Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 43(5): e132-e150, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36994727

RESUMO

BACKGROUND: Marfan syndrome, caused by mutations in the gene for fibrillin-1, leads to thoracic aortic aneurysms (TAAs). Phenotypic modulation of vascular smooth muscle cells (SMCs) and ECM (extracellular matrix) remodeling are characteristic of both nonsyndromic and Marfan aneurysms. The ECM protein FN (fibronectin) is elevated in the tunica media of TAAs and amplifies inflammatory signaling in endothelial and SMCs through its main receptor, integrin α5ß1. We investigated the role of integrin α5-specific signals in Marfan mice in which the cytoplasmic domain of integrin α5 was replaced with that of integrin α2 (denoted α5/2 chimera). METHODS: We crossed α5/2 chimeric mice with Fbn1mgR/mgR mice (mgR model of Marfan syndrome) to evaluate the survival rate and pathogenesis of TAAs among wild-type, α5/2, mgR, and α5/2 mgR mice. Further biochemical and microscopic analysis of porcine and mouse aortic SMCs investigated molecular mechanisms by which FN affects SMCs and subsequent development of TAAs. RESULTS: FN was elevated in the thoracic aortas from Marfan patients, in nonsyndromic aneurysms, and in mgR mice. The α5/2 mutation greatly prolonged survival of Marfan mice, with improved elastic fiber integrity, mechanical properties, SMC density, and SMC contractile gene expression. Furthermore, plating of wild-type SMCs on FN decreased contractile gene expression and activated inflammatory pathways whereas α5/2 SMCs were resistant. These effects correlated with increased NF-kB activation in cultured SMCs and mgR aortas, which was alleviated by the α5/2 mutation or NF-kB inhibition. CONCLUSIONS: FN-integrin α5 signaling is a significant driver of TAA in the mgR mouse model. This pathway thus warrants further investigation as a therapeutic target.


Assuntos
Aneurisma da Aorta Torácica , Síndrome de Marfan , Camundongos , Animais , Suínos , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Integrina alfa5/uso terapêutico , Fibronectinas , NF-kappa B , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/prevenção & controle , Fibrilina-1/genética
2.
Arterioscler Thromb Vasc Biol ; 43(2): 234-252, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36579645

RESUMO

BACKGROUND: When aortic cells are under stress, such as increased hemodynamic pressure, they adapt to the environment by modifying their functions, allowing the aorta to maintain its strength. To understand the regulation of this adaptive response, we examined transcriptomic and epigenomic programs in aortic smooth muscle cells (SMCs) during the adaptive response to AngII (angiotensin II) infusion and determined its importance in protecting against aortic aneurysm and dissection (AAD). METHODS: We performed single-cell RNA sequencing and single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) analyses in a mouse model of sporadic AAD induced by AngII infusion. We also examined the direct effects of YAP (yes-associated protein) on the SMC adaptive response in vitro. The role of YAP in AAD development was further evaluated in AngII-infused mice with SMC-specific Yap deletion. RESULTS: In wild-type mice, AngII infusion increased medial thickness in the thoracic aorta. Single-cell RNA sequencing analysis revealed an adaptive response in thoracic SMCs characterized by upregulated genes with roles in wound healing, elastin and collagen production, proliferation, migration, cytoskeleton organization, cell-matrix focal adhesion, and PI3K-PKB/Akt (phosphoinositide-3-kinase-protein kinase B/Akt) and TGF-ß (transforming growth factor beta) signaling. ScATAC-seq analysis showed increased chromatin accessibility at regulatory regions of adaptive genes and revealed the mechanical sensor YAP/transcriptional enhanced associate domains as a top candidate transcription complex driving the expression of these genes (eg, Lox, Col5a2, Tgfb2). In cultured human aortic SMCs, cyclic stretch activated YAP, which directly bound to adaptive gene regulatory regions (eg, Lox) and increased their transcript abundance. SMC-specific Yap deletion in mice compromised this adaptive response in SMCs, leading to an increased AAD incidence. CONCLUSIONS: Aortic stress triggers the systemic epigenetic induction of an adaptive response (eg, wound healing, proliferation, matrix organization) in thoracic aortic SMCs that depends on functional biomechanical signal transduction (eg, YAP signaling). Our study highlights the importance of the adaptive response in maintaining aortic homeostasis and preventing AAD in mice.


Assuntos
Aneurisma , Aneurisma da Aorta Torácica , Dissecção Aórtica , Camundongos , Animais , Humanos , Aorta Torácica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Knockout , Aorta , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/genética , Dissecção Aórtica/prevenção & controle , Colágeno/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Miócitos de Músculo Liso/metabolismo , Cromatina , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/prevenção & controle , Células Cultivadas , Camundongos Endogâmicos C57BL
3.
Arterioscler Thromb Vasc Biol ; 43(6): e172-e189, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37128913

RESUMO

BACKGROUND: Thoracic aortic aneurysm and dissection (TAAD) is a highly lethal vascular disease without effective drug therapy. Whether elevated serum concentrations of uric acid are involved in TAAD development remains unclear. METHODS: Serum uric acid levels were detected in different TAAD mouse models and patients. The urate-lowering drug allopurinol was administered in the drinking water of TAAD mice. Adenine diet-induced mice were established to investigate the role of hyperuricemia in TAAD formation and RNA-sequencing of thoracic aortas from these mice was performed. RESULTS: We found serum uric acid levels were elevated in various mouse TAAD models, including mice fed a ß-aminopropionitrile diet, Marfan mice with fibrillin-1 haploinsufficiency (Fbn1C1041G/+), and ApoE-/- mice infused with Ang II (angiotensin II), as well as in patients with TAAD. Administration of urate-lowering drug allopurinol in the drinking water significantly alleviated TAAD formation in ß-aminopropionitrile-treated mice, Fbn1C1041G/+ mice, and Ang II-infused ApoE-/- mice. Moreover, an adenine diet was used to induce hyperuricemia in mice. Intriguingly, a 4-week adenine diet feeding directly induced TAAD formation characterized by increased maximal thoracic aortic diameters and severe elastin degradation, which were ameliorated by allopurinol. Unbiased RNA-sequencing in mouse thoracic aortas suggested that FcγR (Fc gamma receptor) was upregulated upon adenine diet, but reciprocally repressed by allopurinol. Mechanistically, hyperuricemia activated FcγR-mediated ERK1/2 (extracellular signal-regulated kinase 1/2) phosphorylation to induce macrophage inflammation and TAAD development, which was abrogated by allopurinol or FcγR deficiency. CONCLUSIONS: This study uncovered an important and previously unrecognized role of hyperuricemia in mediating the pathogenesis of TAAD, and uric acid-lowering drug may represent a promising therapeutic approach for TAAD.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Água Potável , Hiperuricemia , Camundongos , Animais , Ácido Úrico , Aminopropionitrilo/efeitos adversos , Alopurinol/efeitos adversos , Água Potável/efeitos adversos , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Receptores de IgG , Transdução de Sinais , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/prevenção & controle , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/genética , Dissecção Aórtica/prevenção & controle , RNA , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
4.
Arterioscler Thromb Vasc Biol ; 43(7): 1134-1153, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37078287

RESUMO

BACKGROUND: The role of increased smooth muscle cell (SMC) integrin αv signaling in Marfan syndrome (MFS) aortic aneurysm remains unclear. Herein, we examine the mechanism and potential efficacy of integrin αv blockade as a therapeutic strategy to reduce aneurysm progression in MFS. METHODS: Induced pluripotent stem cells (iPSCs) were differentiated into aortic SMCs of the second heart field (SHF) and neural crest (NC) lineages, enabling in vitro modeling of MFS thoracic aortic aneurysms. The pathological role of integrin αv during aneurysm formation was confirmed by blockade of integrin αv with GLPG0187 in Fbn1C1039G/+ MFS mice. RESULTS: iPSC-derived MFS SHF SMCs overexpress integrin αv relative to MFS NC and healthy control SHF cells. Furthermore, integrin αv downstream targets (FAK [focal adhesion kinase]/AktThr308/mTORC1 [mechanistic target of rapamycin complex 1]) were activated, especially in MFS SHF. Treatment of MFS SHF SMCs with GLPG0187 reduced p-FAK/p-AktThr308/mTORC1 activity back to control SHF levels. Functionally, MFS SHF SMCs had increased proliferation and migration compared to MFS NC SMCs and control SMCs, which normalized with GLPG0187 treatment. In the Fbn1C1039G/+ MFS mouse model, integrin αv, p-AktThr308, and downstream targets of mTORC1 proteins were elevated in the aortic root/ascending segment compared to littermate wild-type control. Mice treated with GLPG0187 (age 6-14 weeks) had reduced aneurysm growth, elastin fragmentation, and reduction of the FAK/AktThr308/mTORC1 pathway. GLPG0187 treatment reduced the amount and severity of SMC modulation assessed by single-cell RNA sequencing. CONCLUSIONS: The integrin αv-FAK-AktThr308 signaling pathway is activated in iPSC SMCs from MFS patients, specifically from the SHF lineage. Mechanistically, this signaling pathway promotes SMC proliferation and migration in vitro. As biological proof of concept, GLPG0187 treatment slowed aneurysm growth and p-AktThr308 signaling in Fbn1C1039G/+ mice. Integrin αv blockade via GLPG0187 may be a promising therapeutic approach to inhibit MFS aneurysmal growth.


Assuntos
Aneurisma da Aorta Torácica , Aneurisma Aórtico , Aneurisma da Raiz da Aorta , Células-Tronco Pluripotentes Induzidas , Síndrome de Marfan , Camundongos , Animais , Integrina alfaV/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/prevenção & controle , Aneurisma Aórtico/genética , Aneurisma Aórtico/prevenção & controle , Fibrilina-1/genética , Fibrilina-1/metabolismo , Miócitos de Músculo Liso/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 43(8): e339-e357, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37288573

RESUMO

BACKGROUND: Thoracic aortic aneurysms (TAAs) are abnormal aortic dilatations and a major cardiovascular complication of Marfan syndrome. We previously demonstrated a critical role for vascular smooth muscle (VSM) SirT1 (sirtuin-1), a lysine deacetylase, against maladaptive aortic remodeling associated with chronic oxidative stress and aberrant activation of MMPs (matrix metalloproteinases). METHODS: In this study, we investigated whether redox dysregulation of SirT1 contributed to the pathogenesis of TAA using fibrillin-1 hypomorphic mice (Fbn1mgR/mgR), an established model of Marfan syndrome prone to aortic dissection/rupture. RESULTS: Oxidative stress markers 3-nitrotyrosine and 4-hydroxynonenal were significantly elevated in aortas of patients with Marfan syndrome. Moreover, reversible oxidative post-translational modifications (rOPTM) of protein cysteines, particularly S-glutathionylation, were dramatically increased in aortas of Fbn1mgR/mgR mice, before induction of severe oxidative stress markers. Fbn1mgR/mgR aortas and VSM cells exhibited an increase in rOPTM of SirT1, coinciding with the upregulation of acetylated proteins, an index of decreased SirT1 activity, and increased MMP2/9 activity. Mechanistically, we demonstrated that TGFß (transforming growth factor beta), which was increased in Fbn1mgR/mgR aortas, stimulated rOPTM of SirT1, decreasing its deacetylase activity in VSM cells. VSM cell-specific deletion of SirT1 in Fbn1mgR/mgR mice (SMKO-Fbn1mgR/mgR) caused a dramatic increase in aortic MMP2 expression and worsened TAA progression, leading to aortic rupture in 50% of SMKO-Fbn1mgR/mgR mice, compared with 25% of Fbn1mgR/mgR mice. rOPTM of SirT1, rOPTM-mediated inhibition of SirT1 activity, and increased MMP2/9 activity were all exacerbated by the deletion of Glrx (glutaredoxin-1), a specific deglutathionylation enzyme, while being corrected by overexpression of Glrx or of an oxidation-resistant SirT1 mutant in VSM cells. CONCLUSIONS: Our novel findings strongly suggest a causal role of S-glutathionylation of SirT1 in the pathogenesis of TAA. Prevention or reversal of SirT1 rOPTM may be a novel therapeutic strategy to prevent TAA and TAA dissection/ruptures in individuals with Marfan syndrome, for which, thus far, no targeted therapy has been developed.


Assuntos
Aneurisma da Aorta Torácica , Ruptura Aórtica , Síndrome de Marfan , Camundongos , Animais , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fibrilinas/metabolismo , Músculo Liso Vascular/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteínas dos Microfilamentos/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/prevenção & controle , Fibrilina-1/genética , Fibrilina-1/metabolismo , Ruptura Aórtica/prevenção & controle , Fator de Crescimento Transformador beta/metabolismo , Oxirredução , Modelos Animais de Doenças , Glutarredoxinas/metabolismo , Glutarredoxinas/uso terapêutico
6.
Eur Heart J ; 44(14): 1248-1261, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36638776

RESUMO

AIMS: Whether changes in endothelial tight junctions (TJs) lead to the formation of thoracic aortic aneurysm and dissection (TAAD) and serve as an early indicator and therapeutic target remains elusive. METHODS AND RESULTS: Single-cell RNA sequencing analysis showed aberrant endothelial TJ expressions in the thoracic aortas of patients with TAAD. In a ß-aminopropionitrile (BAPN)-induced TAAD mouse model, endothelial TJ function was disrupted in the thoracic aortas at an early stage (5 and 10 days) as observed by a vascular permeability assay, while the intercellular distribution of crucial TJ components was significantly decreased by en face staining. For the non-invasive detection of endothelial TJ function, two dextrans of molecular weights 4 and 70 kDa were conjugated with the magnetic resonance imaging (MRI) contrast agent Gd-DOTA to synthesize FITC-dextran-DOTA-Gd and rhodamine B-dextran-DOTA-Gd. MRI images showed that both probes accumulated in the thoracic aortas of the BAPN-fed mice. Particularly, the mice with increased accumulated signals from 5 to 10 days developed TAAD at 14 days, whereas the mice with similar signals between the two time points did not. Furthermore, the protease-activated receptor 2 inhibitor AT-1001, which seals TJs, alleviated the BAPN-induced impairment of endothelial TJ function and expression and subsequently reduced TAAD incidence. Notably, endothelial-targeted ZO-1 conditional knockout increased TAAD incidence. Mechanistically, vascular inflammation and edema were observed in the thoracic aortas of the BAPN-fed mice, whereas these phenomena were attenuated by AT-1001. CONCLUSION: The disruption of endothelial TJ function is an early event prior to TAAD formation, herein serving as a potential indicator and a promising target for TAAD.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Camundongos , Animais , Aminopropionitrilo/efeitos adversos , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Transdução de Sinais , Aneurisma da Aorta Torácica/prevenção & controle
7.
Arterioscler Thromb Vasc Biol ; 42(10): 1254-1261, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36004642

RESUMO

BACKGROUND: Cross-linking of lysine residues in elastic and collagen fibers is a vital process in aortic development. Inhibition of lysyl oxidase by BAPN (ß-aminopropionitrile) leads to thoracic aortopathies in mice. Although the renin-angiotensin system contributes to several types of thoracic aortopathies, it remains unclear whether inhibition of the renin-angiotensin system protects against aortopathy caused by the impairment of elastic fiber/collagen crosslinking. METHODS: BAPN (0.5% wt/vol) was started in drinking water to induce aortopathies in male C57BL/6J mice at 4 weeks of age for 4 weeks. Five approaches were used to investigate the impact of the renin-angiotensin system. Bulk RNA sequencing was performed to explore potential molecular mechanisms of BAPN-induced thoracic aortopathies. RESULTS: Losartan increased plasma renin concentrations significantly, compared with vehicle-infused mice, indicating effective angiotensin II type 1 receptor inhibition. However, losartan did not suppress BAPN-induced aortic rupture and dilatation. Since losartan is a surmountable inhibitor of the renin-angiotensin system, irbesartan, an insurmountable inhibitor, was also tested. Although increased plasma renin concentrations indicated effective inhibition, irbesartan did not ameliorate aortic rupture and dilatation in BAPN-administered mice. Thus, BAPN-induced thoracic aortopathies were refractory to angiotensin II type 1 receptor blockade. Next, we inhibited angiotensin II production by pharmacological or genetic depletion of AGT (angiotensinogen), the unique precursor of angiotensin II. However, neither suppressed BAPN-induced thoracic aortic rupture and dilatation. Aortic RNA sequencing revealed molecular changes during BAPN administration that were distinct from other types of aortopathies in which angiotensin II type 1 receptor inhibition protects against aneurysm formation. CONCLUSIONS: Inhibition of either angiotensin II action or production of the renin-angiotensin system does not attenuate BAPN-induced thoracic aortopathies in mice.


Assuntos
Aneurisma da Aorta Torácica , Ruptura Aórtica , Sistema Renina-Angiotensina , Aminopropionitrilo/efeitos adversos , Angiotensina II , Angiotensinogênio , Animais , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/prevenção & controle , Ruptura Aórtica/induzido quimicamente , Dilatação Patológica , Modelos Animais de Doenças , Irbesartana/farmacologia , Losartan , Lisina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína-Lisina 6-Oxidase/genética , Receptor Tipo 1 de Angiotensina/genética , Renina/genética
8.
Cardiovasc Drugs Ther ; 37(2): 239-244, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34826037

RESUMO

BACKGROUND: Descending thoracic aorta aneurysm (dTAA) has increasing incidence and, if left untreated, could lead to death. There is not any study of satralizumab treatment for preventing dTAA formation and progression. MATERIALS AND METHODS: Forty male 10-week-old Rattus norvegicus were enrolled in the experiment. They were divided into four equal groups: dTAA treated with saline (dTAA-P) and dTAA treated with satralizumab (dTAA-S). One of the control groups was treated with saline (C-P), and the other was treated with satralizumab (C-S). Satralizumab and saline were used once every 2 weeks, subcutaneously 120 mg for 4 weeks. dTA diameter was measured at days 0, 3, 7, 14, 21, and 28. RESULTS: IL-6 level was measured on the 7th day that showed significantly increased IL-6 serum level in dTAA-P rats compared to C-P. Maximal dTA diameter (%MAD) was obtained at day 14, which was scientifically matched to the aorta aneurysm definition (>50% increase in diameter). From the seventh day, a significant difference in %MAD was observed between dTAA-P and dTAA-S groups. However, the %MAD of these two groups was significantly higher than control groups till the end of the 28th day. CONCLUSION: Using an IL-6 inhibitor agent to prevent dTAA formation and progression showed promising results. It suggests that using the IL-6 inhibitors in susceptible persons can be considered a lifesaving therapeutic approach.


Assuntos
Aneurisma da Aorta Torácica , Masculino , Animais , Ratos , Aneurisma da Aorta Torácica/prevenção & controle , Interleucina-6 , Anticorpos Monoclonais Humanizados
9.
Arterioscler Thromb Vasc Biol ; 41(10): 2538-2550, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34407634

RESUMO

Objective: A cardinal feature of Marfan syndrome is thoracic aortic aneurysm. The contribution of the renin-angiotensin system via AT1aR (Ang II [angiotensin II] receptor type 1a) to thoracic aortic aneurysm progression remains controversial because the beneficial effects of angiotensin receptor blockers have been ascribed to off-target effects. This study used genetic and pharmacological modes of attenuating angiotensin receptor and ligand, respectively, to determine their roles on thoracic aortic aneurysm in mice with fibrillin-1 haploinsufficiency (Fbn1C1041G/+). Approach and Results: Thoracic aortic aneurysm in Fbn1C1041G/+ mice was found to be strikingly sexual dimorphic. Males displayed aortic dilation over 12 months while aortic dilation in Fbn1C1041G/+ females did not differ significantly from wild-type mice. To determine the role of AT1aR, Fbn1C1041G/+ mice that were either +/+ or -/- for AT1aR were generated. AT1aR deletion reduced expansion of ascending aorta and aortic root diameter from 1 to 12 months of age in males. Medial thickening and elastin fragmentation were attenuated. An antisense oligonucleotide against angiotensinogen was administered to male Fbn1C1041G/+ mice to determine the effects of Ang II depletion. Antisense oligonucleotide against angiotensinogen administration attenuated dilation of the ascending aorta and aortic root and reduced extracellular remodeling. Aortic transcriptome analyses identified potential targets by which inhibition of the renin-angiotensin system reduced aortic dilation in Fbn1C1041G/+ mice. Conclusions: Deletion of AT1aR or inhibition of Ang II production exerted similar effects in attenuating pathologies in the proximal thoracic aorta of male Fbn1C1041G/+ mice. Inhibition of the renin-angiotensin system attenuated dysregulation of genes within the aorta related to pathology of Fbn1C1041G/+ mice.


Assuntos
Angiotensinogênio/metabolismo , Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/prevenção & controle , Fibrilina-1/genética , Deleção de Genes , Síndrome de Marfan/genética , Receptor Tipo 1 de Angiotensina/genética , Sistema Renina-Angiotensina , Angiotensinogênio/genética , Animais , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Modelos Animais de Doenças , Feminino , Fibrilina-1/metabolismo , Predisposição Genética para Doença , Haploinsuficiência , Masculino , Síndrome de Marfan/metabolismo , Síndrome de Marfan/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Fenótipo , Receptor Tipo 1 de Angiotensina/deficiência , Sistema Renina-Angiotensina/genética , Caracteres Sexuais , Fatores Sexuais , Transcriptoma
10.
Arterioscler Thromb Vasc Biol ; 41(9): 2483-2493, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34320838

RESUMO

Objective: Despite considerable research, the goal of finding nonsurgical remedies against thoracic aortic aneurysm and acute aortic dissection remains elusive. We sought to identify a novel aortic PK (protein kinase) that can be pharmacologically targeted to mitigate aneurysmal disease in a well-established mouse model of early-onset progressively severe Marfan syndrome (MFS). Approach and Results: Computational analyses of transcriptomic data derived from the ascending aorta of MFS mice predicted a probable association between thoracic aortic aneurysm and acute aortic dissection development and the multifunctional, stress-activated HIPK2 (homeodomain-interacting protein kinase 2). Consistent with this prediction, Hipk2 gene inactivation significantly extended the survival of MFS mice by slowing aneurysm growth and delaying transmural rupture. HIPK2 also ranked among the top predicted PKs in computational analyses of DEGs (differentially expressed genes) in the dilated aorta of 3 MFS patients, which strengthened the clinical relevance of the experimental finding. Additional in silico analyses of the human and mouse data sets identified the TGF (transforming growth factor)-ß/Smad3 signaling pathway as a potential target of HIPK2 in the MFS aorta. Chronic treatment of MFS mice with an allosteric inhibitor of HIPK2-mediated stimulation of Smad3 signaling validated this prediction by mitigating thoracic aortic aneurysm and acute aortic dissection pathology and partially improving aortic material stiffness. Conclusions: HIPK2 is a previously unrecognized determinant of aneurysmal disease and an attractive new target for antithoracic aortic aneurysm and acute aortic dissection multidrug therapy.


Assuntos
Aorta Torácica/efeitos dos fármacos , Aneurisma da Aorta Torácica/prevenção & controle , Dissecção Aórtica/prevenção & controle , Fibrilina-1/genética , Síndrome de Marfan/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Remodelação Vascular/efeitos dos fármacos , Adulto , Dissecção Aórtica/enzimologia , Dissecção Aórtica/genética , Dissecção Aórtica/patologia , Animais , Aorta Torácica/enzimologia , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/enzimologia , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Dilatação Patológica , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Síndrome de Marfan/complicações , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Proteína Smad3/metabolismo
11.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555207

RESUMO

Thoracic aortic aneurysm (TAA) involves extracellular matrix (ECM) remodeling of the aortic wall, leading to reduced biomechanical support with risk of aortic dissection and rupture. Activation of the renin-angiotensin system, and resultant angiotensin (Ang) II synthesis, is critically involved in the onset and progression of TAA. The current study investigated the effects of angiotensin (Ang) 1-7 on a murine model of TAA. Male 8-10-week-old ApoEKO mice were infused with Ang II (1.44 mg/kg/day) and treated with Ang 1-7 (0.576 mg/kg/day). ApoEKO mice developed advanced TAA in response to four weeks of Ang II infusion. Echocardiographic and histological analyses demonstrated increased aortic dilatation, excessive structural remodelling, perivascular fibrosis, and inflammation in the thoracic aorta. Ang 1-7 infusion led to attenuation of pathological phenotypic alterations associated with Ang II-induced TAA. Smooth muscle cells (SMCs) isolated from adult murine thoracic aorta exhibited excessive mitochondrial fission, oxidative stress, and hyperproliferation in response to Ang II. Treatment with Ang 1-7 resulted in inhibition of mitochondrial fragmentation, ROS generation, and hyperproliferation. Gene expression profiling used for characterization of the contractile and synthetic phenotypes of thoracic aortic SMCs revealed preservation of the contractile phenotype with Ang 1-7 treatment. In conclusion, Ang 1-7 prevented Ang II-induced vascular remodeling and the development of TAA. Enhancing Ang 1-7 actions may provide a novel therapeutic strategy to prevent or delay the progression of TAA.


Assuntos
Aneurisma da Aorta Torácica , Masculino , Animais , Camundongos , Aneurisma da Aorta Torácica/tratamento farmacológico , Aneurisma da Aorta Torácica/prevenção & controle , Aneurisma da Aorta Torácica/genética , Angiotensina I/farmacologia , Angiotensina I/genética , Fenótipo , Angiotensina II/metabolismo , Miócitos de Músculo Liso/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
12.
Beijing Da Xue Xue Bao Yi Xue Ban ; 54(5): 896-906, 2022 Oct 18.
Artigo em Zh | MEDLINE | ID: mdl-36241232

RESUMO

OBJECTIVE: To identify whether naringenin plays a protective role during thoracic aneurysm formation in Marfan syndrome. METHODS: To validate the effect of naringenin, Fbn1C1039G/+ mice, the mouse model of Marfan syndrome, were fed with naringenin, and the disease progress was evaluated. The molecular mechanism of naringenin was further investigated via in vitro studies, such as bioluminescence resonance energy transfer (BRET), atomic force microscope and radioligand receptor binding assay. RESULTS: Six-week-old Fbn1C1039G/+ mice were fed with naringenin for 20 weeks. Compared with the control group, naringenin significantly suppressed the aortic expansion [Fbn1C1039G/+ vs. Fbn1C1039G/++naringenin: (2.49±0.47) mm, n=18 vs. (1.87±0.19) mm, n=22, P < 0.05], the degradation of elastin, and the expression and activity of matrix metalloproteinase 2 (MMP2) and MMP9 in the ascending aorta of Fbn1C1039G/+ mice. Besides, treatment with naringenin for 6 weeks also attenuated the disease progress among the 20-week-old Fbn1C1039G/+ mice with established thoracic aortic aneurysms [Fbn1C1039G/+ vs. Fbn1C1039G/++naringenin: (2.24±0.23) mm, n=8 vs. (1.90±0.17) mm, n=8, P < 0.05]. To understand the underlying molecular mechanisms, we examined the effects of naringenin on angiotensin Ⅱ type 1 receptor (AT1) signaling and transforming growth factor-ß (TGF-ß) signaling respectively, which were the dominant signaling pathways contributing to aortopathy in Marfan syndrome as previously reported. The results showed that naringenin decreased angiotensin Ⅱ (Ang Ⅱ)-induced phosphorylation of protein kinase C (PKC) and extracellular regulating kinase 1/2 (ERK1/2) in HEK293A cell overexpressing AT1 receptor. Moreover, naringenin inhibited Ang Ⅱ-induced calcium mobilization and uclear factor of activated T-cells (NFAT) signaling. The internalization of AT1 receptor and its binding to ß-arrestin-2 with Ang Ⅱ induction were also suppressed by naringenin. As evidenced by atomic force microscope and radioligand receptor binding assay, naringenin inhibited Ang Ⅱ binding to AT1 receptor. In terms of TGF-ß signaling, we found that feeding the mice with naringenin decreased the phosphorylation of Smad2 and ERK1/2 as well as the expression of TGF-ß downstream genes. Besides, the serum level of TGF-ß was also decreased by naringenin in the Fbn1C1039G/+ mice. Furthermore, we detected the effect of naringenin on platelet, a rich source of TGF-ß, both in vivo and in vitro. And we found that naringenin markedly decreased the TGF-ß level by inhibiting the activation of platelet. CONCLUSION: Our study showed that naringenin has a protective effect on thoracic aortic aneurysm formation in Marfan syndrome by suppressing both AT1 and TGF-ß signaling.


Assuntos
Aneurisma da Aorta Torácica , Síndrome de Marfan , Angiotensina II/metabolismo , Animais , Aneurisma da Aorta Torácica/etiologia , Aneurisma da Aorta Torácica/prevenção & controle , Cálcio/metabolismo , Modelos Animais de Doenças , Elastina/metabolismo , Fibrilina-1/metabolismo , Flavanonas , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase C/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/metabolismo , beta-Arrestinas/metabolismo
13.
Circ Res ; 123(6): 660-672, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30355232

RESUMO

RATIONALE: Abnormal mechanosensing of smooth muscle cells (SMCs) resulting from the defective elastin-contractile units has been suggested to drive the formation of thoracic aortic aneurysms; however, the precise molecular mechanism has not been elucidated. OBJECTIVE: The aim of this study was to identify the crucial mediator(s) involved in abnormal mechanosensing and propagation of biochemical signals during the aneurysm formation and to establish a basis for a novel therapeutic strategy. METHODS AND RESULTS: We used a mouse model of postnatal ascending aortic aneurysms ( Fbln4SMKO; termed SMKO [SMC-specific knockout]), in which deletion of Fbln4 (fibulin-4) leads to disruption of the elastin-contractile units caused by a loss of elastic lamina-SMC connections. In this mouse, upregulation of Egr1 (early growth response 1) and angiotensin-converting enzyme leads to activation of Ang II (angiotensin II) signaling. Here, we showed that the matricellular protein, Thbs1 (thrombospondin-1), was highly upregulated in SMKO ascending aortas and in human thoracic aortic aneurysms. Thbs1 was induced by mechanical stretch and Ang II in SMCs, for which Egr1 was required, and reduction of Fbln4 sensitized the cells to these stimuli and led to higher expression of Egr1 and Thbs1. Deletion of Thbs1 in SMKO mice prevented the aneurysm formation in ≈80% of DKO (SMKO;Thbs1 knockout) animals and suppressed Ssh1 (slingshot-1) and cofilin dephosphorylation, leading to the formation of normal actin filaments. Furthermore, elastic lamina-SMC connections were restored in DKO aortas, and mechanical testing showed that structural and material properties of DKO aortas were markedly improved. CONCLUSIONS: Thbs1 is a critical component of mechanotransduction, as well as a modulator of elastic fiber organization. Maladaptive upregulation of Thbs1 results in disruption of elastin-contractile units and dysregulation of actin cytoskeletal remodeling, contributing to the development of ascending aortic aneurysms in vivo. Thbs1 may serve as a potential therapeutic target for treating thoracic aortic aneurysms.


Assuntos
Aneurisma da Aorta Torácica/metabolismo , Mecanotransdução Celular , Músculo Liso Vascular/metabolismo , Trombospondina 1/metabolismo , Remodelação Vascular , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/prevenção & controle , Células Cultivadas , Cofilina 2/metabolismo , Dilatação Patológica , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Tecido Elástico/metabolismo , Tecido Elástico/patologia , Elastina/metabolismo , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Pressorreceptores/metabolismo , Ratos , Estresse Mecânico , Trombospondina 1/deficiência , Trombospondina 1/genética
14.
J Pineal Res ; 69(1): e12661, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32329099

RESUMO

Melatonin functions as an endogenous protective molecule in multiple vascular diseases, whereas its effects on thoracic aortic aneurysm and dissection (TAAD) and underlying mechanisms have not been reported. In this study, TAAD mouse model was successfully induced by ß-aminopropionitrile fumarate (BAPN). We found that melatonin treatment remarkably prevented the deterioration of TAAD, evidenced by decreased incidence, ameliorated aneurysmal dilation and vascular stiffness, improved aortic morphology, and inhibited elastin degradation, macrophage infiltration, and matrix metalloproteinase expression. Moreover, melatonin blunted oxidative stress damage and vascular smooth muscle cell (VSMC) loss. Notably, BAPN induced a decrease in SIRT1 expression and activity of mouse aorta, whereas melatonin treatment reversed it. Further mechanistic study demonstrated that blocking SIRT1 signaling partially inhibited these beneficial effects of melatonin on TAAD. Additionally, the melatonin receptor was involved in this phenomenon. Our study is the first to report that melatonin exerts therapeutic effects against TAAD by reducing oxidative stress and VSMC loss via activation of SIRT1 signaling in a receptor-dependent manner, thus suggesting a novel therapeutic strategy for TAAD.


Assuntos
Aneurisma da Aorta Torácica/prevenção & controle , Dissecção Aórtica/prevenção & controle , Melatonina/farmacologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/metabolismo , Dissecção Aórtica/enzimologia , Dissecção Aórtica/patologia , Animais , Aneurisma da Aorta Torácica/enzimologia , Aneurisma da Aorta Torácica/patologia , Camundongos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia
15.
Circ J ; 84(5): 825-829, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32238693

RESUMO

BACKGROUND: Angiotensin (Ang)I is cleaved by angiotensin-converting enzyme (ACE) to generate AngII. The purpose of this study was to determine the roles of ACE in endothelial and smooth muscle cells in aortic aneurysms.Methods and Results:AngI infusion led to thoracic and abdominal aortic aneurysms in low-density lipoprotein receptor-deficient mice, which were ablated by ACE inhibition. Endothelial or smooth muscle cell-specific ACE deletion resulted in reduction of AngI-induced thoracic, but not abdominal, aortic dilatation. CONCLUSIONS: AngI infusion causes thoracic and abdominal aortic aneurysms in mice. ACE in aortic resident cells has differential effects on AngI-induced thoracic and abdominal aortic aneurysms.


Assuntos
Angiotensina I , Aorta Abdominal/enzimologia , Aorta Torácica/enzimologia , Aneurisma da Aorta Abdominal/enzimologia , Aneurisma da Aorta Torácica/enzimologia , Peptidil Dipeptidase A/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/patologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/prevenção & controle , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/prevenção & controle , Dilatação Patológica , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Camundongos Knockout , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Peptidil Dipeptidase A/deficiência , Peptidil Dipeptidase A/genética , Receptores de LDL/deficiência , Receptores de LDL/genética
16.
Cardiovasc Drugs Ther ; 34(5): 641-650, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32564302

RESUMO

PURPOSE: Advancing age is the major risk factor for thoracic aortic aneurysm/dissection (TAAD). However, the causative link between age-related molecules and TAAD remains elusive. Here, we investigated the role of Sirtuin 1 (SIRT1, also known as class III histone deacetylase), the best studied member of the longevity-related Sirtuin family, in TAAD development in vivo. METHODS: We used male smooth muscle-specific SIRT1 transgenic (ST-Tg) mice, smooth muscle-specific SIRT1 knockout (ST-KO) mice, and their wild-type (WT) littermates on a C57BL/6J background to establish a TAAD model induced by oral administration of 3-aminopropionitrile fumarate (BAPN). We analyzed the incidence and fatality rates of TAAD in the groups. We examined matrix metallopeptidase 2 (MMP2) and MMP9 expression in aortas or cultured A7r5 cells via western blotting and real-time polymerase chain reaction (PCR). We performed chromatin immunoprecipitation (ChIP) to clarify the epigenetic mechanism of SIRT1-regulated MMP2 expression in vascular smooth muscle cells (VSMCs). RESULTS: BAPN treatment markedly increased the incidence of TAAD in WT mice but caused less disease in ST-Tg mice. Moreover, ST-KO mice had the highest BAPN-induced TAAD fatality rate of all the groups. Mechanistically, SIRT1 overexpression resulted in lower MMP2 and MMP9 expression after BAPN treatment in both mouse aortas and cultured A7r5 cells. The downregulation of BAPN-induced MMP2 expression by SIRT1 was mediated by deacetylation of histone H3 lysine 9 (H3K9) on the Mmp2 promoter in the A7r5 cells. CONCLUSION: Our findings suggest that SIRT1 expression in SMCs protects against TAAD and could be a novel therapeutic target for TAAD management.


Assuntos
Aneurisma da Aorta Torácica/prevenção & controle , Dissecção Aórtica/prevenção & controle , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Sirtuína 1/metabolismo , Acetilação , Dissecção Aórtica/enzimologia , Dissecção Aórtica/genética , Dissecção Aórtica/patologia , Animais , Aorta Torácica/enzimologia , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/enzimologia , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Linhagem Celular , Modelos Animais de Doenças , Histonas/metabolismo , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Transdução de Sinais , Sirtuína 1/genética
17.
Circulation ; 138(21): 2413-2433, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29921611

RESUMO

BACKGROUND: Thoracic aortic aneurysm (TAA) and dissection are fatal diseases that cause aortic rupture and sudden death. The small GTP-binding protein GDP dissociation stimulator (SmgGDS) is a crucial mediator of the pleiotropic effects of statins. Previous studies revealed that reduced force generation in aortic smooth muscle cells (AoSMCs) causes TAA and thoracic aortic dissection. METHODS: To examine the role of SmgGDS in TAA formation, we used an angiotensin II (1000 ng·min-1·kg-1, 4 weeks)-induced TAA model. RESULTS: We found that 33% of Apoe-/- SmgGDS+/- mice died suddenly as a result of TAA rupture, whereas there was no TAA rupture in Apoe-/- control mice. In contrast, there was no significant difference in the ratio of abdominal aortic aneurysm rupture between the 2 genotypes. We performed ultrasound imaging every week to follow up the serial changes in aortic diameters. The diameter of the ascending aorta progressively increased in Apoe-/- SmgGDS+/- mice compared with Apoe-/- mice, whereas that of the abdominal aorta remained comparable between the 2 genotypes. Histological analysis of Apoe-/- SmgGDS+/- mice showed dissections of major thoracic aorta in the early phase of angiotensin II infusion (day 3 to 5) and more severe elastin degradation compared with Apoe-/- mice. Mechanistically, Apoe-/- SmgGDS+/- mice showed significantly higher levels of oxidative stress, matrix metalloproteinases, and inflammatory cell migration in the ascending aorta compared with Apoe-/- mice. For mechanistic analyses, we primary cultured AoSMCs from the 2 genotypes. After angiotensin II (100 nmol/L) treatment for 24 hours, Apoe-/- SmgGDS+/- AoSMCs showed significantly increased matrix metalloproteinase activity and oxidative stress levels compared with Apoe-/- AoSMCs. In addition, SmgGDS deficiency increased cytokines/chemokines and growth factors in AoSMCs. Moreover, expressions of fibrillin-1 ( FBN1), α-smooth muscle actin ( ACTA2), myosin-11 ( MYH11), MYLLK, and PRKG1, which are force generation genes, were significantly reduced in Apoe-/- SmgGDS+/- AoSMCs compared with Apoe-/- AoSMCs. A similar tendency was noted in AoSMCs from patients with TAA compared with those from control subjects. Finally, local delivery of the SmgGDS gene construct reversed the dilation of the ascending aorta in Apoe-/- SmgGDS+/- mice. CONCLUSIONS: These results suggest that SmgGDS is a novel therapeutic target for the prevention and treatment of TAA.


Assuntos
Aorta/metabolismo , Aneurisma da Aorta Torácica/patologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Actinas/genética , Actinas/metabolismo , Angiotensina II/administração & dosagem , Angiotensina II/efeitos adversos , Animais , Aorta/citologia , Aorta/patologia , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/prevenção & controle , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína rhoA de Ligação ao GTP/genética
18.
Annu Rev Med ; 68: 51-67, 2017 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-28099082

RESUMO

Thoracic aortic diseases, including aneurysms and dissections of the thoracic aorta, are a major cause of morbidity and mortality. Risk factors for thoracic aortic disease include increased hemodynamic forces on the ascending aorta, typically due to poorly controlled hypertension, and heritable genetic variants. The altered genes predisposing to thoracic aortic disease either disrupt smooth muscle cell (SMC) contraction or adherence to an impaired extracellular matrix, or decrease canonical transforming growth factor beta (TGF-ß) signaling. Paradoxically, TGF-ß hyperactivity has been postulated to be the primary driver for the disease. More recently, it has been proposed that the response of aortic SMCs to the hemodynamic load on a structurally defective aorta is the primary driver of thoracic aortic disease, and that TGF-ß overactivity in diseased aortas is a secondary, unproductive response to restore tissue function. The engineering of mouse models of inherited aortopathies has identified potential therapeutic agents to prevent thoracic aortic disease.


Assuntos
Angiotensina II/metabolismo , Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/genética , Síndrome de Marfan/terapia , Fator de Crescimento Transformador beta/metabolismo , Dissecção Aórtica/metabolismo , Dissecção Aórtica/prevenção & controle , Animais , Anti-Hipertensivos/uso terapêutico , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/prevenção & controle , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Losartan/uso terapêutico , Síndrome de Marfan/genética , Mecanorreceptores , Camundongos , Músculo Liso Vascular/fisiopatologia , Transdução de Sinais
19.
J Vasc Surg ; 69(3): 921-932.e3, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30253896

RESUMO

OBJECTIVE: The purpose of this study was to investigate whether rapamycin inhibits the development of thoracic aortic aneurysm and dissection (TAAD) in mice. METHODS: Three-week-old C57BL/6J male mice were fed a normal diet and randomized into a control group (n = 6), ß-aminopropionitrile fumarate (BAPN) group (Gp A; n = 15), BAPN plus rapamycin (5 mg) group (Gp B; n = 8), and BAPN plus rapamycin (10 mg) group (Gp C; n = 8). Gp A, Gp B, and Gp C were administered BAPN (1 g/kg/d) for 4 weeks. One week after BAPN administration, Gp B and Gp C were treated with rapamycin (5 mg/kg/d or 10 mg/kg/d) through gavage for 21 days. Thoracic aortas were harvested for Western blot and immunofluorescence staining at day 14 and for morphologic and histologic analyses at day 28. RESULTS: BAPN treatment induced TAAD formation in mice. The incidence of TAAD in control, Gp A, Gp B, and Gp C mice was 0%, 80%, 25%, and 37.5%, respectively. Smaller thoracic aortic diameters (ascending aorta and arch) were observed in Gp B and Gp C mice than in Gp A mice (Gp B vs Gp A: ascending aorta, ex vivo, 1.07 ± 0.21 mm vs 1.80 ± 0.67 mm [P < .05]; aortic arch, ex vivo, 1.51 ± 0.40 mm vs 2.70 ± 1.06 mm [P < .05]; Gp C vs Gp A: ascending aortas, ex vivo, 1.10 ± 0.33 mm vs 1.80 ± 0.67 mm [P < .05]; aortic arch, ex vivo, 1.55 ± 0.56 mm vs 2.70 ± 1.06 mm [P < .05]). TAAD mice exhibited elastin fragmentation, abundant inflammatory cell infiltration, and significantly increased matrix metalloproteinase production in the aorta, and rapamycin treatment alleviated these changes. The protein levels of p-S6K and p-S6 in TAAD aortic tissues increased significantly, whereas they were suppressed by rapamycin. CONCLUSIONS: Rapamycin suppressed TAAD formation, probably by inhibition of mechanistic target of rapamycin signaling and reduction of inflammatory cell infiltration and matrix metalloproteinase 9 production. Targeting of the mechanistic target of rapamycin signaling pathway using rapamycin may be a favorable modulation for the clinical treatment of TAAD.


Assuntos
Anti-Inflamatórios/farmacologia , Aorta Torácica/efeitos dos fármacos , Aneurisma da Aorta Torácica/prevenção & controle , Dissecção Aórtica/prevenção & controle , Inibidores de Proteínas Quinases/farmacologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Remodelação Vascular/efeitos dos fármacos , Aminopropionitrilo , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/enzimologia , Dissecção Aórtica/patologia , Animais , Aorta Torácica/enzimologia , Aorta Torácica/patologia , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/enzimologia , Aneurisma da Aorta Torácica/patologia , Dilatação Patológica , Modelos Animais de Doenças , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
20.
Circ Res ; 121(5): 512-524, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28701309

RESUMO

RATIONALE: Thoracic aortic aneurysm (TAA) is a potentially lethal condition, which can affect individuals of all ages. TAA may be complicated by the sudden onset of life-threatening dissection or rupture. The underlying mechanisms leading to TAA formation, particularly in the nonsyndromal idiopathic group of patients, are not well understood. Thus, identification of new genes and targets that are involved in TAA pathogenesis are required to help prevent and reverse the disease phenotype. OBJECTIVE: Here we explore the role of ARHGAP18, a novel Rho GAP expressed by smooth muscle cells (SMCs), in the pathogenesis of TAA. METHODS AND RESULTS: Using human and mouse aortic samples, we report that ARHGAP18 levels were significantly reduced in the SMC layer of aortic aneurysms. Arhgap18 global knockout (Arhgap18-/-) mice exhibited a highly synthetic, proteolytic, and proinflammatory smooth muscle phenotype under basal conditions and when challenged with angiotensin II, developed TAA with increased frequency and severity compared with littermate controls. Chromatin immunoprecipitation studies revealed this phenotype is partly associated with strong enrichment of H3K4me3 and depletion of H3K27me3 at the MMP2 and TNF-α promoters in Arhgap18-deficient SMC. We further show that TAA formation in the Arhgap18-/- mice is associated with loss of Akt activation. The abnormal SMC phenotype observed in the Arhgap18-/- mice can be partially rescued by pharmacological treatment with the mTORC1 inhibitor rapamycin, which reduces the synthetic and proinflammatory phenotype of Arhgap18-deficient SMC. CONCLUSION: We have identified ARHGAP18 as a novel protective gene against TAA formation and define an additional target for the future development of treatments to limit TAA pathogenesis.


Assuntos
Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/prevenção & controle , Proteínas Ativadoras de GTPase/deficiência , Mediadores da Inflamação/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Aneurisma da Aorta Torácica/genética , Proteínas Ativadoras de GTPase/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA