Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.779
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(6): 1232-1235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782016

RESUMO

A 3-year-old patient in India experiencing headaches and seizures was diagnosed with a fungal infection, initially misidentified as Cladophialophora bantiana. Follow-up sequencing identified the isolate to be Fonsecaea monophora fungus. This case demonstrates the use of molecular methods for the correct identification of F. monophora, an agent of fungal brain abscess.


Assuntos
Ascomicetos , Abscesso Encefálico , Abscesso Encefálico/microbiologia , Abscesso Encefálico/diagnóstico , Abscesso Encefálico/tratamento farmacológico , Humanos , Ascomicetos/isolamento & purificação , Ascomicetos/genética , Ascomicetos/classificação , Pré-Escolar , Masculino , Micoses/microbiologia , Micoses/diagnóstico , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Filogenia , DNA Fúngico/genética
2.
BMC Microbiol ; 24(1): 195, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849736

RESUMO

BACKGROUND: Rhizosphere and endophytic fungi play important roles in plant health and crop productivity. However, their community dynamics during the continuous cropping of Knoxia valerianoides have rarely been reported. K. valerianoides is a perennial herb of the family Rubiaceae and has been used in herbal medicines for ages. Here, we used high-throughput sequencing technology Illumina MiSeq to study the structural and functional dynamics of the rhizosphere and endophytic fungi of K. valerianoides. RESULTS: The findings indicate that continuous planting has led to an increase in the richness and diversity of rhizosphere fungi, while concomitantly resulting in a decrease in the richness and diversity of root fungi. The diversity of endophytic fungal communities in roots was lower than that of the rhizosphere fungi. Ascomycota and Basidiomycota were the dominant phyla detected during the continuous cropping of K. valerianoides. In addition, we found that root rot directly affected the structure and diversity of fungal communities in the rhizosphere and the roots of K. valerianoides. Consequently, both the rhizosphere and endophyte fungal communities of root rot-infected plants showed higher richness than the healthy plants. The relative abundance of Fusarium in two and three years old root rot-infected plants was significantly higher than the control, indicating that continuous planting negatively affected the health of K. valerianoides plants. Decision Curve Analysis showed that soil pH, organic matter (OM), available K, total K, soil sucrase (S_SC), soil catalase (S_CAT), and soil cellulase (S_CL) were significantly related (p < 0.05) to the fungal community dynamics. CONCLUSIONS: The diversity of fungal species in the rhizosphere and root of K. valerianoides was reported for the first time. The fungal diversity of rhizosphere soil was higher than that of root endophytic fungi. The fungal diversity of root rot plants was higher than that of healthy plants. Soil pH, OM, available K, total K, S_CAT, S_SC, and S_CL were significantly related to the fungal diversity. The occurrence of root rot had an effect on the community structure and diversity of rhizosphere and root endophytic fungi.


Assuntos
Biodiversidade , Endófitos , Fungos , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Raízes de Plantas/microbiologia , DNA Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/isolamento & purificação , Filogenia , Micobioma
3.
BMC Microbiol ; 24(1): 180, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789974

RESUMO

BACKGROUND: Cobweb disease is a fungal disease that commonly affects the cultivation and production of edible mushrooms, leading to serious yield and economic losses. It is considered a major fungal disease in the realm of edible mushrooms. The symptoms of cobweb disease were found during the cultivation of Lyophyllum decastes. This study aimed to identify the causative pathogen of cobweb disease and evaluate effective fungicides, providing valuable insights for field control and management of L. decastes cobweb disease. RESULTS: The causal agent of cobweb disease was isolated from samples infected and identified as Cladobotryum mycophilum based on morphological and cultural characteristics, as well as multi-locus phylogeny analysis (ITS, RPB1, RPB2, and TEF1-α). Pathogenicity tests further confirmed C. mycophilum as the responsible pathogen for this condition. Among the selected fungicides, Prochloraz-manganese chloride complex, Trifloxystrobin, tebuconazole, and Difenoconazole exhibited significant inhibitory effects on the pathogen's mycelium, with EC50 values of 0.076 µg/mL, 0.173 µg/mL, and 0.364 µg/mL, respectively. These fungicides can serve as references for future field control of cobweb disease in L. decastes. CONCLUSION: This study is the first report of C. mycophilum as the causing agent of cobweb disease in L. decastes in China. Notably, Prochloraz-manganese chloride complex demonstrated the strongest inhibitory efficacy against C. mycophilum.


