Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Learn Mem ; 31(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38950977

RESUMO

Changes caused by learning that a food is inedible in Aplysia were examined for fast and slow synaptic connections from the buccal ganglia S1 cluster of mechanoafferents to five followers, in response to repeated stimulus trains. Learning affected only fast connections. For these, unique patterns of change were present in each follower, indicating that learning differentially affects the different branches of the mechanoafferents to their followers. In some followers, there were increases in either excitatory or inhibitory connections, and in others, there were decreases. Changes in connectivity resulted from changes in the amplitude of excitation or inhibition, or as a result of the number of connections, or of both. Some followers also exhibited changes in either within or between stimulus train plasticity as a result of learning. In one follower, changes differed from the different areas of the S1 cluster. The patterns of changes in connectivity were consistent with the behavioral changes produced by learning, in that they would produce an increase in the bias to reject or to release food, and a decrease in the likelihood to respond to food.


Assuntos
Aplysia , Gânglios dos Invertebrados , Neurônios Motores , Aplysia/fisiologia , Animais , Neurônios Motores/fisiologia , Gânglios dos Invertebrados/fisiologia , Aprendizagem/fisiologia , Mecanorreceptores/fisiologia , Plasticidade Neuronal/fisiologia , Alimentos , Comportamento Alimentar/fisiologia
2.
Learn Mem ; 31(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38950976

RESUMO

How does repeated stimulation of mechanoafferents affect feeding motor neurons? Monosynaptic connections from a mechanoafferent population in the Aplysia buccal ganglia to five motor followers with different functions were examined during repeated stimulus trains. The mechanoafferents produced both fast and slow synaptic outputs, which could be excitatory or inhibitory. In contrast, other Aplysia mechanoafferents produce only fast excitation on their followers. In addition, patterns of synaptic connections were different to the different motor followers. Some followers received both fast excitation and fast inhibition, whereas others received exclusively fast excitation. All followers showed strong decreases in fast postsynaptic potential (PSP) amplitude within a stimulus train. Fast and slow synaptic connections were of net opposite signs in some followers but not in others. For one follower, synaptic contacts were not uniform from all subareas of the mechanoafferent cluster. Differences in properties of the buccal ganglia mechanoafferents and other Aplysia mechanoafferents may arise because the buccal ganglia neurons innervate the interior of the feeding apparatus, rather than an external surface, and connect to motor neurons for muscles with different motor functions. Fast connection patterns suggest that these synapses may be activated when food slips, biasing the musculature to release food. The largest slow inhibitory synaptic PSPs may contribute to a delay in the onset of the next behavior. Additional functions are also possible.


Assuntos
Aplysia , Comportamento Alimentar , Gânglios dos Invertebrados , Neurônios Motores , Animais , Aplysia/fisiologia , Neurônios Motores/fisiologia , Gânglios dos Invertebrados/fisiologia , Comportamento Alimentar/fisiologia , Mecanorreceptores/fisiologia , Sinapses/fisiologia , Estimulação Física
3.
J Exp Biol ; 227(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38584490

RESUMO

The mechanical forces experienced during movement and the time constants of muscle activation are important determinants of the durations of behaviours, which may both be affected by size-dependent scaling. The mechanics of slow movements in small animals are dominated by elastic forces and are thus quasistatic (i.e. always near mechanical equilibrium). Muscular forces producing movement and elastic forces resisting movement should scale identically (proportional to mass2/3), leaving the scaling of the time constant of muscle activation to play a critical role in determining behavioural duration. We tested this hypothesis by measuring the duration of feeding behaviours in the marine mollusc Aplysia californica whose body sizes spanned three orders of magnitude. The duration of muscle activation was determined by measuring the time it took for muscles to produce maximum force as A. californica attempted to feed on tethered inedible seaweed, which provided an in vivo approximation of an isometric contraction. The timing of muscle activation scaled with mass0.3. The total duration of biting behaviours scaled identically, with mass0.3, indicating a lack of additional mechanical effects. The duration of swallowing behaviour, however, exhibited a shallower scaling of mass0.17. We suggest that this was due to the allometric growth of the anterior retractor muscle during development, as measured by micro-computed tomography (micro-CT) scans of buccal masses. Consequently, larger A. californica did not need to activate their muscles as fully to produce equivalent forces. These results indicate that muscle activation may be an important determinant of the scaling of behavioural durations in quasistatic systems.


Assuntos
Aplysia , Músculos , Animais , Aplysia/fisiologia , Microtomografia por Raio-X , Músculos/fisiologia , Comportamento Alimentar/fisiologia , Deglutição/fisiologia
4.
Biol Cybern ; 118(3-4): 165-185, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922432

RESUMO

The coordination of complex behavior requires knowledge of both neural dynamics and the mechanics of the periphery. The feeding system of Aplysia californica is an excellent model for investigating questions in soft body systems' neuromechanics because of its experimental tractability. Prior work has attempted to elucidate the mechanical properties of the periphery by using a Hill-type muscle model to characterize the force generation capabilities of the key protractor muscle responsible for moving Aplysia's grasper anteriorly, the I2 muscle. However, the I1/I3 muscle, which is the main driver of retractions of Aplysia's grasper, has not been characterized. Because of the importance of the musculature's properties in generating functional behavior, understanding the properties of muscles like the I1/I3 complex may help to create more realistic simulations of the feeding behavior of Aplysia, which can aid in greater understanding of the neuromechanics of soft-bodied systems. To bridge this gap, in this work, the I1/I3 muscle complex was characterized using force-frequency, length-tension, and force-velocity experiments and showed that a Hill-type model can accurately predict its force-generation properties. Furthermore, the muscle's peak isometric force and stiffness were found to exceed those of the I2 muscle, and these results were analyzed in the context of prior studies on the I1/I3 complex's kinematics in vivo.


Assuntos
Aplysia , Aplysia/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Modelos Biológicos , Comportamento Alimentar/fisiologia , Contração Muscular/fisiologia , Músculos/fisiologia , Músculo Esquelético/fisiologia
5.
Biol Cybern ; 118(3-4): 187-213, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38769189

RESUMO

Studying the nervous system underlying animal motor control can shed light on how animals can adapt flexibly to a changing environment. We focus on the neural basis of feeding control in Aplysia californica. Using the Synthetic Nervous System framework, we developed a model of Aplysia feeding neural circuitry that balances neurophysiological plausibility and computational complexity. The circuitry includes neurons, synapses, and feedback pathways identified in existing literature. We organized the neurons into three layers and five subnetworks according to their functional roles. Simulation results demonstrate that the circuitry model can capture the intrinsic dynamics at neuronal and network levels. When combined with a simplified peripheral biomechanical model, it is sufficient to mediate three animal-like feeding behaviors (biting, swallowing, and rejection). The kinematic, dynamic, and neural responses of the model also share similar features with animal data. These results emphasize the functional roles of sensory feedback during feeding.


Assuntos
Aplysia , Retroalimentação Sensorial , Comportamento Alimentar , Modelos Neurológicos , Animais , Aplysia/fisiologia , Comportamento Alimentar/fisiologia , Retroalimentação Sensorial/fisiologia , Simulação por Computador , Neurônios/fisiologia , Rede Nervosa/fisiologia , Fenômenos Biomecânicos , Redes Neurais de Computação
6.
J Neurosci Methods ; 404: 110077, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38336092

RESUMO

BACKGROUND: To study neural control of behavior, intracellular recording and stimulation of many neurons in freely moving animals would be ideal. However, current technologies limit the number of neurons that can be monitored and manipulated. A new technology has become available for intracellular recording and stimulation which we demonstrate in the tractable nervous system of Aplysia. NEW METHOD: Carbon fiber electrode arrays (whose tips are coated with platinum-iridium) were used with an in vitro feeding preparation to intracellularly record from and to control the activity of multiple neurons during feeding movements. RESULTS: In an in vitro feeding preparation, the carbon fiber electrode arrays recorded action potentials and subthreshold synaptic potentials during feeding movements. Depolarizing or hyperpolarizing currents activated or inhibited identified neurons (respectively), manipulating the movements of the feeding apparatus. COMPARISON WITH EXISTING METHOD(S): Standard glass microelectrodes that are commonly used for intracellular recording are stiff, liable to break in response to movement, and require many micromanipulators to be precisely positioned. In contrast, carbon fiber arrays are less sensitive to movement, but are capable of multiple channels of intracellular recording and stimulation. CONCLUSIONS: Carbon fiber arrays are a novel technology for intracellular recording that can be used in moving preparations. They can record both action potentials and synaptic activity in multiple neurons and can be used to stimulate multiple neurons in complex patterns.


Assuntos
Aplysia , Neurônios , Animais , Fibra de Carbono/química , Aplysia/fisiologia , Neurônios/fisiologia , Microeletrodos , Potenciais de Ação/fisiologia
7.
Behav Brain Res ; 458: 114736, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-37923220

RESUMO

Food deprivation may cause neurological dysfunctions including memory impairment. The mollusk Aplysia is a suitable animal model to study prolonged food deprivation-induced memory deficits because it can sustain up to 14 days of food deprivation (14DFD). Sensitization of defensive withdrawal reflexes has been used to illustrate the detrimental effects of 14DFD on memory formation. Under normal feeding conditions (i.e., two days food deprivation, 2DFD), aversive stimuli lead to serotonin (5-HT) release into the hemolymph and neuropil, which mediates sensitization and its cellular correlates including increased excitability of tail sensory neurons (TSNs). Recent studies found that 14DFD prevents both short-term and long-term sensitization, as well as short-term increased excitability of TSNs induced by in vitro aversive training. This study investigated the role of 5-HT in the absence of sensitization and TSN increased excitability under 14DFD. Because 5-HT is synthesized from tryptophan obtained through diet, and its exogeneous application alone induces sensitization and increases TSN excitability, we hypothesized that 1) 5-HT level may be reduced by 14DFD and 2) 5-HT may still induce sensitization and TSN increased excitability in 14DFD animals. Results revealed that 14DFD significantly decreased hemolymph 5-HT level, which may contribute to the lack of sensitization and its cellular correlates, while ganglia 5-HT level was not changed. 5-HT exogenous application induced sensitization in 14DFD Aplysia, albeit smaller than that in 2DFD animals, suggesting that this treatment can only induce partial sensitization in food deprived animals. Under 14DFD, 5-HT increased TSN excitability indistinguishable from that observed under 2DFD. Taken together, these findings characterize 5-HT metabolic deficiency under 14DFD, which may be compensated, at least in part, by 5-HT exogenous application.


Assuntos
Aplysia , Serotonina , Animais , Serotonina/metabolismo , Aplysia/fisiologia , Privação de Alimentos , Neurônios Aferentes/fisiologia , Gânglios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA