RESUMO
Chemotherapeutic agents often lack specificity, intratumoral accumulation, and face drug resistance. Targeted drug delivery systems based on nanoparticles (NPs) mitigate these issues. Poly (lactic-co-glycolic acid) (PLGA) is a well-studied polymer, commonly modified with aptamers (Apts) for cancer diagnosis and therapy. In this study, silybin (SBN), a natural agent with established anticancer properties, was encapsulated into PLGA NPs to control delivery and improve its poor solubility. The field-emission scanning electron microscopy (FE-SEM) showed spherical and uniform morphology of optimum SBN-PLGA NPs with 138.57±1.30nm diameter, 0.202±0.004 polydispersity index (PDI), -16.93±0.45mV zeta potential (ZP), and 70.19±1.63% entrapment efficiency (EE). The results of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) showed no chemical interaction between formulation components, and differential scanning calorimetry (DSC) thermograms confirmed efficient SBN entrapment in the carrier. Then, the optimum formulation was functionalized with 5TR1 Apt for active targeted delivery of SBN to colorectal cancer (CRC) cells in vitro. The SBN-PLGA-5TR1 nanocomplex released SBN at a sustained and constant rate (zero-order kinetic), favoring passive delivery to acidic CRC environments. The MTT assay demonstrated the highest cytotoxicity of the SBN-PLGA-5TR1 nanocomplex in C26 and HT29 cells and no significant cytotoxicity in normal cells. Apoptosis analysis supported these results, showing early apoptosis induction with SBN-PLGA-5TR1 nanocomplex which indicated this agent could cause programmed death more than necrosis. This study presents the first targeted delivery of SBN to cancer cells using Apts. The SBN-PLGA-5TR1 nanocomplex effectively targeted and suppressed CRC cell proliferation, providing valuable insights into CRC treatment without harmful effects on healthy tissues.
Assuntos
Neoplasias Colorretais , Sistemas de Liberação de Medicamentos , Ácido Láctico , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Silibina , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Silibina/administração & dosagem , Silibina/farmacologia , Silibina/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Nanopartículas/química , Ácido Láctico/química , Sistemas de Liberação de Medicamentos/métodos , Silimarina/química , Silimarina/administração & dosagem , Silimarina/farmacologia , Portadores de Fármacos/química , Linhagem Celular Tumoral , Ácido Poliglicólico/química , Tamanho da Partícula , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/química , Solubilidade , Células HT29 , Liberação Controlada de Fármacos , Varredura Diferencial de Calorimetria/métodosRESUMO
BACKGROUNDS & AIMS: Fluoropyrimidine c (5-fluorouracil [5FU]) increasingly represents the chemotherapeutic backbone for neoadjuvant, adjuvant, and palliative treatment of pancreatic ductal adenocarcinoma (PDAC). Even in combination with other agents, 5FU efficacy remains transient and limited. One explanation for the inadequate response is insufficient and nonspecific delivery of 5FU to the tumor. METHODS: We designed, generated, and characterized 5FU-incorporated systematic evolution of ligands by exponential enrichment (SELEX)-selected epidermal growth factor receptor (EGFR)-targeted aptamers for tumor-specific delivery of 5FU to PDAC cells and tested their therapeutic efficacy in vitro and in vivo. RESULTS: 5FU-EGFR aptamers reduced proliferation in a concentration-dependent manner in mouse and human pancreatic cancer cell lines. Time-lapsed live imaging showed EGFR-specific uptake of aptamers via clathrin-dependent endocytosis. The 5FU-aptamer treatment was equally effective in 5FU-sensitive and 5FU-refractory PDAC cell lines. Biweekly treatment with 5FU-EGFR aptamers reduced tumor burden in a syngeneic orthotopic transplantation model of PDAC, in an autochthonously growing genetically engineered PDAC model (LSL-KrasG12D/+;LSL-Trp53flox/+;Ptf1a-Cre [KPC]), in an orthotopic cell line-derived xenograft model using human PDAC cells in athymic mice (CDX; Crl:NU-Foxn1nu), and in patient-derived organoids. Tumor growth was significantly attenuated during 5FU-EGFR aptamer treatment in the course of follow-up. CONCLUSIONS: Tumor-specific targeted delivery of 5FU using EGFR aptamers as the carrier achieved high target specificity; overcame 5FU resistance; and proved to be effective in a syngeneic orthotopic transplantation model, in KPC mice, in a CDX model, and in patient-derived organoids and, therefore, represents a promising backbone for pancreatic cancer chemotherapy in patients. Furthermore, our approach has the potential to target virtually any cancer entity sensitive to 5FU treatment by incorporating 5FU into cancer cell-targeting aptamers as the delivery platform.
Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Aptâmeros de Nucleotídeos/administração & dosagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Receptores ErbB/metabolismo , Fluoruracila/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Endocitose , Receptores ErbB/genética , Feminino , Fluoruracila/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Organoides , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Técnica de Seleção de Aptâmeros , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
MicroRNAs play an irreplaceable role in gene expression regulation. Upregulation of several miRNAs increases the risk of invasion and metastasis of breast cancer cells. An oncogenic miRNA, miR-21, is highly expressed in triple-negative breast cancer (TNBC) and is associated with tumor proliferation, invasion, carcinogenesis, prognosis, and therapeutic resistance. However, targeted delivery of therapeutic anti-miRNAs into cancer cells remains challenging, especially for TNBC. In this study, we report the application of an RNA nanotechnology-based platform for the targeted delivery of anti-miR-21 by epidermal growth factor receptor (EGFR) aptamer in vitro to TNBC and chemical-resistant breast cancer cells. RNA nanoparticles reduced cell viability and sensitized breast cancer cells to doxorubicin (DOX) treatment in vitro. Inhibition of miR-21 by RNA nanoparticles suppressed TNBC cell invasion, migration, and colony formation. The results indicate the potential application of nanotechnology-based delivery platforms in clinical anti-cancer therapeutics.
Assuntos
Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/uso terapêutico , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Aptâmeros de Nucleotídeos/administração & dosagem , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Terapia de Alvo Molecular/métodos , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Nanotecnologia , Invasividade Neoplásica/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaio Tumoral de Célula-TroncoRESUMO
DEK protein is critical to the formation of neutrophil extracellular traps (NETs) in rheumatoid arthritis (RA). Blocking DEK using the aptamer DTA via articular injection has been shown to have robust anti-inflammatory efficacy in a previous study. However, DTA is prone to nuclease degradation and renal clearance in vivo. RA is a systemic disease that involves multiple joints, and local injection is impractical in clinical settings. In this study, DTA was modified with methoxy groups on all deoxyribose sugar units and inverted deoxythymidine on the 3' end (DTA4) to enhance its stability against nuclease. DTA4 is stable for 72 h in 90% mouse serum and maintains a high binding affinity to DEK. DTA4 effectively inhibits the formation of NETs and the migration of HUVECs in vitro. DTA4 was then modified with cholesterol on its 5' end to form DTA6. DTA6 dramatically reduces DEK expression in inflammatory RAW264.7 cells. A hydrogel microneedle (hMN) was then fabricated for the transdermal delivery of DTA6. The hMN maintains morphological integrity after absorbing the aptamer solution, effectively pierces the skin, and rapidly releases DTA6 into the dermis. The DTA6-loaded hMN significantly attenuates inflammation and protects joints from cartilage/bone erosion in collagen-induced arthritis (CIA) mice.
Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Colágeno/farmacologia , Proteínas de Ligação a DNA/metabolismo , Hidrogéis/administração & dosagem , Proteínas Oncogênicas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Artrite Experimental/metabolismo , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Linhagem Celular , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Substâncias Protetoras/administração & dosagem , Células RAW 264.7RESUMO
Targeted lipid nanobubbles as theranostic ultrasound molecular probes with both targeted contrast-enhanced ultrasound molecular imaging and synergistic treatment capabilities are expected to overcome severe challenges in the diagnosis and treatment of refractory triple-negative breast cancer (TNBC). In this study, AS1411 aptamer-functionalised nucleolin-targeted doxorubicin-loaded lipid nanobubbles (AS1411-DOX-NBs) were constructed, and their physicochemical properties as well as anti-tumour and cardioprotective efficacies were systematically tested and evaluated. The results showed that AS1411-DOX-NBs can carry and maintain the physicochemical and pharmacodynamic properties of doxorubicin (DOX) and show stronger tumour cell-killing abilityin vitroby increasing the active uptake of drugs. AS1411-DOX-NBs also significantly inhibited the growth of TNBC xenografts while maintaining the weight and health of the mice. Echocardiography and pathological examination further confirmed that AS1411-DOX-NBs effectively caused tumour tissue apoptosis and necrosis while reducing DOX-induced cardiotoxicity. The AS1411-DOX-NBs constructed in this study enable both targeted contrast-enhanced ultrasound molecular imaging and synergistic therapeutic efficacy and can be used as safe and efficient theranostic ultrasound molecular probes for the diagnosis and treatment of TNBC.
Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Cardiotônicos/administração & dosagem , Doxorrubicina/administração & dosagem , Oligodesoxirribonucleotídeos/administração & dosagem , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/farmacologia , Cardiotônicos/química , Cardiotônicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Doxorrubicina/química , Ecocardiografia , Feminino , Humanos , Lipossomos , Camundongos , Nanopartículas , Nanoestruturas , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , NucleolinaRESUMO
Aptamers offer a great opportunity to develop innovative drug delivery systems that can deliver cargos specifically into targeted cells. In this study, a chimera consisting of two aptamers was developed to deliver doxorubicin into cancer cells and release the drug in cytoplasm in response to adenosine-5'-triphosphate (ATP) binding. The chimera was composed of the AS1411 anti-nucleolin aptamer for cancer cell targeting and the ATP aptamer for loading and triggering the release of doxorubicin in cells. The chimera was first produced by hybridizing the ATP aptamer with its complementary DNA sequence, which is linked with the AS1411 aptamer via a poly-thymine linker. Doxorubicin was then loaded inside the hybridized DNA region of the chimera. Our results show that the AS1411-ATP aptamer chimera was able to release loaded doxorubicin in cells in response to ATP. In addition, selective uptake of the chimera into cancer cells was demonstrated using flow cytometry. Furthermore, confocal laser scanning microscopy showed the successful delivery of the doxorubicin loaded in chimeras to the nuclei of targeted cells. Moreover, the doxorubicin-loaded chimeras effectively inhibited the growth of cancer cell lines and reduced the cytotoxic effect on the normal cells. Overall, the results of this study show that the AS1411-ATP aptamer chimera could be used as an innovative approach for the selective delivery of doxorubicin to cancer cells, which may improve the therapeutic potency and decrease the off-target cytotoxicity of doxorubicin.
Assuntos
Aptâmeros de Nucleotídeos , Doxorrubicina , Sistemas de Liberação de Medicamentos , Neoplasias , Humanos , Trifosfato de Adenosina/metabolismo , Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/sangue , Aptâmeros de Nucleotídeos/genética , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Desenho de Fármacos , Estabilidade de Medicamentos , Técnicas In Vitro , Células MCF-7 , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/sangue , Oligodesoxirribonucleotídeos/genética , Fosfoproteínas/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , NucleolinaRESUMO
Proliferative retinopathies produces an irreversible type of blindness affecting working age and pediatric population of industrialized countries. Despite the good results of anti-VEGF therapy, intraocular and systemic complications are often associated after its intravitreal use, hence novel therapeutic approaches are needed. The aim of the present study is to test the effect of the AS1411, an antiangiogenic nucleolin-binding aptamer, using in vivo, ex vivo and in vitro models of angiogenesis and propose a mechanistic insight. Our results showed that AS1411 significantly inhibited retinal neovascularization in the oxygen induced retinopathy (OIR) in vivo model, as well as inhibited branch formation in the rat aortic ex vivo assay, and, significantly reduced proliferation, cell migration and tube formation in the HUVEC in vitro model. Importantly, phosphorylated NCL protein was significantly abolished in HUVEC in the presence of AS1411 without affecting NFκB phosphorylation and -21 and 221-angiomiRs, suggesting that the antiangiogenic properties of this molecule are partially mediated by a down regulation in NCL phosphorylation. In sum, this new research further supports the NCL role in the molecular etiology of pathological angiogenesis and identifies AS1411 as a novel anti-angiogenic treatment.
Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/administração & dosagem , Oxigênio/efeitos adversos , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neovascularização Retiniana/tratamento farmacológico , Animais , Aptâmeros de Nucleotídeos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Injeções Intravítreas , Camundongos , MicroRNAs/genética , Oligodesoxirribonucleotídeos/farmacologia , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosforilação/efeitos dos fármacos , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Neovascularização Retiniana/induzido quimicamente , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , NucleolinaRESUMO
RNA aptamers are becoming increasingly attractive due to their superior properties. This review discusses the early stages of aptamer research, the main developments in this area, and the latest technologies being developed. The review also highlights the advantages of RNA aptamers in comparison to antibodies, considering the great potential of RNA aptamers and their applications in the near future. In addition, it is shown how RNA aptamers can form endless 3-D structures, giving rise to various structural and functional possibilities. Special attention is paid to the Mango, Spinach and Broccoli fluorescent RNA aptamers, and the advantages of split RNA aptamers are discussed. The review focuses on the importance of creating a platform for the synthesis of RNA nanoparticles in vivo and examines yeast, namely Saccharomyces cerevisiae, as a potential model organism for the production of RNA nanoparticles on a large scale.
Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Corantes Fluorescentes/química , Nanomedicina , Nanopartículas/administração & dosagem , Animais , Aptâmeros de Nucleotídeos/administração & dosagem , Brassica/metabolismo , Humanos , Mangifera/metabolismo , Nanopartículas/química , Saccharomyces cerevisiae/metabolismo , Spinacia oleracea/metabolismoRESUMO
Aptamers are single-stranded nucleic acid molecules that bind to and inhibit proteins and are commonly produced by systematic evolution of ligands by exponential enrichment (SELEX). Aptamers undergo extensive pharmacological revision, which alters affinity, specificity, and therapeutic half-life, tailoring each drug for a specific clinical need. The first therapeutic aptamer was described 25 years ago. Thus far, one aptamer has been approved for clinical use, and numerous others are in preclinical or clinical development. This review presents a short history of aptamers and SELEX, describes their pharmacological development and optimization, and reviews potential treatment of diseases including visual disorders, thrombosis, and cancer.
Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/genética , Técnica de Seleção de Aptâmeros/métodos , Animais , Aptâmeros de Nucleotídeos/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Técnica de Seleção de Aptâmeros/tendências , Transtornos da Visão/tratamento farmacológico , Transtornos da Visão/metabolismoRESUMO
BACKGROUND: Community-acquired pneumonia and associated sepsis cause high mortality despite antibiotic treatment. Uncontrolled inflammatory host responses contribute to the unfavorable outcome by driving lung and extrapulmonary organ failure. The complement fragment C5a holds significant proinflammatory functions and is associated with tissue damage in various inflammatory conditions. The authors hypothesized that C5a concentrations are increased in pneumonia and C5a neutralization promotes barrier stabilization in the lung and is protective in pneumococcal pulmonary sepsis. METHODS: The authors investigated regulation of C5a in pneumonia in a prospective patient cohort and in experimental pneumonia. Two complementary models of murine pneumococcal pneumonia were applied. Female mice were treated with NOX-D19, a C5a-neutralizing L-RNA-aptamer. Lung, liver, and kidney injury and the inflammatory response were assessed by measuring pulmonary permeability (primary outcome), pulmonary and blood leukocytes, cytokine concentrations in lung and blood, and bacterial load in lung, spleen, and blood, and performing histologic analyses of tissue damage, apoptosis, and fibrin deposition (n = 5 to 13). RESULTS: In hospitalized patients with pneumonia (n = 395), higher serum C5a concentrations were observed compared to healthy subjects (n = 24; 6.3 nmol/l [3.9 to 10.0] vs. 4.5 nmol/l [3.8 to 6.6], median [25 to 75% interquartile range]; difference: 1.4 [95% CI, 0.1 to 2.9]; P = 0.029). Neutralization of C5a in mice resulted in lower pulmonary permeability in pneumococcal pneumonia (1.38 ± 0.89 vs. 3.29 ± 2.34, mean ± SD; difference: 1.90 [95% CI, 0.15 to 3.66]; P = 0.035; n = 10 or 11) or combined severe pneumonia and mechanical ventilation (2.56 ± 1.17 vs. 7.31 ± 5.22; difference: 4.76 [95% CI, 1.22 to 8.30]; P = 0.011; n = 9 or 10). Further, C5a neutralization led to lower blood granulocyte colony-stimulating factor concentrations and protected against sepsis-associated liver injury. CONCLUSIONS: Systemic C5a is elevated in pneumonia patients. Neutralizing C5a protected against lung and liver injury in pneumococcal pneumonia in mice. Early neutralization of C5a might be a promising adjunctive treatment strategy to improve outcome in community-acquired pneumonia.
Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Complemento C5a/antagonistas & inibidores , Pneumonia Pneumocócica/sangue , Pneumonia Pneumocócica/prevenção & controle , Sepse/sangue , Sepse/prevenção & controle , Animais , Anticorpos Neutralizantes/administração & dosagem , Biomarcadores/sangue , Estudos de Coortes , Complemento C5a/metabolismo , Feminino , Fatores Imunológicos/antagonistas & inibidores , Fatores Imunológicos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Estudos ProspectivosRESUMO
Our aim was to investigate the effect of avß3 single-stranded DNA aptamer (avß3 ssDNA) on vascular restenosis in rats after percutaneous transluminal coronary angioplasty (PTCA) via the Ras-PI3K/MAPK pathway. Sixty Sprague-Dawley rats were randomly divided into six groups: sham-operated, PTCA, PTCA+cilengitide (18 mg/kg, n = 8), and avß3 ssDNA treatment at 50, 100, and 200 µg/kg. Hematoxylin-eosin staining was performed to evaluate the successful establishment of the PTCA model and to assess the degree of intimal hyperplasia. Immunofluorescence and in situ hybridization were carried out to observe the level of avß3. Immunohistochemistry was used to detect the expression of E-cadherin, N-cadherin, α-smooth muscle actin (α-SMA), angiotensin 1 (ANG1), and ANG2. The expression of osteopontin (OPN), focal adhesion kinase (FAK), Ras, mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), signal transducer and activator of transcription 1 (STAT1), and GTPase was observed by the western blot and quantitative reverse transcription polymerase chain reaction. Compared with rats subjected to PTCA only, those treated with avß3 ssDNA showed significantly decreased vascular occlusion rate (P < .05). The protein expression of avß3, OPN, p-FAK, ANG2, and E-cadherin was significantly increased by avß3 ssDNA (P < .05), while the levels of ANG1, α-SMA, N-cadherin Ras, MAPK, PI3K, STAT1, and GTPase were significantly decreased (P < .05). Avß3 ssDNA reduced the proliferation, migration, epithelial-mesenchymal transition, and vascular remodeling of vascular smooth muscle cells, and the mechanism may be related to the Ras-PI3K/MAPK pathway.
Assuntos
Angioplastia Coronária com Balão/efeitos adversos , Aptâmeros de Nucleotídeos/administração & dosagem , Reestenose Coronária/prevenção & controle , Integrina alfaVbeta3/genética , Túnica Íntima/patologia , Angioplastia Coronária com Balão/instrumentação , Animais , Aptâmeros de Nucleotídeos/genética , Proliferação de Células , Reestenose Coronária/etiologia , Reestenose Coronária/patologia , Vasos Coronários/patologia , Vasos Coronários/cirurgia , DNA de Cadeia Simples/administração & dosagem , DNA de Cadeia Simples/genética , Modelos Animais de Doenças , Humanos , Hiperplasia/etiologia , Hiperplasia/patologia , Hiperplasia/prevenção & controle , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Miócitos de Músculo Liso , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Stents/efeitos adversos , Resultado do Tratamento , Túnica Íntima/efeitos dos fármacos , Proteínas ras/metabolismoRESUMO
Effective therapy for protecting dying neurons against cerebral ischemia-reperfusion injury (IRI) represents a substantial challenge in the treatment of ischemic strokes. Oxidative stress coupled with excessive inflammation is the main culprit for brain IRI that results in neuronal damage and disability. Specifically, complement component 5a (C5a) exacerbates the vicious cycle between oxidative stress and inflammatory responses. Herein, we propose that a framework nucleic acid (FNA) conjugated with anti-C5a aptamers (aC5a) can selectively reduce C5a-mediated neurotoxicity and effectively alleviate oxidative stress in the brain. Intrathecal injection of the aC5a-conjugated FNA (aC5a-FNA) was applied for the treatment of rats with ischemic strokes. Positron emission tomography (PET) imaging was performed to investigate the accumulation of aC5a-FNA in the penumbra and its therapeutic efficacy. Results demonstrated that aC5a-FNA could rapidly penetrate different brain regions after brain IRI. Furthermore, aC5a-FNA effectively protected neurons from brain IRI, as verified by serum tests, tissue staining, biomarker detection, and functional assessment. The protective effect of aC5a-FNA against cerebral IRI in living animals may pave the way for the translation of FNA from bench to bedside and broaden the horizon of FNA in the field of biomedicine.
Assuntos
Aptâmeros de Nucleotídeos/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Complemento C5a/antagonistas & inibidores , Ácidos Nucleicos/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Aptâmeros de Nucleotídeos/administração & dosagem , Isquemia Encefálica/imunologia , Isquemia Encefálica/patologia , Complemento C5a/imunologia , Injeções Espinhais , Ácidos Nucleicos/administração & dosagem , Ratos Sprague-Dawley , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/patologiaRESUMO
Using nanoparticles to carry and delivery anticancer drugs holds much promise in cancer therapy, but nanoparticles per se are lacking specificity. Active targeting, that is, using specific ligands to functionalize nanoparticles, is attracting much attention in recent years. Aptamers, with their several favorable features like high specificity and affinity, small size, very low immunogenicity, relatively low cost for production, and easiness to store, are one of the best candidates for the specific ligands of nanoparticle functionalization. This review discusses the benefits and challenges of using aptamers to functionalize nanoparticles for active targeting and especially presents nearly all of the published works that address the topic of using aptamers to functionalize nanoparticles for targeted drug delivery and cancer therapy.
Assuntos
Antineoplásicos/administração & dosagem , Aptâmeros de Nucleotídeos/administração & dosagem , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas , Animais , Antineoplásicos/química , Aptâmeros de Nucleotídeos/química , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Terapia de Alvo Molecular , Nanopartículas/química , Neoplasias/etiologia , Neoplasias/patologia , Neoplasias/terapia , Reparo Gênico Alvo-Dirigido , Nanomedicina TeranósticaRESUMO
In this study, HER2 RNA aptamers were conjugated to mertansine (DM1) and the anti-cancer effectiveness of the conjugate was evaluated in HER2-overexpressing breast cancer models. The conjugate of HER2 aptamer and anticancer drug DM1 (aptamer-drug conjugate, ApDC) was prepared and analyzed using HPLC and mass spectrometry. The cell-binding affinity and cytotoxicity of the conjugate were determined using confocal microscopy and WST-1 assay. The in vivo anti-tumoral efficacy of ApDC was also evaluated in mice carrying BT-474 breast tumors overexpressing HER2. The synthesized HER2-specific RNA aptamers were able to specifically and efficiently bind to HER-positive BT-474 breast cancer cells, but not to HER2-negative MDA-MB-231 breast cancer cells. Also, the HER2-specific ApDC showed strong toxicity to the target cells, BT-474, but not to MDA-MB-231 cells. According to the in vivo analyses drawn from the mouse xenografts of BT-747 tumor, the ApDC was able to more effectively inhibit the tumor growth. Compared to the control group, the mice treated with the ApDC showed a significant reduction of tumor growth. Besides, any significant body weight losses or hepatic toxicities were monitored in the ApDC-treated mice. This research suggests the HER2 aptamer-DM1 conjugate as a target-specific anti-cancer modality and provides experimental evidence supporting its enhanced effectiveness for HER2-overexpressing target tumors. This type of aptamer-conjugated anticancer drug would be utilized as a platform structure for the development of versatile targeted high-performance anticancer drugs by adopting the easy deformability and high affinity of aptamers.
Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/genética , Animais , Apoptose , Aptâmeros de Nucleotídeos/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptor ErbB-2/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The surface protein overexpressed on cancer cells can be used as biomarkers for early detection of specific diseases. Anti-VCAM-1 and anti-IL4Rα DNA aptamers specific to VCAM-1 and IL4Rα receptors that are overexpressed in 4T1 tumor-bearing mice could be used as potential biomarker for both diagnostic and therapeutic applications in cancer biology. Cell Viability and luciferase assay of 4T1-Luc2 cancer cells in the presence of anti-VCAM-1 ssDNA or anti-IL4Rα RNA aptamers was assessed by monitoring the changes in the absorbance and the fluorescence of Alamar blue dye. The aptamer-conjugated SPIO magnetic beads, used for the selective targeting to tumor sites, were monitored using noninvasive MRI and Bioluminescence imaging (BLI). Cell viability and luciferase assays showed that both anti-VCAM-1 and anti-IL4Rα aptamers favor the depletion of cancer cells and limit tumor progression. Microscopic analyses confirmed that the target specific aptamers significantly trigger tumor cell apoptosis and limit cancer cell growth in vitro. The intravenous injection of SPIO nanoparticle-conjugated aptamers were further confirmed using noninvasive MRI and Bioluminescence imaging. Anti-VCAM1 and anti-IL4Rα aptamers, specific to VCAM-1 and IL4Rα receptors overexpressed in 4T1-Luc2 tumor-bearing mice, were used as diagnostic and therapeutic tools.
Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/terapia , Subunidade alfa de Receptor de Interleucina-4/antagonistas & inibidores , Nanopartículas Magnéticas de Óxido de Ferro , Nanomedicina Teranóstica , Molécula 1 de Adesão de Célula Vascular/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Aptâmeros de Nucleotídeos/química , Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Genes Reporter , Humanos , Medições Luminescentes , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética , Camundongos , Nanomedicina Teranóstica/métodos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The blockade of pro-inflammatory mediators is a successful approach to improve the engraftment after islet transplantation. L-aptamers are chemically synthesized, nonimmunogenic bio-stable oligonucleotides that bind and inhibit target molecules conceptually similar to antibodies. We aimed to evaluate if blockade-aptamer-based inhibitors of C-C Motif Chemokine Ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1) and C-X-C Motif Chemokine Ligand 12/stromal cell-derived factor-1 (CXCL12/SDF-1) are able to favor islet survival in mouse models for islet transplantation and for type 1 diabetes. We evaluated the efficacy of the CCL2-specific mNOX-E36 and the CXCL12-specific NOX-A12 on islet survival in a syngeneic mouse model of intraportal islet transplantation and in a multiple low doses of streptozotocin (MLD-STZ) diabetes induction model. Moreover, we characterized intrahepatic infiltrated leukocytes by flow cytometry before and 3 days after islet infusion in presence or absence of these inhibitors. The administration for 14 days of mNOX-E36 and NOX-A12 significantly improved islet engraftment, either compound alone or in combination. Intrahepatic islet transplantation recruited CD45+ leucocytes and more specifically CD45+/CD11b+ mono/macrophages; mNOX-E36 and NOX-A12 treatments significantly decreased the recruitment of inflammatory monocytes, CD11b+ /Ly6Chigh /CCR2+ and CD11b+ /Ly6Chigh /CXCR4+ cells, respectively. Additionally, both L-aptamers significantly attenuated diabetes progression in the MLD-STZ model. In conclusion, CCL2/MCP-1 and CXCL12/SDF-1 blockade by L-aptamers is an efficient strategy to improve islet engraftment and survival.
Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CXCL12/antagonistas & inibidores , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/citologia , Animais , Aptâmeros de Nucleotídeos/genética , Quimiocina CCL2/genética , Quimiocina CXCL12/genética , Terapia Combinada , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/patologia , Sobrevivência de Enxerto , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
PURPOSE: Primary breast and prostate cancers can be cured, but metastatic disease cannot. Identifying cell factors that predict metastatic potential could guide both prognosis and treatment. METHODS: We used Cell-SELEX to screen an RNA aptamer library for differential binding to prostate cancer cell lines with high vs. low metastatic potential. Mass spectroscopy, immunoblot, and immunohistochemistry were used to identify and validate aptamer targets. Aptamer properties were tested in vitro, in xenograft models, and in clinical biopsies. Gene expression datasets were queried for target associations in cancer. RESULTS: We identified a novel aptamer (Apt63) that binds to the beta subunit of F1Fo ATP synthase (ATP5B), present on the plasma membrane of certain normal and cancer cells. Apt63 bound to plasma membranes of multiple aggressive breast and prostate cell lines, but not to normal breast and prostate epithelial cells, and weakly or not at all to non-metastasizing cancer cells; binding led to rapid cell death. A single intravenous injection of Apt63 induced rapid, tumor cell-selective binding and cytotoxicity in MDA-MB-231 xenograft tumors, associated with endonuclease G nuclear translocation and DNA fragmentation. Apt63 was not toxic to non-transformed epithelial cells in vitro or adjacent normal tissue in vivo. In breast cancer tissue arrays, plasma membrane staining with Apt63 correlated with tumor stage (p < 0.0001, n = 416) and was independent of other cancer markers. Across multiple datasets, ATP5B expression was significantly increased relative to normal tissue, and negatively correlated with metastasis-free (p = 0.0063, 0.00039, respectively) and overall (p = 0.050, 0.0198) survival. CONCLUSION: Ecto-ATP5B binding by Apt63 may disrupt an essential survival mechanism in a subset of tumors with high metastatic potential, and defines a novel category of cancers with potential vulnerability to ATP5B-targeted therapy. Apt63 is a unique tool for elucidating the function of surface ATP synthase, and potentially for predicting and treating metastatic breast and prostate cancer.
Assuntos
Aptâmeros de Nucleotídeos/administração & dosagem , Neoplasias da Mama/patologia , Membrana Celular/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neoplasias da Próstata/patologia , Administração Intravenosa , Animais , Aptâmeros de Nucleotídeos/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Detecção Precoce de Câncer , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Masculino , Camundongos , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Estadiamento de Neoplasias , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Técnica de Seleção de Aptâmeros , Resultado do Tratamento , Regulação para Cima , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Olaptesed pegol (NOX-A12) is a pegylated structured L-oligoribonucleotide that binds and neutralizes CXCL12, a chemokine tightly regulating the life cycle of chronic lymphocytic leukemia cells. The resulting inhibition of CXCR4 and CXCR7 signaling reduces the protective activity of the bone marrow and lymph node microenvironment. CXCL12 inhibition mobilizes chronic lymphocytic leukemia cells into the circulation and prevents their homing into the protective niches. In this phase I/II study, 28 patients with relapsed/refractory chronic lymphocytic leukemia were treated with olaptesed pegol in combination with bendamustine and rituximab. Combination treatment was preceded by single escalating pilot doses of olaptesed pegol in the first ten patients for evaluation of safety and pharmacokinetics. Peak concentrations and systemic exposure of olaptesed pegol were dose-linear; plasma elimination was monophasic with a 53.2 h half-life. A rapid increase in circulating chronic lymphocytic leukemia cells was observed already 1 h after administration of olaptesed pegol and lasted for at least 72 h. Single-agent treatment was well tolerated and no dose-limiting toxicity was observed. The combination regimen yielded an overall response rate of 86%, with 11% of patients achieving a complete response and 75% a partial response. Notably, all ten high-risk patients, including four with a 17p deletion, responded to treatment. The median progression-free survival was 15.4 (95% confidence interval: 12.2, 26.2) months while the median overall survival was not reached with >80% of patients alive after a median follow-up of 28 months. Olaptesed pegol was well tolerated and did not result in additional toxicity when combined with bendamustine and rituximab (ClinicalTrials.gov identifier: NCT01486797). Further clinical development of this novel CXCL12 inhibitor is thus warranted.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia Linfocítica Crônica de Células B , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/efeitos adversos , Cloridrato de Bendamustina/administração & dosagem , Cloridrato de Bendamustina/efeitos adversos , Intervalo Livre de Doença , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/mortalidade , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Pessoa de Meia-Idade , Recidiva , Rituximab/administração & dosagem , Rituximab/efeitos adversos , Taxa de SobrevidaRESUMO
Introduction: PEGylation is a well-established technology for improving the therapeutic value of drugs by attaching polyethylene glycol (PEG). The first PEGylated enzyme products appeared on the market in the early 1990s; currently, more than 18 PEGylated products have been approved by Food and Drug Administration, which encompass various classes of drug molecules, such as enzymes, interferons, granulocyte colony-stimulating factors, hormones, antibody fragments, coagulation factors, oligonucleotide aptamers, synthetic peptides, and small organic molecules. Areas covered: While PEGylated products mainly comprise biologic drugs, such as recombinant proteins and enzymes, non-biologic drugs have recently emerged as a target for PEGylation. This review focuses on the recent development of PEGylated non-biologic drugs, such as small organic molecules, synthetic peptides, and aptamers. Expert opinion: Several PEGylated versions of anti-cancer drugs, opioid agonists, glucagon-like peptide-1 receptor agonists, and oligonucleotide aptamers are in active development stage, and it is likely that they will have a dramatic impact on the market. Although some safety concerns about PEG in clinical trials have been recently issued, PEGylation is still a commercially attractive proposition as a half-life extension technology for long-acting drug development.
Assuntos
Portadores de Fármacos/química , Desenvolvimento de Medicamentos , Polietilenoglicóis/química , Tecnologia Farmacêutica/métodos , Aptâmeros de Nucleotídeos/administração & dosagem , Morfinanos/administração & dosagem , Peptídeos/administração & dosagem , Polietilenoglicóis/administração & dosagemRESUMO
Since Toll-like receptor 4 (TLR4) mediates brain damage after stroke, development of TLR4 antagonists is a promising therapeutic strategy for this disease. Our aim was to generate TLR4-blocking DNA aptamers to be used for stroke treatment. From a random oligonucleotide pool, we identified two aptamers (ApTLR#1R, ApTLR#4F) with high affinity for human TLR4 by systematic evolution of ligands by exponential enrichment (SELEX). Optimized truncated forms (ApTLR#1RT, ApTLR#4FT) were obtained. Our data demonstrate specific binding of both aptamers to human TLR4 as well as a TLR4 antagonistic effect. ApTLR#4F and ApTLR#4FT showed a long-lasting protective effect against brain injury induced by middle cerebral artery occlusion (MCAO), an effect that was absent in TLR4-deficient mice. Similar effects were obtained in other MCAO models, including in rat. Additionally, efficacy of ApTLR#4FT in a model of brain ischemia-reperfusion in rat supports the use of this aptamer in patients undergoing artery recanalization induced by pharmacological or mechanical interventions. The absence of major toxicology aspects and the good safety profile of the aptamers further encourage their future clinical positioning for stroke therapy and possibly other diseases in which TLR4 plays a deleterious role.