Assuntos
Fungicidas Industriais , Filogenia , China , Fungicidas Industriais/farmacologia , Agaricales/genética , Agaricales/efeitos dos fármacos , Agaricales/classificação , Ascomicetos/efeitos dos fármacos , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/classificação , DNA Fúngico/genética , Triazóis/farmacologia , Testes de Sensibilidade Microbiana , Estrobilurinas , Acetatos , Dioxolanos , Iminas
4.
Arch Microbiol ; 206(6): 284, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814366

RESUMO

The tea plant, Camellia sinensis [L.] O. Kuntze, is a vital global agricultural commodity, yet faces challenges from fungal infections, which affects its production. To reduce the loss in the tea production, the fungal infections must be removed which is managed with fungicides, which are harmful to the environment. Leaf necrosis, which decreases tea quality and quantity, was investigated across Assam, revealing Lasiodiplodia theobromae as the causative agent. Pathogenicity tests, alongside morphological and molecular analyses, confirmed its role in leaf necrosis. Genome and gene analysis of L. theobromae showed multiple genes related to its pathogenicity. The study also assessed the impact of chemical pesticides on this pathogen. Additionally, the findings in this study highlight the significance of re-assessing management approaches in considering the fungal infection in tea.


Assuntos
Ascomicetos , Camellia sinensis , Doenças das Plantas , Folhas de Planta , Camellia sinensis/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Doenças das Plantas/microbiologia , Índia , Folhas de Planta/microbiologia , Fungicidas Industriais/farmacologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38695275

RESUMO

We isolated and described a yellow-pigmented strain of bacteria (strain 9143T), originally characterized as an endohyphal inhabitant of an endophytic fungus in the Ascomycota. Although the full-length sequence of its 16S rRNA gene displays 99 % similarity to Luteibacter pinisoli, genomic hybridization demonstrated <30 % genomic similarity between 9143T and its closest named relatives, further supported by average nucleotide identity results. This and related endohyphal strains form a well-supported clade separate from L. pinisoli and other validly named species including the most closely related Luteibacter rhizovicinus. The name Luteibacter mycovicinus sp. nov. is proposed, with type strain 9143T (isolate DBL433), for which a genome has been sequenced and is publicly available from the American Type Culture Collection (ATCC TSD-257T) and from the Leibniz Institute DSMZ (DSM 112764T). The type strain reliably forms yellow colonies across diverse media and growth conditions (lysogeny broth agar, King's Medium B, potato dextrose agar, trypticase soy agar and Reasoner's 2A (R2A) agar). It forms colonies readily at 27 °C on agar with a pH of 6-8, and on salt (NaCl) concentrations up to 2 %. It lacks the ability to utilize sulphate as a sulphur source and thus only forms colonies on minimal media if supplemented with alternative sulphur sources. It is catalase-positive and oxidase-negative. Although it exhibits a single polar flagellum, motility was only clearly visible on R2A agar. Its host range and close relatives, which share the endohyphal lifestyle, are discussed.


Assuntos
Ascomicetos , Técnicas de Tipagem Bacteriana , DNA Bacteriano , Endófitos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Simbiose , RNA Ribossômico 16S/genética , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , DNA Bacteriano/genética , Endófitos/genética , Endófitos/classificação , Endófitos/isolamento & purificação , Hibridização de Ácido Nucleico , Ácidos Graxos , Composição de Bases , Pigmentos Biológicos/metabolismo
6.
Microb Ecol ; 87(1): 78, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38806848

RESUMO

Fungi contribute to different important ecological processes, including decomposition of organic matter and nutrient cycling, but in the marine environment the main factors influencing their diversity and dynamics at the spatial and temporal levels are still largely unclear. In this study, we performed DNA metabarcoding on seawater sampled monthly over a year and a half in the Gulf of Trieste (northern Adriatic Sea), targeting the internal transcribed spacer (ITS) and the 18S rRNA gene regions. The fungal communities were diverse, very dynamic, and belonged predominantly to marine taxa. Samples could be clustered in two groups, mainly based on the high (> 30%) or low relative proportion of the ascomycetes Parengyodontium album, which emerged as a key taxon in this area. Dissolved and particulate organic C:N ratio played important roles in shaping the mycoplankton assemblages, suggesting that differently bioavailable organic matter pools may be utilized by different consortia. The proportion of fungal over total reads was 31% for ITS and 0.7% for 18S. ITS had the highest taxonomic resolution but low power to detect early divergent fungal lineages. Our results on composition, distribution, and environmental drivers extended our knowledge of the structure and function of the mycobiome of coastal waters.


Assuntos
Biodiversidade , Fungos , RNA Ribossômico 18S , Água do Mar , Água do Mar/microbiologia , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/análise , Micobioma , DNA Fúngico/genética , Código de Barras de DNA Taxonômico , Filogenia , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/análise , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação
7.
Antonie Van Leeuwenhoek ; 117(1): 77, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717550

RESUMO

The "Shadegan International Wetland" (SIW) is one of the wetlands internationally recognized in the Ramsar convention. The vegetation of this wetland ecosystem consists of mostly grasses and shrubs that host a large number of fungi including endophytes. In this study, Nigrospora isolates were obtained from healthy plants of this wetland and its surrounding salt marshes and identified based on morphological features and multilocus phylogenetic analyses based on three DNA loci, namely the internal transcribed spacer regions 1 and 2 including the intervening 5.8S nuclear ribosomal DNA (ITS), ß-tubulin (tub2), and elongation factor 1-α (tef1-α). Accordingly, the following Nigrospora species were identified: N. lacticolonia, N. oryzae, N. osmanthi, N. pernambucoensis and a novel taxon N. shadeganensis sp. nov., which is described and illustrated. To the best of our knowledge, 10 new hosts for Nigrospora species are here reported, namely Aeluropus lagopoides, Allenrolfea occidentalis, Anthoxanthum monticola, Arthrocnemum macrostachyum, Cressa cretica, Halocnemum strobilaceum, Seidlitzia rosmarinus, Suaeda vermiculata, Tamarix passerinoides, and Typha latifolia. Moreover, the species N. lacticolonia and N. pernambucoensis are new records for the mycobiota of Iran.


Assuntos
Ascomicetos , Endófitos , Filogenia , Poaceae , Áreas Alagadas , Irã (Geográfico) , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Poaceae/microbiologia , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Tubulina (Proteína)/genética
8.
Phytopathology ; 114(6): 1411-1420, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38264989

RESUMO

Ceratocystis fimbriata is a destructive fungal pathogen of sweetpotato (Ipomoea batatas) that leads to losses at all stages of sweetpotato production. Accurate detection of C. fimbriata would allow for more efficient deployment of management tactics in sweetpotato production. To develop a diagnostic assay, a hybrid genome assembly of C. fimbriata isolate AS236 was generated. The resulting 31.7-MB assembly was near-chromosome level, with 18 contigs, 6,481 predicted genes, and a BUSCO completion score of 98.4% when compared with the fungus-specific lineage database. Additional Illumina DNA reads from C. manginecans, C. platani, and a second C. fimbriata isolate (C1421) were then mapped to the assembled genome using BOWTIE2 and counted using HTSeq, which identified 148 genes present only within C. fimbriata as molecular diagnostic candidates; 6 single-copy and 35 highly multi-copy (>40 BLAST hits), as determined through a self-BLAST-P alignment. Primers for PCR were designed in the 200-bp flanking region of the first exon for each candidate, and the candidates were validated against a diverse DNA panel containing Ceratocystis species, sweetpotato pathogens, and plants. After validation, two diagnostic candidates amplified only C. fimbriata DNA and were considered to be highly specific to the species. These genetic markers will serve as valuable diagnostic tools with multiple applications including the detection of C. fimbriata in seed, soil, and wash water in sweetpotato production.


Assuntos
Ascomicetos , Genoma Fúngico , Ipomoea batatas , Doenças das Plantas , Ipomoea batatas/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Genoma Fúngico/genética , Análise de Sequência de DNA , DNA Fúngico/genética
9.
PLoS Genet ; 17(3): e1009448, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33750960

RESUMO

DNA methylation is found throughout all domains of life, yet the extent and function of DNA methylation differ among eukaryotes. Strains of the plant pathogenic fungus Zymoseptoria tritici appeared to lack cytosine DNA methylation (5mC) because gene amplification followed by Repeat-Induced Point mutation (RIP) resulted in the inactivation of the dim2 DNA methyltransferase gene. 5mC is, however, present in closely related sister species. We demonstrate that inactivation of dim2 occurred recently as some Z. tritici isolates carry a functional dim2 gene. Moreover, we show that dim2 inactivation occurred by a different path than previously hypothesized. We mapped the genome-wide distribution of 5mC in strains with or without functional dim2 alleles. Presence of functional dim2 correlates with high levels of 5mC in transposable elements (TEs), suggesting a role in genome defense. We identified low levels of 5mC in strains carrying non-functional dim2 alleles, suggesting that 5mC is maintained over time, presumably by an active Dnmt5 DNA methyltransferase. Integration of a functional dim2 allele in strains with mutated dim2 restored normal 5mC levels, demonstrating de novo cytosine methylation activity of Dim2. To assess the importance of 5mC for genome evolution, we performed an evolution experiment, comparing genomes of strains with high levels of 5mC to genomes of strains lacking functional dim2. We found that presence of a functional dim2 allele alters nucleotide composition by promoting C to T transitions (C→T) specifically at CpA (CA) sites during mitosis, likely contributing to TE inactivation. Our results show that 5mC density at TEs is a polymorphic trait in Z. tritici populations that can impact genome evolution.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/genética , DNA (Citosina-5-)-Metiltransferase 1/deficiência , Evolução Molecular , Taxa de Mutação , Mutação , 5-Metilcitosina/metabolismo , Alelos , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Geografia , Mitose , Filogeografia , Locos de Características Quantitativas
10.
Plant Dis ; 108(6): 1491-1500, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38780477

RESUMO

Ceratocystis manginecans has caused significant losses in forestry productivity in Indonesia and neighboring nations. It also infects horticultural trees, but the host range of individual isolates of C. manginecans is poorly studied. So, this study aimed to better understand the potential host range and evaluate aggressiveness against forestry and fruit tree species of C. manginecans isolated from various tree species in Indonesia. Five C. manginecans isolates, four from different tree species and one from the shot-hole borer Euwallacea perbrevis, were used to inoculate seven fruit and six forest tree species, including E. pellita and Acacia mangium. Many of the inoculated trees produced typical canker disease symptoms, such as rough, swollen, and cracked lesions on the bark, but some trees did not have any external symptoms. Mortality in the most susceptible clone of A. mangium was 40% within 8 weeks. Forest tree species were more susceptible than fruit trees, with the length of xylem discoloration ranging from 0.4 to 101 cm. In fruit trees, the average extent of xylem discoloration was lower, ranging from 0.4 to 20.5 cm; however, mortalities were recorded in two fruit tree species, Citrus microcarpa and Durio zibethinus. Host-isolate interaction was evident; isolate Ep106C from Eucalyptus pellita caused the greatest xylem discoloration in Citrus sp., whereas Hy163C from Hymenaea courbaril was the most damaging in D. zibethinus, Artocarpus heterophyllus, and Mangifera indica. Increasingly globalized food and fiber systems increase risk of disease spread, and the serious threat of C. manginecans incursions into countries where it is not present must be evaluated more thoroughly.


Assuntos
Agricultura Florestal , Doenças das Plantas , Árvores , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Ascomicetos/fisiologia , Ascomicetos/isolamento & purificação , Especificidade de Hospedeiro , Indonésia , Animais , Frutas/microbiologia , Acacia/microbiologia
11.
Plant Dis ; 108(6): 1461-1469, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38240714

RESUMO

Northern corn leaf blight (NCLB), caused by Exserohilum turcicum, is one of the most devastating foliar diseases of maize. Rapid and accurate diagnosis for this disease is urgently needed but still limited. Here, we establish a field-deployable diagnostic method to detect E. turcicum based on loop-mediated isothermal amplification (LAMP) assays. A software application called K-mer Elimination by Cross-reference was used to search for the specific sequences belonging to E. turcicum by comparing the whole genome sequence between E. turcicum and other known maize pathogens. Five LAMP primer sets were designed based on specific and single-copy fragments of E. turcicum. Post-LAMP analyses indicated that only the primer set, Et9468_set1, was the most suitable, producing a ladder-like amplification pattern in the agarose gel electrophoresis and a strong fluorescence signal in the presence of SYBR Green I. The LAMP assay using Et9468_set1 primers demonstrated a high level of specificity in distinguishing E. turcicum from six other common fungal pathogens of maize, as well as 12 more fungal and oomycete strains including the epiphytic fungi from maize leaves and other crop pathogens. Moreover, it exhibited remarkable sensitivity by detecting five copies per reaction, which was approximately 104 times more sensitive compared with conventional PCR. The LAMP assay successfully detected E. turcicum in field maize leaves without DNA extraction, demonstrating its suitability for rapid on-spot detection of NCLB. Our study provides a direct LAMP diagnostic method to detect E. turcicum, which enables on-site pathogen detection in the field and the development of preventive strategies for NCLB management.


Assuntos
Ascomicetos , Primers do DNA , Técnicas de Amplificação de Ácido Nucleico , Doenças das Plantas , Zea mays , Doenças das Plantas/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Zea mays/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Primers do DNA/genética , Folhas de Planta/microbiologia , Sensibilidade e Especificidade , DNA Fúngico/genética , Técnicas de Diagnóstico Molecular/métodos
12.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891961

RESUMO

Southern stem canker (SSC) of soybean, attributable to the fungal pathogen Diaporthe aspalathi, results in considerable losses of soybean in the field and has damaged production in several of the main soybean-producing countries worldwide. Early and precise identification of the causal pathogen is imperative for effective disease management. In this study, we performed an RPA-CRISPR/Cas12a, as well as LAMP, PCR and real-time PCR assays to verify and compare their sensitivity, specificity and simplicity and the practicality of the reactions. We screened crRNAs targeting a specific single-copy gene, and optimized the reagent concentrations, incubation temperatures and times for the conventional PCR, real-time PCR, LAMP, RPA and Cas12a cleavage stages for the detection of D. aspalathi. In comparison with the PCR-based assays, two thermostatic detection technologies, LAMP and RPA-CRISPR/Cas12a, led to higher specificity and sensitivity. The sensitivity of the LAMP assay could reach 0.01 ng µL-1 genomic DNA, and was 10 times more sensitive than real-time PCR (0.1 ng µL-1) and 100 times more sensitive than conventional PCR assay (1.0 ng µL-1); the reaction was completed within 1 h. The sensitivity of the RPA-CRISPR/Cas12a assay reached 0.1 ng µL-1 genomic DNA, and was 10 times more sensitive than conventional PCR (1.0 ng µL-1), with a 30 min reaction time. Furthermore, the feasibility of the two thermostatic methods was validated using infected soybean leaf and seeding samples. The rapid, visual one-pot detection assay developed could be operated by non-expert personnel without specialized equipment. This study provides a valuable diagnostic platform for the on-site detection of SSC or for use in resource-limited areas.


Assuntos
Ascomicetos , Sistemas CRISPR-Cas , Glycine max , Sistemas CRISPR-Cas/genética , Glycine max/microbiologia , Glycine max/genética , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Técnicas de Diagnóstico Molecular/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase/métodos
13.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791224

RESUMO

Cotton Verticillium wilt is mainly caused by the fungus Verticillium dahliae, which threatens the production of cotton. Its pathogen can survive in the soil for several years in the form of microsclerotia, making it a destructive soil-borne disease. The accurate, sensitive, and rapid detection of V. dahliae from complex soil samples is of great significance for the early warning and management of cotton Verticillium wilt. In this study, we combined the loop-mediated isothermal amplification (LAMP) with CRISPR/Cas12a technology to develop an accurate, sensitive, and rapid detection method for V. dahliae. Initially, LAMP primers and CRISPR RNA (crRNA) were designed based on a specific DNA sequence of V. dahliae, which was validated using several closely related Verticillium spp. The lower detection limit of the LAMP-CRISPR/Cas12a combined with the fluorescent visualization detection system is approximately ~10 fg/µL genomic DNA per reaction. When combined with crude DNA-extraction methods, it is possible to detect as few as two microsclerotia per gram of soil, with the total detection process taking less than 90 min. Furthermore, to improve the method's user and field friendliness, the field detection results were visualized using lateral flow strips (LFS). The LAMP-CRISPR/Cas12a-LFS system has a lower detection limit of ~1 fg/µL genomic DNA of the V. dahliae, and when combined with the field crude DNA-extraction method, it can detect as few as six microsclerotia per gram of soil, with the total detection process taking less than 2 h. In summary, this study expands the application of LAMP-CRISPR/Cas12a nucleic acid detection in V. dahliae and will contribute to the development of field-deployable diagnostic productions.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Amplificação de Ácido Nucleico , Doenças das Plantas , Microbiologia do Solo , Técnicas de Amplificação de Ácido Nucleico/métodos , Doenças das Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Gossypium/microbiologia , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Verticillium/genética
14.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163862

RESUMO

Truffles represent the best known and most expensive edible mushroom. Known as Ascomycetes, they belong to the genus Tuber and live in symbiosis with plant host roots. Due to their extraordinary taste and smell, truffles are sold worldwide for high prices of up to 3000-5000 euros per kilogram (Tuber magnatum PICO). Amongst black truffles, the species Tuber melanosporum VITTAD. is highly regarded for its organoleptic properties. Nonetheless, numerous different sorts of black truffle are offered at lower prices, including Tuber aestivum VITTAD., Tuber indicum and Tuber uncinatum, which represent the most frequently consumed types. Because truffles do not differ visually for inexperienced consumers, food fraud is likely to occur. In particular, for the highly prized Tuber melanosporum, which morphologically forms very similar fruiting bodies to those of Tuber indicum, there is a risk of fraud via imported truffles from Asia. In this study, 126 truffle samples belonging to the four mentioned species were investigated by four different NIR instruments, including three miniaturized devices-the Tellspec Enterprise Sensor, the VIAVI solutions MicroNIR 1700 and the Consumer Physics SCiO-working on different technical principles. Three different types of measurement techniques were applied for all instruments (outer shell, rotational device and fruiting body) in order to identify the best results for classification and quality assurance in a non-destructive manner. Results provided differentiation with an accuracy up to 100% for the expensive Tuber melanosporum from Tuber indicum. Classification between Tuber melanosporum, Tuber indicum, Tuber aestivum and Tuber uncinatum could also be achieved with success of 100%. In addition, quality monitoring including discrimination between fresh and frozen/thawed, and prediction of the approximate date of harvesting, was performed. Furthermore, feasibility studies according to the geographical origin of the truffle were attempted. The presented work compares the performance for prediction and quality monitoring of portable vs. benchtop NIR devices and applied measurement techniques in order to be able to present a suitable, accurate, fast, non-destructive and reliable method for consumers.


Assuntos
Ascomicetos/química , Ascomicetos/classificação , Técnicas Biossensoriais/métodos , Contaminação de Alimentos/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Ascomicetos/isolamento & purificação , Especificidade da Espécie
15.
Biochem Biophys Res Commun ; 563: 23-30, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34058471

RESUMO

Rice blast disease caused by infection with Magnaporthe oryzae, a hemibiotrophic fungal pathogen, significantly reduces the yield production. However, the rice defense mechanism against blast disease remains elusive. To identify the genes involved in the regulation of rice defense to blast disease, dissociation (Ds) transposon tagging mutant lines were analyzed in terms of their response to M. oryzae isolate Guy11. Among them, CBL-interactingprotein kinase31 (CIPK31) mutants were more susceptible than wild-type plants to blast. The CIPK31 transcript was found to be insensitive to Guy11 infection, and the CIPK31-GFP was localized to the cytosol and nucleus. Overexpression of CIPK31 promoted rice defense to blast. Further analysis indicated that CIPK31 interacts with Calcineurin B-like 2 (CBL2) and CBL6 at the plasma membrane, and cbl2 mutants are more susceptible to blast compared with wild-type plants, suggesting that calcium signaling might partially through the CBL2-CIPK31 signaling regulate rice defense. Yeast two-hybrid results showed that AKT1-like (AKT1L), a potential potassium (K+) channel protein, interacted with CIPK31, and the K+ level was significantly lower in the cipk31 mutants than in the wild-type control. In addition, exogenous potassium application increased rice resistance to blast, suggesting that CIPK31 might interact with AKT1L to increase K+ uptake, thereby promoting resistance to blast. Taken together, the results presented here demonstrate that CBL2-CIPK31-AKT1L is a new signaling pathway that regulates rice defense to blast disease.


Assuntos
Ascomicetos/isolamento & purificação , Oryza/metabolismo , Potássio/metabolismo , Proteínas Quinases/metabolismo , Resistência à Doença , Oryza/citologia , Oryza/microbiologia , Doenças das Plantas , Proteínas Quinases/genética
16.
Arch Microbiol ; 203(6): 3361-3372, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33877389

RESUMO

Cinnamomum longepaniculatum (Gamble) N. Chao is an important woody incense plant that contains volatile terpenoids and has been extensively cultivated in Yibin, China. However, the relationship between endophytic fungal diversity and C. longepaniculatum species remains unclear. Here, fungal taxa in different tissue samples were analyzed using Illumina-based sequencing of ITS1 region of fungal rDNA genes. Results showed that 476 OTUs were identified in all tissues of C. longepaniculatum, with 78 OTUs common among all tissues. Similarity cluster analysis indicated that these OTUs belong to 5 phyla and at least 18 genera, with a large number of OTUs remaining unidentified at family and genus levels. The fungal community in seeds exhibited the greatest richness and diversity, followed by those in branches, leaves, and roots, respectively. Unclassified Chaetosphaeriales (91.66%), Passalora (57.17%), and unclassified Ascomycota (58.79%) OTUs dominated in root, branch, and leaf communities, respectively, and other common groups in the branch community included unclassified Ascomycota (12.13%), Houjia (10.38%), and Pseudoveronaea (5.43%), whereas other common groups in leaf community included Passalora (11.43%) and Uwebraunia (8.58%). Meanwhile, the seed community was dominated by unclassified Ascomycota (16.98%), unclassified Pleosporaceae (15.46%), and Talaromyces (12.50%) and also included high proportions of unclassified Nectriaceae (7.68%), Aspergillus (6.95%), Pestalotiopsis (6.02%), and Paraconiothyrium (5.11%) and several seed-specific taxa, including Peniophora, Cryptodiscus, and Penicillium. These findings suggest that Yibin-native C. longepaniculatum harbors rich and diverse endophytic communities that may represent an underexplored reservoir of biological resources.


Assuntos
Cinnamomum/microbiologia , Fungos/isolamento & purificação , Ascomicetos/isolamento & purificação , Biodiversidade , China , DNA Ribossômico/química , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Fungos/classificação , Fungos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Micobioma , Sementes/microbiologia
17.
Arch Microbiol ; 203(5): 2575-2589, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33683395

RESUMO

The DNA barcodes were developed from ITS region for the identification of fungal plant pathogens namely, Alternaria alternata and A. tenuissima both causing leaf spots, Ascochyta rabiei causing Ascochyta blight, Fusarium oxysporum f. sp. ciceris causing wilt, Macrophomina phaseolina causing dry root rot, Rhizoctonia solani causing web blight and wet root rot, Sclerotium (Athelia) rolfsii causing collar rot, Sclerotinia sclerotiorum causing stem rot and Cercospora canescens and Pseudocercospora cruenta both causing leaf spots in pulse crops. Barcode compliance for A. alternata (DBTPQ001-18), A. tenuissima (DBTPQ002-18), A. rabiei (DBTPQ003-18), F. oxysporum f. sp. ciceris (DBTPQ004-18), M. phaseolina (DBTPQ005-18), R. solani (DBTPQ006-18), S. rolfsii (DBTPQ007-18), S. sclerotiorum (DBTPQ008-18), C. canescens (DBTPQ009-18) and P. cruenta (DBTPQ029-20) have been generated based on the Barcode of Life Data System (BOLD) system. In addition to ITS, other genomic regions were also explored and on the basis of sequence variation they were ranked as TEF-α > SSU > LSU > ß-tubulin. These genes could be considered for secondary barcode and phylogenetic relatedness. ITS-based markers for the detection of A. alternata (BAA2aF and BAA2aR) and R. solani (BRS17cF and BRS17cR) were developed which provided 400 bp and 220 bp amplicons, respectively. While, for F. oxysporum f. sp. ciceris, COX1-based marker (FOCox1F and FOCox3R) was developed which amplified 150 bp. The markers proved highly specific and sensitive with detection limit of 0.0001 ng of template DNA using qPCR and simultaneously detected these three pathogens. The DNA barcodes and diagnostics developed are suitable for quick and reliable detection of these pathogens during quarantine processing and field diagnostics.


Assuntos
Produtos Agrícolas/microbiologia , Código de Barras de DNA Taxonômico , Fabaceae/microbiologia , Fungos/classificação , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase , Alternaria/classificação , Alternaria/genética , Alternaria/isolamento & purificação , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/isolamento & purificação , DNA Fúngico/genética , Fungos/genética , Fungos/isolamento & purificação , Fusarium/classificação , Fusarium/genética , Fusarium/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Rhizoctonia/classificação , Rhizoctonia/genética , Rhizoctonia/isolamento & purificação
18.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34731078

RESUMO

A growing interest in fungi that occur within symptom-less plants and lichens (endophytes) has uncovered previously uncharacterized species in diverse biomes worldwide. In many temperate and boreal forests, endophytic Coniochaeta (Sacc.) Cooke (Coniochaetaceae, Coniochaetales, Sordariomycetes, Ascomycota) are commonly isolated on standard media, but rarely are characterized. We examined 26 isolates of Coniochaeta housed at the Gilbertson Mycological Herbarium. The isolates were collected from healthy photosynthetic tissues of conifers, angiosperms, mosses and lichens in Canada, Sweden and the United States. Their barcode sequences (nuclear ribosomal internal transcribed spacer and 5.8S; ITS rDNA) were ≤97% similar to any documented species available through GenBank. Phylogenetic analyses based on two loci (ITS rDNA and translation elongation factor 1-alpha) indicated that two isolates represented Coniochaeta cymbiformispora, broadening the ecological niche and geographic range of a species known previously from burned soil in Japan. The remaining 24 endophytes represented three previously undescribed species that we characterize here: Coniochaeta elegans sp. nov., Coniochaeta montana sp. nov. and Coniochaeta nivea sp. nov. Each has a wide host range, including lichens, bryophytes and vascular plants. C. elegans sp. nov. and C. nivea sp. nov. have wide geographic ranges. C. montana sp. nov. occurs in the Madrean biome of Arizona (USA), where it is sympatric with the other species described here. All three species display protease, chitinase and cellulase activity in vitro. Overall, this study provides insight into the ecological and evolutionary diversity of Coniochaeta and suggests that these strains may be amenable for studies of traits relevant to a horizontally transmitted, symbiotic lifestyle.


Assuntos
Ascomicetos , Filogenia , Animais , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Canadá , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Endófitos/classificação , Endófitos/isolamento & purificação , Técnicas de Tipagem Micológica , Análise de Sequência de DNA , Suécia , Estados Unidos
19.
Artigo em Inglês | MEDLINE | ID: mdl-33502293

RESUMO

During a mycological survey of freshwater hyphomycetes on submerged leaves in southwest China, a new species, Anacraspedodidymum submersum, was isolated. The new species A. submersum is characterized by having monophialidic conidiogenous cells with funnel shaped collarettes and globose or subglobose, aseptate and hyaline conidia. Morphologically, A. submersum is somewhat similar to A. aquaticum and A. hyalosporum in conidiophores and conidiogenous cells, but can be easily distinguished by its subglobose to globose and smaller conidia. Phylogenetic analysis of combined ITS and LSU sequences show that the new species of Anacraspedodidymum clustered together with the genus Thozetella in Chaetosphaeriaceae. A full description, illustrations and a phylogenetic tree showing the position of A. submersum are provided herein.


Assuntos
Ascomicetos/classificação , Água Doce/microbiologia , Filogenia , Ascomicetos/isolamento & purificação , China , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Técnicas de Tipagem Micológica , Análise de Sequência de DNA , Esporos Fúngicos
20.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34846290

RESUMO

Exophiala is an important genus, with several species associated with infections in humans and animals. In a survey of soil fungal diversity in Yunnan province, PR China, a novel taxon, Exophiala pseudooligosperma sp. nov., was identified based on combined morphological and molecular phylogenetic features. Morphologically, this species is characterized by having torulose, septate hyphae and swollen, terminal or intercalary conidiogenous cells arising at acute angles from aerial hyphae. Phylogenetic analysis of the combined sequences of the internal transcribed spacer, the small and large nuclear subunit of the rRNA gene and part of the ß-tubulin gene confirmed the phylogenetic position of the new species within the genus Exophiala.


Assuntos
Ascomicetos , Exophiala , Filogenia , Microbiologia do Solo , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Composição de Bases , China , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Exophiala/genética , Técnicas de Tipagem Micológica , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA