Sankaran et al., 2012; van Dooijeweert et al., 2022; Toki et al., 2018; Kim et al., 2017 [1-4]). Haploinsufficiency in a RP gene leads to defective ribosomal RNA (rRNA) maturation, which is a hallmark of DBA. However, the mechanistic understandings of the erythroid tropism defect in DBA are still to be fully defined. Erythroid defect in DBA has been recently been linked in a non-exclusive manner to a number of mechanisms that include: 1) a defect in translation, in particular for the GATA1 erythroid gene; 2) a deficit of HSP70, the GATA1 chaperone, and 3) free heme toxicity. In addition, p53 activation in response to ribosomal stress is involved in DBA pathophysiology. The DBA phenotype may thus result from the combined contributions of various actors, which may explain the heterogenous phenotypes observed in DBA patients, even within the same family.


Assuntos
Anemia de Diamond-Blackfan , Anemia Diseritropoética Congênita , Anemia Macrocítica , Humanos , Anemia de Diamond-Blackfan/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Células Precursoras Eritroides/metabolismo , Mutação
3.
J Biol Chem ; 298(1): 101536, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954140

RESUMO

SEC23B is one of two vertebrate paralogs of SEC23, a key component of the coat protein complex II vesicles. Complete deficiency of SEC23B in mice leads to perinatal death caused by massive degeneration of professional secretory tissues. However, functions of SEC23B in postnatal mice and outside professional secretory tissues are unclear. In this study, we generated a Sec23b KO mouse and a knockin (KI) mouse with the E109K mutation, the most common human mutation in congenital dyserythropoietic anemia type II patients. We found that E109K mutation led to decreases in SEC23B levels and protein mislocalization. However, Sec23bki/ki mice showed no obvious abnormalities. Sec23b hemizygosity (Sec23bki/ko) was partially lethal, with only half of expected hemizygous mice surviving past weaning. Surviving Sec23bki/ko mice exhibited exocrine insufficiency, increased endoplasmic reticulum stress and apoptosis in the pancreas, and phenotypes consistent with chronic pancreatitis. Sec23bki/ko mice had mild to moderate anemia without other typical congenital dyserythropoietic anemia type II features, likely resulting from exocrine insufficiency. Moreover, Sec23bki/ko mice exhibited severe growth restriction accompanied by growth hormone (GH) insensitivity, reminiscent of Laron syndrome. Growth restriction is not associated with hepatocyte-specific Sec23b deletion, suggesting a nonliver origin of this phenotype. We propose that inflammation associated with chronic pancreatic deficiency may explain GH insensitivity in Sec23bki/ko mice. Our results reveal a genotype-phenotype correlation in SEC23B deficiency and indicate that pancreatic acinar is most sensitive to SEC23B deficiency in adult mice. The Sec23bki/ko mice provide a novel model of chronic pancreatitis and growth retardation with GH insensitivity.


Assuntos
Anemia Diseritropoética Congênita , Mutação de Sentido Incorreto , Pancreatite Crônica , Proteínas de Transporte Vesicular , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/metabolismo , Animais , Camundongos , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Fenótipo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
4.
Am J Hum Genet ; 107(6): 1149-1156, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33186543

RESUMO

The Congenital Dyserythropoietic Anemia (CDA) Registry was established with the goal to facilitate investigations of natural history, biology, and molecular pathogenetic mechanisms of CDA. Three unrelated individuals enrolled in the registry had a syndrome characterized by CDA and severe neurodevelopmental delay. They were found to have missense mutations in VPS4A, a gene coding for an ATPase that regulates the ESCRT-III machinery in a variety of cellular processes including cell division, endosomal vesicle trafficking, and viral budding. Bone marrow studies showed binucleated erythroblasts and erythroblasts with cytoplasmic bridges indicating abnormal cytokinesis and abscission. Circulating red blood cells were found to retain transferrin receptor (CD71) in their membrane, demonstrating that VPS4A is critical for normal reticulocyte maturation. Using proband-derived induced pluripotent stem cells (iPSCs), we have successfully modeled the hematologic aspects of this syndrome in vitro, recapitulating their dyserythropoietic phenotype. Our findings demonstrate that VPS4A mutations cause cytokinesis and trafficking defects leading to a human disease with detrimental effects to erythropoiesis and neurodevelopment.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Anemia Diseritropoética Congênita/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , ATPases Vacuolares Próton-Translocadoras/genética , Adenosina Trifosfatases/metabolismo , Anemia Diseritropoética Congênita/patologia , Medula Óssea/patologia , Células da Medula Óssea/metabolismo , Criança , Pré-Escolar , Citocinese , Endossomos/metabolismo , Eritroblastos/metabolismo , Eritrócitos/citologia , Eritropoese , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Transtornos do Neurodesenvolvimento/metabolismo , Fenótipo , Transporte Proteico , Reticulócitos/citologia
5.
Pediatr Blood Cancer ; 70(5): e30245, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36798023

RESUMO

Congenital dyserythropoietic anemia type IV (CDAIV) is a rare inherited hematological disorder, presenting with severe anemia due to altered erythropoiesis and hemolysis, with variable needs for recurrent transfusions. We present a case of a transfusion-dependent male newborn who presented at birth with severe hemolytic anemia, and required an intrauterine transfusion. Genetic testing rapidly identified a Kruppel-like factor 1 (KLF1) pathogenic variant (c.973G>A, p.E325K), known to be causative for CDAIV. This case highlights the advantages of next-generation sequencing testing for congenital hemolytic anemia: diagnostic speed, guidance on natural history, and optimized clinical management and anticipatory guidance for parents and clinicians. Additionally, we reviewed the literature for all CDAIV cases.


Assuntos
Anemia Diseritropoética Congênita , Anemia Hemolítica Congênita , Doenças Hematológicas , Recém-Nascido , Humanos , Masculino , Anemia Diseritropoética Congênita/diagnóstico , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/terapia , Eritropoese
6.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373084

RESUMO

Congenital dyserythropoietic anemia type II (CDA II) is an inherited autosomal recessive blood disorder which belongs to the wide group of ineffective erythropoiesis conditions. It is characterized by mild to severe normocytic anemia, jaundice, and splenomegaly owing to the hemolytic component. This often leads to liver iron overload and gallstones. CDA II is caused by biallelic mutations in the SEC23B gene. In this study, we report 9 new CDA II cases and identify 16 pathogenic variants, 6 of which are novel. The newly reported variants in SEC23B include three missenses (p.Thr445Arg, p.Tyr579Cys, and p.Arg701His), one frameshift (p.Asp693GlyfsTer2), and two splicing variants (c.1512-2A>G, and the complex intronic variant c.1512-3delinsTT linked to c.1512-16_1512-7delACTCTGGAAT in the same allele). Computational analyses of the missense variants indicated a loss of key residue interactions within the beta sheet and the helical and gelsolin domains, respectively. Analysis of SEC23B protein levels done in patient-derived lymphoblastoid cell lines (LCLs) showed a significant decrease in SEC23B protein expression, in the absence of SEC23A compensation. Reduced SEC23B mRNA expression was only detected in two probands carrying nonsense and frameshift variants; the remaining patients showed either higher gene expression levels or no expression changes at all. The skipping of exons 13 and 14 in the newly reported complex variant c.1512-3delinsTT/c.1512-16_1512-7delACTCTGGAAT results in a shorter protein isoform, as assessed by RT-PCR followed by Sanger sequencing. In this work, we summarize a comprehensive spectrum of SEC23B variants, describe nine new CDA II cases accounting for six previously unreported variants, and discuss innovative therapeutic approaches for CDA II.


Assuntos
Anemia Diseritropoética Congênita , Humanos , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/metabolismo , Mutação , Mutação de Sentido Incorreto , Éxons , Alelos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
7.
Curr Opin Hematol ; 29(3): 126-136, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35441598

RESUMO

PURPOSE OF REVIEW: The congenital dyserythropoietic anemias (CDA) are hereditary disorders characterized by ineffective erythropoiesis. This review evaluates newly developed CDA disease models, the latest advances in understanding the pathogenesis of the CDAs, and recently identified CDA genes. RECENT FINDINGS: Mice exhibiting features of CDAI were recently generated, demonstrating that Codanin-1 (encoded by Cdan1) is essential for primitive erythropoiesis. Additionally, Codanin-1 was found to physically interact with CDIN1, suggesting that mutations in CDAN1 and CDIN1 result in CDAI via a common mechanism. Recent advances in CDAII (which results from SEC23B mutations) have also been made. SEC23B was found to functionally overlap with its paralogous protein, SEC23A, likely explaining the absence of CDAII in SEC23B-deficient mice. In contrast, mice with erythroid-specific deletion of 3 or 4 of the Sec23 alleles exhibited features of CDAII. Increased SEC23A expression rescued the CDAII erythroid defect, suggesting a novel therapeutic strategy for the disease. Additional recent advances included the identification of new CDA genes, RACGAP1 and VPS4A, in CDAIII and a syndromic CDA type, respectively. SUMMARY: Establishing cellular and animal models of CDA is expected to result in improved understanding of the pathogenesis of these disorders, which may ultimately lead to the development of new therapies.


Assuntos
Anemia Diseritropoética Congênita , ATPases Vacuolares Próton-Translocadoras , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/metabolismo , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Eritropoese/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Camundongos , Mutação , Proteínas Nucleares/genética , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
8.
Blood ; 136(11): 1274-1283, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32702750

RESUMO

Congenital dyserythropoietic anemias (CDAs) are a heterogeneous group of inherited anemias that affect the normal differentiation-proliferation pathways of the erythroid lineage. They belong to the wide group of ineffective erythropoiesis conditions that mainly result in monolinear cytopenia. CDAs are classified into the 3 major types (I, II, III), plus the transcription factor-related CDAs, and the CDA variants, on the basis of the distinctive morphological, clinical, and genetic features. Next-generation sequencing has revolutionized the field of diagnosis of and research into CDAs, with reduced time to diagnosis, and ameliorated differential diagnosis in terms of identification of new causative/modifier genes and polygenic conditions. The main improvements regarding CDAs have been in the study of iron metabolism in CDAII. The erythroblast-derived hormone erythroferrone specifically inhibits hepcidin production, and its role in the mediation of hepatic iron overload has been dissected out. We discuss here the most recent advances in this field regarding the molecular genetics and pathogenic mechanisms of CDAs, through an analysis of the clinical and molecular classifications, and the complications and clinical management of patients. We summarize also the main cellular and animal models developed to date and the possible future therapies.


Assuntos
Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/classificação , Anemia Diseritropoética Congênita/diagnóstico , Anemia Diseritropoética Congênita/terapia , Animais , Transfusão de Sangue , Diagnóstico Diferencial , Modelos Animais de Doenças , Heterogeneidade Genética , Glicoproteínas/genética , Glicoproteínas/fisiologia , Transplante de Células-Tronco Hematopoéticas , Hepcidinas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hidropisia Fetal/diagnóstico , Hidropisia Fetal/etiologia , Sobrecarga de Ferro/etiologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Técnicas de Diagnóstico Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Hormônios Peptídicos/fisiologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiologia , Peixe-Zebra
9.
J Med Genet ; 58(3): 185-195, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32518175

RESUMO

BACKGROUND: Congenital dyserythropoietic anaemia type I (CDA-I) is a hereditary anaemia caused by biallelic mutations in the widely expressed genes CDAN1 and C15orf41. Little is understood about either protein and it is unclear in which cellular pathways they participate. METHODS: Genetic analysis of a cohort of patients with CDA-I identifies novel pathogenic variants in both known causative genes. We analyse the mutation distribution and the predicted structural positioning of amino acids affected in Codanin-1, the protein encoded by CDAN1. Using western blotting, immunoprecipitation and immunofluorescence, we determine the effect of particular mutations on both proteins and interrogate protein interaction, stability and subcellular localisation. RESULTS: We identify six novel CDAN1 mutations and one novel mutation in C15orf41 and uncover evidence of further genetic heterogeneity in CDA-I. Additionally, population genetics suggests that CDA-I is more common than currently predicted. Mutations are enriched in six clusters in Codanin-1 and tend to affect buried residues. Many missense and in-frame mutations do not destabilise the entire protein. Rather C15orf41 relies on Codanin-1 for stability and both proteins, which are enriched in the nucleolus, interact to form an obligate complex in cells. CONCLUSION: Stability and interaction data suggest that C15orf41 may be the key determinant of CDA-I and offer insight into the mechanism underlying this disease. Both proteins share a common pathway likely to be present in a wide variety of cell types; however, nucleolar enrichment may provide a clue as to the erythroid specific nature of CDA-I. The surprisingly high predicted incidence of CDA-I suggests that better ascertainment would lead to improved patient care.


Assuntos
Anemia Diseritropoética Congênita/genética , Predisposição Genética para Doença , Glicoproteínas/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Anemia Diseritropoética Congênita/patologia , Feminino , Regulação da Expressão Gênica/genética , Testes Genéticos , Genética Populacional , Humanos , Masculino , Complexos Multiproteicos/genética , Mutação/genética
10.
Int J Mol Sci ; 23(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35563652

RESUMO

(1) Background: Transcriptomic and proteomic studies provide a wealth of new genes potentially involved in red blood cell (RBC) maturation or implicated in the pathogenesis of anemias, necessitating validation of candidate genes in vivo; (2) Methods: We inactivated one such candidate, transmembrane and coiled-coil domain 2 (Tmcc2) in mice, and analyzed the erythropoietic phenotype by light microscopy, transmission electron microscopy (TEM), and flow cytometry of erythrocytes and erythroid precursors; (3) Results: Tmcc2-/- pups presented pallor and reduced body weight due to the profound neonatal macrocytic anemia with numerous nucleated RBCs (nRBCs) and occasional multinucleated RBCs. Tmcc2-/- nRBCs had cytoplasmic intrusions into the nucleus and double membranes. Significantly fewer erythroid cells were enucleated. Adult knockouts were normocytic, mildly polycythemic, with active extramedullary erythropoiesis in the spleen. Altered relative content of different stage CD71+TER119+ erythroid precursors in the bone marrow indicated a severe defect of erythroid maturation at the polychromatic to orthochromatic transition stage; (4) Conclusions: Tmcc2 is required for normal erythropoiesis in mice. While several phenotypic features resemble congenital dyserythropoietic anemias (CDA) types II, III, and IV, the involvement of TMCC2 in the pathogenesis of CDA in humans remains to be determined.


Assuntos
Anemia Diseritropoética Congênita , Anemia , Anemia/patologia , Anemia Diseritropoética Congênita/genética , Animais , Eritroblastos/patologia , Eritrócitos/patologia , Eritropoese/genética , Camundongos , Proteômica
11.
Blood Cells Mol Dis ; 87: 102534, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401150

RESUMO

Congenital dyserythropoietic anemias (CDAs) are characterized by ineffective erythropoiesis and distinctive erythroblast abnormalities; the diagnosis is often missed or delayed due to significant phenotypic heterogeneity. We established the CDA Registry of North America (CDAR) to study the natural history of CDA and create a biorepository to investigate the pathobiology of this heterogeneous disease. Seven of 47 patients enrolled so far in CDAR have CDA-I due to biallelic CDAN1 mutations. They all presented with perinatal anemia and required transfusions during infancy. Anemia spontaneously improved during infancy in three patients; two became transfusion-independent rapidly after starting interferon-α2; and two remain transfusion-dependent at last follow-up at ages 5 and 30 y.o. One of the transfusion-dependent patients underwent splenectomy at 11 y.o due to misdiagnosis and returned to medical attention at 27 y.o with severe hemolytic anemia and pulmonary hypertension. All patients developed iron overload even without transfusions; four were treated with chelation. Genetic testing allowed for more rapid and accurate diagnosis; the median age of confirmed diagnosis in our cohort was 3 y.o compared to 17.3 y.o historically. In conclusion, CDAR provides an organized research network for multidisciplinary clinical and research collaboration to conduct natural history and biologic studies in CDA.


Assuntos
Anemia Diseritropoética Congênita/diagnóstico , Anemia Diseritropoética Congênita/terapia , Adolescente , Adulto , Anemia Diseritropoética Congênita/epidemiologia , Anemia Diseritropoética Congênita/genética , Transfusão de Sangue , Medula Óssea/patologia , Criança , Pré-Escolar , Feminino , Testes Genéticos , Glicoproteínas/genética , Humanos , Masculino , Mutação , América do Norte/epidemiologia , Proteínas Nucleares/genética , Sistema de Registros , Adulto Jovem
12.
Haematologica ; 106(11): 2960-2970, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33121234

RESUMO

The investigation of inherited disorders of erythropoiesis has elucidated many of the principles underlying the production of normal red blood cells and how this is perturbed in human disease. Congenital Dyserythropoietic Anaemia type 1 (CDA-I) is a rare form of anaemia caused by mutations in two genes of unknown function: CDAN1 and CDIN1 (previously called C15orf41), whilst in some cases, the underlying genetic abnormality is completely unknown. Consequently, the pathways affected in CDA-I remain to be discovered. To enable detailed analysis of this rare disorder we have validated a culture system which recapitulates all of the cardinal haematological features of CDA-I, including the formation of the pathognomonic 'spongy' heterochromatin seen by electron microscopy. Using a variety of cell and molecular biological approaches we discovered that erythroid cells in this condition show a delay during terminal erythroid differentiation, associated with increased proliferation and widespread changes in chromatin accessibility. We also show that the proteins encoded by CDAN1 and CDIN1 are enriched in nucleoli which are structurally and functionally abnormal in CDA-I. Together these findings provide important pointers to the pathways affected in CDA-I which for the first time can now be pursued in the tractable culture system utilised here.


Assuntos
Anemia Diseritropoética Congênita , Anemia Diseritropoética Congênita/diagnóstico , Anemia Diseritropoética Congênita/genética , Células Eritroides , Eritropoese , Glicoproteínas/genética , Humanos , Proteínas Nucleares/genética
13.
Haematologica ; 106(2): 464-473, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467144

RESUMO

Haploinsufficiency for transcription factor KLF1 causes a variety of human erythroid phenotypes, such as the In(Lu) blood type, increased HbA2 levels, and hereditary persistence of fetal hemoglobin. Severe dominant congenital dyserythropoietic anemia IV (OMIM 613673) is associated with the KLF1 p.E325K variant. CDA-IV patients display ineffective erythropoiesis and hemolysis resulting in anemia, accompanied by persistent high levels of embryonic and fetal hemoglobin. The mouse Nan strain carries a variant in the orthologous residue, KLF1 p.E339D. Klf1Nan causes dominant hemolytic anemia with many similarities to CDA-IV. Here we investigated the impact of Klf1Nan on the developmental expression patterns of the endogenous beta-like and alpha-like globins, and the human beta-like globins carried on a HBB locus transgene. We observe that the switch from primitive, yolk sac-derived, erythropoiesis to definitive, fetal liver-derived, erythropoiesis is delayed in Klf1wt/Nan embryos. This is reflected in globin expression patterns measured between E12.5 and E14.5. Cultured Klf1wt/Nan E12.5 fetal liver cells display growth- and differentiation defects. These defects likely contribute to the delayed appearance of definitive erythrocytes in the circulation of Klf1wt/Nan embryos. After E14.5, expression of the embryonic/fetal globin genes is silenced rapidly. In adult Klf1wt/Nan animals, silencing of the embryonic/fetal globin genes is impeded, but only minute amounts are expressed. Thus, in contrast to human KLF1 p.E325K, mouse KLF1 p.E339D does not lead to persistent high levels of embryonic/fetal globins. Our results support the notion that KLF1 affects gene expression in a variant-specific manner, highlighting the necessity to characterize KLF1 variant-specific phenotypes of patients in detail.


Assuntos
Anemia Diseritropoética Congênita , Fatores de Transcrição Kruppel-Like , Adulto , Animais , Diferenciação Celular , Eritropoese/genética , Hemoglobinas , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos
14.
Ann Hematol ; 100(2): 353-364, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33159567

RESUMO

Congenital dyserythropoietic anemias (CDA) are disorders characterized by ineffective erythropoiesis and morphological anomalies in erythrocytes and erythroblasts. The purpose of this study is to identify the gene variants in patients diagnosed with CDA. We analyzed five unrelated patients and two siblings with a targeted panel of genes to CDA: CDAN1, CDIN1, SEC23B, KIF23, KLF1, and GATA1 genes. We found three novel variants in the CDIN1 gene (p.Leu136Val, p.Tyr247Cys, and p.Ile273Thr), four known variants in the SEC23B gene (p.Arg14Trp, p.Arg554Ter, p.Asp239Gly, and p.Ser436Leu), and one novel variant in the KIF23 gene (p.Leu945Trpfs*31). The in silico analysis of novel variants predict that they are pathogenic and, the in vitro study confirms the functional impact of the KIF23 variant on the protein location.


Assuntos
Anemia Diseritropoética Congênita/classificação , Anemia Diseritropoética Congênita/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Substituição de Aminoácidos , Criança , Feminino , Humanos , Masculino
15.
Biochem J ; 477(10): 1893-1905, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32239177

RESUMO

Congenital dyserythropoietic anaemia (CDA) type I is a rare blood disorder characterised by moderate to severe macrocytic anaemia and hepatomegaly, with spongy heterochromatin and inter-nuclear bridges seen in bone marrow erythroblasts. The vast majority of cases of CDA type I are caused by mutations in the CDAN1 gene. The product of CDAN1 is Codanin-1, which interacts the histone chaperone ASF1 in the cytoplasm. Codanin-1 is a negative regulator of chromatin replication, sequestering ASF1 in the cytoplasm, restraining histone deposition and thereby limiting DNA replication. The remainder of CDA-I cases are caused by mutations in the C15ORF41 gene, but very little is known about the product of this gene. Here, we report that C15ORF41 forms a tight, near-stoichiometric complex with Codanin1 in human cells, interacting with the C-terminal region of Codanin-1. We present the characterisation of the C15ORF41-Codanin-1 complex in humans in cells and in vitro, and demonstrate that Codanin-1 appears to sequester C15ORF41 in the cytoplasm as previously shown for ASF1. The findings in this study have major implications for understanding the functions of C15ORF41 and Codanin-1, and the aetiology of CDA-I.


Assuntos
Anemia Diseritropoética Congênita/etiologia , Proteínas de Ciclo Celular/genética , Glicoproteínas , Complexos Multiproteicos , Proteínas Nucleares/genética , Anemia Diseritropoética Congênita/genética , Proteínas de Ciclo Celular/química , Linhagem Celular , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/química , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo
16.
Proc Natl Acad Sci U S A ; 115(33): E7748-E7757, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30065114

RESUMO

Approximately one-third of the mammalian proteome is transported from the endoplasmic reticulum-to-Golgi via COPII-coated vesicles. SEC23, a core component of coat protein-complex II (COPII), is encoded by two paralogous genes in vertebrates (Sec23a and Sec23b). In humans, SEC23B deficiency results in congenital dyserythropoietic anemia type-II (CDAII), while SEC23A deficiency results in a skeletal phenotype (with normal red blood cells). These distinct clinical disorders, together with previous biochemical studies, suggest unique functions for SEC23A and SEC23B. Here we show indistinguishable intracellular protein interactomes for human SEC23A and SEC23B, complementation of yeast Sec23 by both human and murine SEC23A/B, and rescue of the lethality of sec23b deficiency in zebrafish by a sec23a-expressing transgene. We next demonstrate that a Sec23a coding sequence inserted into the murine Sec23b locus completely rescues the lethal SEC23B-deficient pancreatic phenotype. We show that SEC23B is the predominantly expressed paralog in human bone marrow, but not in the mouse, with the reciprocal pattern observed in the pancreas. Taken together, these data demonstrate an equivalent function for SEC23A/B, with evolutionary shifts in the transcription program likely accounting for the distinct phenotypes of SEC23A/B deficiency within and across species, a paradigm potentially applicable to other sets of paralogous genes. These findings also suggest that enhanced erythroid expression of the normal SEC23A gene could offer an effective therapeutic approach for CDAII patients.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Eritrócitos/metabolismo , Complexos Multiproteicos/biossíntese , Proteínas de Transporte Vesicular/biossíntese , Anemia Diseritropoética Congênita/genética , Anemia Diseritropoética Congênita/metabolismo , Medula Óssea/metabolismo , Medula Óssea/patologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Eritrócitos/patologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Complexos Multiproteicos/genética , Especificidade da Espécie , Proteínas de Transporte Vesicular/genética
17.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809261

RESUMO

Lipin2 is a phosphatidate phosphatase that plays critical roles in fat homeostasis. Alterations in Lpin2, which encodes lipin2, cause the autoinflammatory bone disorder Majeed syndrome. Lipin2 limits lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. However, little is known about the precise molecular mechanisms underlying its anti-inflammatory function. In this study, we attempted to elucidate the molecular link between the loss of lipin2 function and autoinflammatory bone disorder. Using a Lpin2 knockout murine macrophage cell line, we showed that lipin2 deficiency enhances innate immune responses to LPS stimulation through excessive activation of the NF-κB signaling pathway, partly because of TAK1 signaling upregulation. Lipin2 depletion also enhanced RANKL-mediated osteoclastogenesis and osteoclastic resorption activity accompanied by NFATc1 dephosphorylation and increased nuclear accumulation. These results suggest that lipin2 suppresses the development of autoinflammatory bone disorder by fine-tuning proinflammatory responses and osteoclastogenesis in macrophages. Therefore, this study provides insights into the molecular pathogenesis of monogenic autoinflammatory bone disorders and presents a potential therapeutic intervention.


Assuntos
Anemia Diseritropoética Congênita/genética , Síndromes de Imunodeficiência/genética , Inflamação/genética , MAP Quinase Quinase Quinases/genética , Fatores de Transcrição NFATC/genética , Proteínas Nucleares/genética , Osteomielite/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Anemia Diseritropoética Congênita/metabolismo , Anemia Diseritropoética Congênita/patologia , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular/genética , Humanos , Síndromes de Imunodeficiência/metabolismo , Síndromes de Imunodeficiência/patologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Osteomielite/metabolismo , Osteomielite/patologia , Ligante RANK/genética , Transdução de Sinais/genética , Fator de Transcrição RelA/genética
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(8): 727-730, 2021 Aug 10.
Artigo em Zh | MEDLINE | ID: mdl-34365611

RESUMO

OBJECTIVE: To identify the pathogenic variants of 4 patients with hemolytic anemia of unknown cause. METHODS: Peripheral blood samples of the patients and their family members were collected to extract DNA. The coding region and splice region in all exons of gene of erythrocyte related diseases were analyzed by using target sequence capture and high-throughput sequencing technology. Suspected pathogenic variants were verified by PCR combined Sanger sequencing technology. RESULTS: Each of the probands was detected two compound heterozygous variants, and CDA II was diagnosed. Six variants were detected in the 4 probands, four variants were reported and the other two were first reported. CONCLUSION: By high-throughput sequencing, gene variant of CDA II be analyzed fast and accurately. It is an effective supplement to convenional diagnostic methods. Furthermore, the novel variant sites have enriched the variant database of the SEC23B gene.


Assuntos
Anemia Diseritropoética Congênita , Anemia Diseritropoética Congênita/genética , Éxons/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Proteínas de Transporte Vesicular/genética
19.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(8): 775-778, 2021 Aug 10.
Artigo em Zh | MEDLINE | ID: mdl-34365623

RESUMO

OBJECTIVE: To explore the clinical feature, diagnosis and phenotype of Majeed syndrome. METHODS: Clinical manifestation, diagnostic process, imaging feature and genetic testing of an ethnic Han Chinese patient with Majeed syndrome were reviewed. RESULTS: The patient, a 3-year-9-month-old boy, had featured psychomotor retardation and developed bone pain from 8 month on. The child had tenderness of the lower limbs and presented with repeatedly joint swelling and pain accompanied by fever. Physical signs included limb muscle weakening, slightly decreased muscle tone, reduced muscle volume and positive Gower sign. High-throughput sequencing revealed that the child has carried compound heterozygous variants of the LPIN2 gene, including c.1966A>G and c.2534delG. MRI showed multiple lesions in bilateral knee joints and distal middle tibia presenting as patchy SPAIR high signals with unclear edge, in addition with edema of soft tissue surrounding the right distal femur. CONCLUSION: Majeed syndrome is characterized by chronic and recurrent multifocal osteomyelitis, congenital dyserythropoietic anemia, and growth retardation. Surrounding muscle tissue of osteomyelitis may also be involved. The syndrome may also affect the central nervous system, resulting in delayed language and motor development. Discovery of multiple pathological variants of the LPIN2 gene suggested that the clinical phenotype of this syndrome may vary between patients to some extent.


Assuntos
Anemia Diseritropoética Congênita , Síndromes de Imunodeficiência , Osteomielite , Anemia Diseritropoética Congênita/genética , Criança , Testes Genéticos , Humanos , Síndromes de Imunodeficiência/genética , Lactente , Masculino , Osteomielite/genética
20.
Blood Cells Mol Dis ; 85: 102483, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32818800

RESUMO

Kinesin Family Member 23 (KIF23), a cell cycle regulator, has a key task in cytokinesis. KIF23 over-expression in cancer has been associated with tumor growth, progression, and poor prognosis, indicating a potential to be a cancer biomarker. A mutation in KIF23 (c.2747C > G, p.P916R) was shown to cause congenital dyserythropoietic anemia, type III (CDA III). To-date, fifteen KIF23 transcripts have been annotated, but their expression is poorly investigated. We hypothesized that tissue specific expression of a particular transcript can be critical for CDA III phenotype. In this study, we quantified expression of alternative Kif23 transcripts in a mouse model with human KIF23 mutation and investigated its association with a regulator of alternative splicing, serine/arginine-rich splicing factor 3 (Srsf3). We confirmed presence of an additional exon 8 in both human and mouse KIF23 transcripts. A transcript lacking exons 17 and 18 was ubiquitously expressed in mice while other isoforms were common in human tissues however in bone marrow of knock-in mice a transcript without exon 18 was prevalent as it was in bone marrow of a CDA III patient. We conclude that the possibility that the tissue specific expression of KIF23 alternative transcripts influence the CDA III phenotype cannot be neglected.


Assuntos
Processamento Alternativo , Anemia Diseritropoética Congênita/genética , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Animais , Éxons , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA