Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Bull Environ Contam Toxicol ; 97(6): 870-875, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27738710

RESUMO

The algal growth and physiological characters of Aphanizomenon flos-aquae were studied under the stress of Sagittaria sagittifolia extract. The results showed that the growth of A. flos-aquae was significantly inhibited by S. sagittifolia extract. The exopolysaccharide (EPS), total soluble protein, intracellular phosphorus (o-PO4-P) contents and malondialdehyde (MDA) contents in A. flos-aquae cells increased significantly. These results suggested that A. flos-aquae can adapt to stress by increasing its normal metabolic activity. The algal cellular antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), were triggered to different degrees when exposed to S. sagittifolia extract. The MDA contents and activities of SOD, CAT and POD in algal cells suggested that oxidative damage induced by S. sagittifolia extract via the oxidation of ROS (O2·-) might be an important factor responsible for the inhibition of the growth of A. flos-aquae. In addition, SOD may be an important site for the inhibition of S. sagittifolia extract on A. flos-aquae cells. These results indicate that S. sagittifolia may be a good candidate for controlling A. flos-aquae blooms.


Assuntos
Aphanizomenon/efeitos dos fármacos , Aphanizomenon/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/toxicidade , Sagittaria/toxicidade , Antioxidantes/metabolismo , Aphanizomenon/metabolismo , Catalase/metabolismo , Malondialdeído/metabolismo , Peroxidase/metabolismo , Fósforo/metabolismo , Extratos Vegetais/química , Polissacarídeos/metabolismo , Proteínas/metabolismo , Sagittaria/química , Superóxido Dismutase/metabolismo
2.
Microbiology (Reading) ; 161(7): 1485-95, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25934646

RESUMO

Cells of filamentous cyanobacteria of the orders Nostocales and Stigonematales can differentiate into dormant forms called akinetes. Akinetes play a key role in the survival, abundance and distribution of the species, contributing an inoculum for their perennial blooms. In the cyanobacterium Aphanizomenon ovalisporum, potassium deficiency triggers the formation of akinetes. Here we present experimental evidence for the production of reactive oxygen species (ROS) during akinete development in response to potassium deficiency. The function of ROS as a primer signal for akinete differentiation was negated. Nevertheless, akinetes acquired protective mechanisms against oxidative damage during their differentiation and maintained them as they matured, giving akinetes advantages enabling survival in harsh conditions.


Assuntos
Aphanizomenon/crescimento & desenvolvimento , Aphanizomenon/fisiologia , Viabilidade Microbiana , Estresse Oxidativo , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/fisiologia , Estresse Fisiológico , Aphanizomenon/metabolismo , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Esporos Bacterianos/metabolismo
3.
Ecotoxicology ; 24(2): 468-77, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25471354

RESUMO

In this study, the effects of cadmium on the cyanobacterium Aphanizomenon flos-aquae, the green alga Pediastrum simplex and the diatom Synedra acus was evaluated on the basis of growth rate, chlorophyll a fluorescence, lipid peroxidation and antioxidant enzyme activity. The EC50 values (effective concentration inducing 50 % of growth inhibition) of cadmium in A. flos-aquae, P. simplex and S. acus were 1.18 ± 0.044, 4.32 ± 0.068 and 3.7 ± 0.055 mg/L, respectively. The results suggested that cadmium stress decreases growth rate and chlorophyll a concentration. The normalized chlorophyll a fluorescence transients significantly increased at cadmium concentrations of 5.0, 10.0 and 20.0 mg/L, but slightly decreased at concentrations of 0.2, 0.5 and 1.0 mg/L. The chlorophyll fluorescence parameters showed considerable variation among the three species, while lipid peroxidation and antioxidant enzyme activities showed a significant increase. Our results demonstrated that blockage of electron transport on the acceptor side of photosystem II is the mechanism responsible for cadmium toxicity in freshwater microalgae, and that the tolerance of the three species to cadmium was in the order green alga P. simplex > diatom S. acus > cyanobacterium A. flos-aquae.


Assuntos
Aphanizomenon/efeitos dos fármacos , Cádmio/toxicidade , Clorófitas/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Aphanizomenon/enzimologia , Aphanizomenon/crescimento & desenvolvimento , Aphanizomenon/metabolismo , Clorofila/química , Clorofila A , Clorófitas/enzimologia , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Diatomáceas/enzimologia , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Fluorescência , Peroxidação de Lipídeos/efeitos dos fármacos
4.
FEMS Microbiol Ecol ; 100(10)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39227168

RESUMO

Untargeted genetic approaches can be used to explore the high metabolic versatility of cyanobacteria. In this context, a comprehensive metagenomic shotgun analysis was performed on a population of Dolichospermum lemmermannii collected during a surface bloom in Lake Garda in the summer of 2020. Using a phylogenomic approach, the almost complete metagenome-assembled genome obtained from the analysis allowed to clarify the taxonomic position of the species within the genus Dolichospermum and contributed to frame the taxonomy of this genus within the ADA group (Anabaena/Dolichospermum/Aphanizomenon). In addition to common functional traits represented in the central metabolism of photosynthetic cyanobacteria, the genome annotation uncovered some distinctive and adaptive traits that helped define the factors that promote and maintain bloom-forming heterocytous nitrogen-fixing Nostocales in oligotrophic lakes. In addition, genetic clusters were identified that potentially encode several secondary metabolites that were previously unknown in the populations evolving in the southern Alpine Lake district. These included geosmin, anabaenopetins, and other bioactive compounds. The results expanded the knowledge of the distinctive competitive traits that drive algal blooms and provided guidance for more targeted analyses of cyanobacterial metabolites with implications for human health and water resource use.


Assuntos
Lagos , Metagenoma , Metagenômica , Filogenia , Lagos/microbiologia , Eutrofização , Cianobactérias/genética , Cianobactérias/classificação , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Aphanizomenon/genética , Aphanizomenon/crescimento & desenvolvimento , Aphanizomenon/metabolismo
5.
Microb Ecol ; 65(1): 12-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22915156

RESUMO

Aphanizomenon ovalisporum is a planktonic nostocalean cyanobacterium with increasing research interest due to its ability to produce the potent cytotoxin cylindrospermopsin and its potential invasiveness under the global warming scenario. The present study provides novel data on the potential dispersal strategies of A. ovalisporum by analyzing the influence of temperature (10-40 °C) on akinete differentiation and cell morphometry in cultures of A. ovalisporum UAM 290 isolated from a Spanish pond. Our results confirmed a temperature-dependent akinete differentiation, with the maximum akinete production reached at 20 °C (15 % of the cells), a low basal production at 25-30 °C (<0.4 % of the cells) and no detectable production at 35 °C. Furthermore, we reported the fragmentation of A. ovalisporum filaments at temperatures of 25 °C and above. Additionally, we observed that the morphology of vegetative cells varied under different temperature scenarios. Indeed, a strong negative correlation was found between temperature and the width, length and biovolume of vegetative cells, whereas akinete dimensions remained stable along the temperature gradient. Therefore, linear regressions between temperature and the cell size parameters are herein presented aiming to facilitate the identification of A. ovalisporum in the field throughout the course of the year. This is the first study evidencing that akinete production is triggered by temperatures between 20 and 25 °C in A. ovalisporum and reporting the existence of filament fragmentation as a potential dispersal strategy of this species. The importance of these findings for understanding the annual life cycle and invasive potential of A. ovalisporum is further discussed herein.


Assuntos
Aphanizomenon/fisiologia , Lagoas/microbiologia , Temperatura , Aphanizomenon/citologia , Aphanizomenon/crescimento & desenvolvimento , Modelos Lineares , Estações do Ano
6.
Environ Technol ; 34(17-20): 2477-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24527608

RESUMO

We report on the effectiveness of sonication on controlling the growth of four problematic algal species which are morphologically different and from three algal divisions. Two cyanobacterial species Microcystis aeruginosa (unicellular) and Aphanizomenon flos-aquae (filamentous), one green alga Scenedesmus subspicatus (colonial) and lastly a diatom species Melosira sp. (filamentous) were subjected to ultrasound of selected low to high frequencies ranging from 20 to 1144 kHz. Microcystis aeruginosa and Scenedesmus subspicatus highest cell removal rates were 16 +/- 2% and 20 +/- 3% when treated with the same ultrasound frequency of 862 kHz but differing energy levels of 133 and 67 kWh m(-3), respectively. Aphanizomenon flos-aquae best removal rate was 99 +/- 1% after 862 kHz and 133 kWh m(-3) of energy, with Melosira sp. achieving its highest cell removal at 83% subsequent to ultrasound of 20 kHz and 19 kWh m(-3). Microcystis aeruginosa and Scenedesmus subspicatus are considered non-susceptible species to ultrasound treatment from a water treatment perspective due to their low cell removal rates; however, photosynthetic activity reduction of 65% for Microcystis aeruginosa does indicate the possible utilization of ultrasound to control bloom growth, rather than bloom elimination. Conversely, Aphanizomenon flos-aquae and Melosira sp. are deemed species highly susceptible to ultrasound. Morphological differences in shape (filamentous/non-filamentous) and cell wall structure (silica/peptidoglycan), and presence of gas vacuoles are probable reasons for these differing levels of susceptibility to ultrasound.


Assuntos
Aphanizomenon/citologia , Diatomáceas/citologia , Microcystis/citologia , Scenedesmus/citologia , Sonicação/métodos , Aphanizomenon/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Eutrofização , Água Doce/microbiologia , Microcystis/crescimento & desenvolvimento , Scenedesmus/crescimento & desenvolvimento
7.
Microb Ecol ; 63(4): 736-50, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22057471

RESUMO

The cyanobacterial blooms in the Baltic Sea are dominated by diazotrophic cyanobacteria, the potentially toxic species Aphanizomenon sp. and the toxic species Nodularia spumigena. The seasonal succession with peaks of Aphanizomenon sp., followed by peaks of N. spumigena, has been explained by the species-specific niches of the two species. In a three-factorial outdoor experiment, we tested if nutrient and radiation conditions may impact physiological and biochemical responses of N. spumigena and Aphanizomenon sp. in the presence or absence of the other species. The two nutrient treatments were f/2 medium without NO (3) (-) (-N) and f/2 medium without PO (4) (3-) (-P), and the two ambient radiation treatments were photosynthetic active radiation >395 nm (PAR) and PAR + UV-A + UV-B >295 nm. The study showed that Aphanizomenon sp. was not negatively affected by the presence of N. spumigena and that N. spumigena was better adapted to both N and P limitation in interaction with ultraviolet radiation (UVR, 280-400 nm). In the Baltic Sea, these physical conditions are likely to prevail in the surface water during summer. Interestingly, the specific growth rate of N. spumigena was stimulated by the presence of Aphanizomenon sp. We suggest that the seasonal succession, with peaks of Aphanizomenon sp. followed by peaks of N. spumigena, is a result from species-specific preferences of environmental conditions and/or stimulation by Aphanizomenon sp. rather than an allelopathic effect of N. spumigena. The results from our study, together with a predicted stronger stratification due to effects of climate change in the Baltic Sea with increased temperature and increased precipitation and increased UV-B due to ozone losses, reflect a scenario with a continuing future dominance of the toxic N. spumigena.


Assuntos
Aphanizomenon , Nitratos/metabolismo , Fixação de Nitrogênio , Nodularia , Fosfatos/metabolismo , Água do Mar/microbiologia , Aphanizomenon/crescimento & desenvolvimento , Aphanizomenon/metabolismo , Aphanizomenon/efeitos da radiação , Países Bálticos , Cianobactérias/classificação , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Nitratos/farmacologia , Nodularia/crescimento & desenvolvimento , Nodularia/metabolismo , Nodularia/efeitos da radiação , Oceanos e Mares , Fosfatos/farmacologia , Fotossíntese , Estações do Ano , Especificidade da Espécie , Raios Ultravioleta
8.
J Environ Monit ; 13(6): 1761-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21552584

RESUMO

The ability of general regression neural networks (GRNN) to forecast the density of cyanobacteria in the Torrão reservoir (Tâmega river, Portugal), in a period of 15 days, based on three years of collected physical and chemical data, was assessed. Several models were developed and 176 were selected based on their correlation values for the verification series. A time lag of 11 was used, equivalent to one sample (periods of 15 days in the summer and 30 days in the winter). Several combinations of the series were used. Input and output data collected from three depths of the reservoir were applied (surface, euphotic zone limit and bottom). The model that presented a higher average correlation value presented the correlations 0.991; 0.843; 0.978 for training, verification and test series. This model had the three series independent in time: first test series, then verification series and, finally, training series. Only six input variables were considered significant to the performance of this model: ammonia, phosphates, dissolved oxygen, water temperature, pH and water evaporation, physical and chemical parameters referring to the three depths of the reservoir. These variables are common to the next four best models produced and, although these included other input variables, their performance was not better than the selected best model.


Assuntos
Contagem de Colônia Microbiana/métodos , Cianobactérias/crescimento & desenvolvimento , Redes Neurais de Computação , Microbiologia da Água , Poluição da Água/estatística & dados numéricos , Abastecimento de Água/estatística & dados numéricos , Aphanizomenon/crescimento & desenvolvimento , Aphanizomenon/isolamento & purificação , Cianobactérias/isolamento & purificação , Eutrofização , Água Doce/química , Água Doce/microbiologia , Microcystis/crescimento & desenvolvimento , Microcystis/isolamento & purificação
9.
Toxins (Basel) ; 13(8)2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34437460

RESUMO

Macroalgae can directly restrict the growth of various phytoplankton species by releasing allelopathic compounds; therefore, considerable attention should be paid to the allelopathic potential of these organisms against harmful and bloom-forming cyanobacteria. The main aim of this study was to demonstrate for the first time the allelopathic activity of Ulva intestinalis on the growth, the fluorescence parameters: the maximum PSII quantum efficiency (Fv/Fm) and the effective quantum yield of PSII photochemistry (ΦPSII), the chlorophyll a (Chl a) and carotenoid (Car) content, and the microcystin-LR (MC-LR) and phenol content of three bloom-forming cyanobacteria, Aphanizomenon sp., Nodularia spumigena, and Nostoc sp. We found both negative and positive allelopathic effects of U. intestinalis on tested cyanobacteria. The study clearly showed that the addition of the filtrate of U. intestinalis significantly inhibited growth, decreased pigment content and Fv/Fm and ΦPSII values of N. spumigena and Nostoc sp., and stimulated Aphanizomenon sp. The addition of different concentrations of aqueous extract also stimulated the cyanobacterial growth. It was also shown that the addition of extract obtained from U. intestinalis caused a significant decrease in the MC-LR content in Nostoc sp. cells. Moreover, it the phenol content in N. spumigena cells was increased. On the other hand, the cell-specific phenol content for Aphanizomenon sp. decreased due to the addition of the filtrate. In this work, we demonstrated that the allelopathic effect of U. intestinalis depends on the target species' identity as well as the type of allelopathic method used. The study of the allelopathic Baltic macroalgae may help to identify their possible role as a significant biological factor influencing harmful cyanobacterial blooms in brackish ecosystems.


Assuntos
Aphanizomenon/crescimento & desenvolvimento , Cianobactérias/efeitos dos fármacos , Cianobactérias/crescimento & desenvolvimento , Nodularia/crescimento & desenvolvimento , Nostoc/crescimento & desenvolvimento , Feromônios/toxicidade , Fotossíntese/efeitos dos fármacos , Aphanizomenon/efeitos dos fármacos , Nodularia/efeitos dos fármacos , Nostoc/efeitos dos fármacos , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/crescimento & desenvolvimento , Pigmentos Biológicos , Alga Marinha/química , Ulva/química
10.
J Agric Food Chem ; 68(7): 1896-1909, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31589437

RESUMO

Cyanobacteria are photosynthetic microorganisms that are considered as an important source of bioactive metabolites, among which phycobiliproteins (PBPs) are a class of water-soluble macromolecules of cyanobacteria with a wide range of applications. Massive proliferation of cyanobacteria can lead to excessive surface water blooms, of which removal, as a management measure, should be prioritized. In this study, the utilization of wild cyanobacteria biomass (Aphanizomenon flos-aquae) for extraction of phycobiliproteins is reported. Extraction of phycobiliproteins by conventional methods, such as homogenization, freeze-thaw cycles, and solid-liquid extraction, were optimized prior to ultrasound-assisted extraction. Standardization of ultrasonication for different parameters, such as ultrasonication amplitude (38, 114, and 190 µm) and ultrasonication time (1, 5.5, and 10 min), was carried out using a central composite design and response surface methodology for each of the primary techniques. A substantial increase on the individual and total phycobiliprotein yields was observed after ultrasonic treatment. The highest total PBP yield (115.37 mg/g of dry weight) was observed with samples treated with a homogenizer (30 min, 30 °C, and 1 cycle) combined with ultrasound treatment (8.7 min at 179 µm). Moreover, in vitro antioxidant capacity was observed for the obtained extracts in the Folin-Ciocalteu and ABTS* + assays. In addition, a cytotoxic effect against C6 glioma cells was observed for A. flos-aquae PBPs. Conclusively, wild cyanobacteria could be considered as an alternative feedstock for recovery of PBPs.


Assuntos
Aphanizomenon/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Ficobiliproteínas/isolamento & purificação , Ficobiliproteínas/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Aphanizomenon/crescimento & desenvolvimento , Proteínas de Bactérias/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ficobiliproteínas/química , Ultrassom
11.
Toxins (Basel) ; 12(6)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560354

RESUMO

Toxicity of cyanobacteria is the subject of ongoing research, and a number of toxic metabolites have been described, their biosynthesis pathways have been elucidated, and the mechanism of their action has been established. However, several knowledge gaps still exist, e.g., some strains produce hitherto unknown toxic compounds, while the exact dynamics of exerted toxicity during cyanobacterial growth still requires further exploration. Therefore, the present study investigated the toxicity of extracts of nine freshwater strains of Aphanizomenon gracile, an Aphanizomenon sp. strain isolated from the Baltic Sea, a freshwater strain of Planktothrix agardhii, and two strains of Raphidiopsis raciborskii obtained from 25- and 70-day-old cultures. An in vitro experimental model based on Cyprinus carpio hepatocytes (oxidative stress markers, DNA fragmentation, and serine/threonine protein activity) and brain homogenate (cholinesterase activity) was employed. The studied extracts demonstrated toxicity to fish cells, and in general, all examined extracts altered at least one or more of considered parameters, indicating that they possess, to some degree, toxic potency. Although the time from which the extracts were obtained had a significant importance for the response of fish cells, we observed strong variability between the different strains and species. In some strains, extracts that originated from 25-day-old cultures triggered more harmful effects on fish cells compared to those obtained from 70-day-old cultures, whereas in other strains, we observed the opposite effect or a lack of a significant change. Our study revealed that there was no clear or common pattern regarding the degree of cyanobacterial bloom toxicity at a given stage of development. This means that young cyanobacterial blooms that are just forming can pose an equally toxic threat to aquatic vertebrates and ecosystem functioning as those that are stable or old with a tendency to collapse. This might be largely due to a high variability of strains in the bloom.


Assuntos
Aphanizomenon/metabolismo , Toxinas Bacterianas/toxicidade , Encéfalo/efeitos dos fármacos , Cylindrospermopsis/metabolismo , Hepatócitos/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Animais , Aphanizomenon/crescimento & desenvolvimento , Toxinas Bacterianas/metabolismo , Encéfalo/enzimologia , Carpas , Cylindrospermopsis/crescimento & desenvolvimento , Dano ao DNA , Água Doce/microbiologia , Proliferação Nociva de Algas , Hepatócitos/metabolismo , Hepatócitos/patologia , Toxinas Marinhas/metabolismo , Estresse Oxidativo , Planktothrix/crescimento & desenvolvimento , Planktothrix/metabolismo , Microbiologia da Água
12.
Curr Microbiol ; 59(2): 107-12, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19365689

RESUMO

Evident effect of an algicidal bacterium Pseudomonas mendocina on the growth and antioxidant system of Aphanizomenon flos-aquae was detected in this experiment. Seven parameters including the chlorophyll a contents, Fv/Fm values, reactive oxygen species (ROS), malonaldehyde (MDA), catalase (CAT), peroxide dismutase (POD), and superoxide dismutase (SOD) were tested in the cyanobacterium A. flos-aquae cells after inoculation with the algicidal bacterium Pseudomonas mendocina DC10. It was shown from the experiment that the growth of the treated cyanobacterium A. flos-aquae was significantly restrained, which was expressed as great reductions in the chlorophyll a contents and Fv/Fm values. At the same time, the treated cyanobacterial cells exhibited an obvious increase in the production of ROS and MDA compared with the control. CAT and POD activities in the treated group kept at high level, however, they both reduced significantly on day 6. SOD activities in the treated A. flos-aquae showed obvious declines after inoculation, and great augmentations on day 3 and 4, thereafter, they kept in a declining tendency. The results showed the oxidative stresses induced by the bacterium could be a killing agent of the cyanobacterium A. flos-aquae cells.


Assuntos
Antibiose , Antioxidantes/metabolismo , Aphanizomenon/crescimento & desenvolvimento , Aphanizomenon/metabolismo , Estresse Oxidativo , Pseudomonas mendocina/fisiologia , Aphanizomenon/química , Catalase/metabolismo , Clorofila/análise , Clorofila A , Malondialdeído/análise , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/análise
13.
ISME J ; 13(11): 2701-2713, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31249392

RESUMO

Dinitrogen (N2) fixation is a major source of external nitrogen (N) to aquatic ecosystems and therefore exerts control over productivity. Studies have shown that N2 -fixers release freshly fixed N into the environment, but the causes for this N release are largely unclear. Here, we show that the availability of phosphate can directly affect the transfer of freshly fixed N to epibionts in filamentous, diazotrophic cyanobacteria. Stable-isotope incubations coupled to single-cell analyses showed that <1% and ~15% of freshly fixed N was transferred to epibionts of Aphanizomenon and Nodularia, respectively, at phosphate scarcity during a summer bloom in the Baltic Sea. When phosphate was added, the transfer of freshly fixed N to epibionts dropped to about half for Nodularia, whereas the release from Aphanizomenon increased slightly. At the same time, the growth rate of Nodularia roughly doubled, indicating that less freshly fixed N was released and was used for biomass production instead. Phosphate scarcity and the resulting release of freshly fixed N could explain the heavy colonization of Nodularia filaments by microorganisms during summer blooms. As such, the availability of phosphate may directly affect the partitioning of fixed N2 in colonies of diazotrophic cyanobacteria and may impact the interactions with their microbiome.


Assuntos
Aphanizomenon/metabolismo , Fixação de Nitrogênio , Nodularia/metabolismo , Fosfatos/metabolismo , Água do Mar/microbiologia , Aphanizomenon/crescimento & desenvolvimento , Países Bálticos , Ecossistema , Eutrofização , Nodularia/crescimento & desenvolvimento , Estações do Ano , Água do Mar/química , Análise de Célula Única
14.
Sci Rep ; 8(1): 17182, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464246

RESUMO

Single-cell measurements of biochemical processes have advanced our understanding of cellular physiology in individual microbes and microbial populations. Due to methodological limitations, little is known about single-cell phosphorus (P) uptake and its importance for microbial growth within mixed field populations. Here, we developed a nanometer-scale secondary ion mass spectrometry (nanoSIMS)-based approach to quantify single-cell P uptake in combination with cellular CO2 and N2 fixation. Applying this approach during a harmful algal bloom (HAB), we found that the toxin-producer Nodularia almost exclusively used phosphate for growth at very low phosphate concentrations in the Baltic Sea. In contrast, the non-toxic Aphanizomenon acquired only 15% of its cellular P-demand from phosphate and ~85% from organic P. When phosphate concentrations were raised, Nodularia thrived indicating that this toxin-producer directly benefits from phosphate inputs. The phosphate availability in the Baltic Sea is projected to rise and therefore might foster more frequent and intense Nodularia blooms with a concomitant rise in the overall toxicity of HABs in the Baltic Sea. With a projected increase in HABs worldwide, the capability to use organic P may be a critical factor that not only determines the microbial community structure, but the overall harmfulness and associated costs of algal blooms.


Assuntos
Aphanizomenon/crescimento & desenvolvimento , Aphanizomenon/metabolismo , Metabolismo , Nodularia/crescimento & desenvolvimento , Nodularia/metabolismo , Fósforo/metabolismo , Água do Mar/microbiologia , Análise de Célula Única/métodos , Espectrometria de Massa de Íon Secundário/métodos
15.
Environ Sci Pollut Res Int ; 24(26): 20934-20948, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28721624

RESUMO

Many freshwater bodies worldwide that suffer from harmful algal blooms would benefit for their management from a simple ecological model that requires few field data, e.g. for early warning systems. Beyond a certain degree, adding processes to ecological models can reduce model predictive capabilities. In this work, we assess whether a simple ecological model without nutrients is able to describe the succession of cyanobacterial blooms of different species in a hypereutrophic reservoir and help understand the factors that determine these blooms. In our study site, Karaoun Reservoir, Lebanon, cyanobacteria Aphanizomenon ovalisporum and Microcystis aeruginosa alternatively bloom. A simple configuration of the model DYRESM-CAEDYM was used; both cyanobacteria were simulated, with constant vertical migration velocity for A. ovalisporum, with vertical migration velocity dependent on light for M. aeruginosa and with growth limited by light and temperature and not by nutrients for both species. The model was calibrated on two successive years with contrasted bloom patterns and high variations in water level. It was able to reproduce the measurements; it showed a good performance for the water level (root-mean-square error (RMSE) lower than 1 m, annual variation of 25 m), water temperature profiles (RMSE of 0.22-1.41 °C, range 13-28 °C) and cyanobacteria biomass (RMSE of 1-57 µg Chl a L-1, range 0-206 µg Chl a L-1). The model also helped understand the succession of blooms in both years. The model results suggest that the higher growth rate of M. aeruginosa during favourable temperature and light conditions allowed it to outgrow A. ovalisporum. Our results show that simple model configurations can be sufficient not only for theoretical works when few major processes can be identified but also for operational applications. This approach could be transposed on other hypereutrophic lakes and reservoirs to describe the competition between dominant phytoplankton species, contribute to early warning systems or be used for management scenarios.


Assuntos
Aphanizomenon/crescimento & desenvolvimento , Proliferação Nociva de Algas , Modelos Biológicos , Abastecimento de Água , Biomassa , Simulação por Computador , Lagos , Líbano , Microcystis/crescimento & desenvolvimento , Fitoplâncton/crescimento & desenvolvimento , Temperatura
16.
Toxins (Basel) ; 9(10)2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29027918

RESUMO

The cyanobacterium Aphanizomenon gracile is the most widely distributed producer of the potent neurotoxin saxitoxin in freshwaters. In this work, total and extracellular saxitoxin and the transcriptional response of three genes linked to saxitoxin biosynthesis (sxtA) and transport (sxtM, sxtPer) were assessed in Aphanizomenon gracile UAM529 cultures under temperatures covering its annual cycle (12 °C, 23 °C, and 30 °C). Temperature influenced saxitoxin production being maximum at high temperatures (30 °C) above the growth optimum (23 °C), concurring with a 4.3-fold increased sxtA expression at 30 °C. Extracellular saxitoxin transport was temperature-dependent, with maxima at extremes of temperature (12 °C with 16.9% extracellular saxitoxin; and especially 30 °C with 53.8%) outside the growth optimum (23 °C), coinciding with a clear upregulation of sxtM at both 12 °C and 30 °C (3.8-4.1 fold respectively), and yet with just a slight upregulation of sxtPer at 30 °C (2.1-fold). Nitrate depletion also induced a high extracellular saxitoxin release (51.2%), although without variations of sxtM and sxtPer transcription, and showing evidence of membrane damage. This is the first study analysing the transcriptional response of sxtPer under environmental gradients, as well as the effect of temperature on putative saxitoxin transporters (sxtM and sxtPer) in cyanobacteria in general.


Assuntos
Aphanizomenon/genética , Aphanizomenon/metabolismo , Saxitoxina/genética , Saxitoxina/metabolismo , Temperatura , Aphanizomenon/crescimento & desenvolvimento , Membrana Celular/metabolismo , Clorofila/metabolismo , Clorofila A , Genes Bacterianos
17.
Toxins (Basel) ; 9(11)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29104251

RESUMO

Arginine (Arg) and glycine (Gly) seem to be the only substrates accepted by the amidinotransferase that catalyze the first step of the synthesis pathway of the cyanotoxin cylindrospermopsin (CYN), leading to guanidinoacetate (GAA). Here, the effect of these amino acids on the production of CYN in cultures of the cylindrospermopsin-producing strain, Aphanizomenon ovalisporum UAM-MAO, has been studied. Arg clearly increased CYN content, the increment appearing triphasic along the culture. On the contrary, Gly caused a decrease of CYN, observable from the first day on. Interestingly, the transcript of the gene ntcA, key in nitrogen metabolism control, was also enhanced in the presence of Arg and/or Gly, the trend of the transcript oscillations being like that of aoa/cyr. The inhibitory effect of Gly in CYN production seems not to result from diminishing the activity of genes considered involved in CYN synthesis, since Gly, as Arg, enhance the transcription of genes aoaA-C and cyrJ. On the other hand, culture growth is affected by Arg and Gly in a similar way to CYN production, with Arg stimulating and Gly impairing it. Taken together, our data show that the influence of both Arg and Gly on CYN changes seems not to be due to a specific effect on the first step of CYN synthesis; it rather appears to be the result of changes in the physiological cell status.


Assuntos
Aphanizomenon/efeitos dos fármacos , Arginina/farmacologia , Toxinas Bacterianas/metabolismo , Glicina/farmacologia , Uracila/análogos & derivados , Alcaloides , Aphanizomenon/genética , Aphanizomenon/crescimento & desenvolvimento , Aphanizomenon/metabolismo , Proteínas de Bactérias/genética , Clorofila/metabolismo , Clorofila A , Toxinas de Cianobactérias , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Uracila/metabolismo
18.
FEMS Microbiol Lett ; 259(2): 303-10, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16734794

RESUMO

The effect of sulfate and phosphate deprivation on cell growth and cylindrospermopsin level was studied in Aphanizomenon ovalisporum ILC-164. Sulfate starvation induced a characteristic reduction of cylindrospermopsin pool size on the basis of cell number and unit of dry mass of culture. Phosphorous starvation of A. ovalisporum cultures induced a lesser reduction of cylindrospermopsin pool size. This divergence in the pool size of cylindrospermopsin may be the consequence of different growth rate. To show the metabolic changes concomitant with reduction of cylindrospermopsin pool size were obtained by measurement of ATP sulfurylase and alkaline phosphatase activity. The present study is the first concerning the cylindrospermopsin content under sulfate starvation and discusses it in relation to phosphorous starvation.


Assuntos
Alcaloides/biossíntese , Aphanizomenon/metabolismo , Toxinas Bacterianas/biossíntese , Uracila/análogos & derivados , Fosfatase Alcalina/metabolismo , Aphanizomenon/crescimento & desenvolvimento , Toxinas de Cianobactérias , Fosfatos/metabolismo , Sulfato Adenililtransferase/metabolismo , Sulfatos/metabolismo , Uracila/biossíntese
19.
FEMS Microbiol Ecol ; 58(3): 323-32, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17117977

RESUMO

Rates of carbon (C) specific growth and nitrogen (N2) fixation were monitored in cultures of Baltic Sea Nodularia and Aphanizomenon exposed to gradual limitation by inorganic phosphorus (P). Both cyanobacteria responded by decreased cellular P content followed by lowered rates of growth and N2 fixation. C-specific growth and cellular N content changed faster in Aphanizomenon both when inorganic P was lowered as well as during reintroduction of P. Aphanizomenon also showed a more rapid increase in N-specific N2 fixation associated with increased C-specific growth. When ambient concentrations of inorganic P declined, both cyanobacteria displayed higher rates of alkaline phosphatase (APase) activity. Lower substrate half-saturation constants (KM) and higher Vmax : KM ratio of the APase enzyme associated with Nodularia suggest a higher affinity for dissolved organic P (DOP) substrate than Aphanizomenon. Aphanizomenon, which appears more sensitive to changes in ambient dissolved inorganic P, may be adapted to environments with elevated concentrations of P or repeated intrusions of nutrient-rich water. Nodularia on the other hand, with its higher tolerance to increased P starvation may have an ecological advantage in stratified surface waters of the Baltic Sea during periods of low P availability.


Assuntos
Aphanizomenon/efeitos dos fármacos , Aphanizomenon/crescimento & desenvolvimento , Nodularia/efeitos dos fármacos , Nodularia/crescimento & desenvolvimento , Fosfatos/fisiologia , Aphanizomenon/metabolismo , Países Bálticos , Fixação de Nitrogênio/fisiologia , Nodularia/metabolismo , Oceanos e Mares , Fosfatos/farmacocinética
20.
Molecules ; 11(7): 539-48, 2006 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-17971725

RESUMO

A novel biosurfactant, 2-acyloxyethylphosphonate, was isolated from waterblooms of Aphanizomenon flos-aquae. Its structure was elucidated by chemical degradation and HRFABMS, GC/EI-MS and 1D- and 2D-NMR spectral analyses. The surfactant contained one mole of 2-hydroxyethylphosphonate and one mole of fatty acid, with hexadecanoic acid accounting for 84.1% of the total fatty acid content. The structure was confirmed by synthesis of 2-oleoyloxyethylphosphonate from ethylene oxide, phosphorus acid and oleic acid chloride. Considering the isolated surfactant molecule as hexadecanoyloxyethylphosphonic acid (mw. 364), the critical micelle concentration (CMC) was about 22 mM.


Assuntos
Aphanizomenon/química , Organofosfonatos/química , Tensoativos/química , Aphanizomenon/crescimento & desenvolvimento , Eutrofização , Ácidos Graxos Insaturados/química , Espectroscopia de Ressonância Magnética , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA