Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.842
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(6): 1469-1485, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33711259

RESUMO

In many asthmatics, chronic airway inflammation is driven by IL-4-, IL-5-, and IL-13-producing Th2 cells or ILC2s. Type 2 cytokines promote hallmark features of the disease such as eosinophilia, mucus hypersecretion, bronchial hyperresponsiveness (BHR), IgE production, and susceptibility to exacerbations. However, only half the asthmatics have this "type 2-high" signature, and "type 2-low" asthma is more associated with obesity, presence of neutrophils, and unresponsiveness to corticosteroids, the mainstay asthma therapy. Here, we review the underlying immunological basis of various asthma endotypes by discussing results obtained from animal studies as well as results generated in clinical studies targeting specific immune pathways.


Assuntos
Asma/imunologia , Imunidade Adaptativa , Células Epiteliais Alveolares/patologia , Animais , Asma/fisiopatologia , Asma/terapia , Asma/virologia , Linfócitos B/imunologia , Terapia Biológica , Humanos , Imunoglobulina E/imunologia
2.
Immunity ; 52(2): 241-255, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075727

RESUMO

Asthma is a common chronic respiratory disease affecting more than 300 million people worldwide. Clinical features of asthma and its immunological and molecular etiology vary significantly among patients. An understanding of the complexities of asthma has evolved to the point where precision medicine approaches, including microbiome analysis, are being increasingly recognized as an important part of disease management. Lung and gut microbiota play several important roles in the development, regulation, and maintenance of healthy immune responses. Dysbiosis and subsequent dysregulation of microbiota-related immunological processes affect the onset of the disease, its clinical characteristics, and responses to treatment. Bacteria and viruses are the most extensively studied microorganisms relating to asthma pathogenesis, but other microbes, including fungi and even archaea, can potently influence airway inflammation. This review focuses on recently discovered connections between lung and gut microbiota, including bacteria, fungi, viruses, and archaea, and their influence on asthma.


Assuntos
Asma/imunologia , Asma/microbiologia , Trato Gastrointestinal , Pulmão , Microbiota/imunologia , Animais , Asma/patologia , Asma/fisiopatologia , Disbiose/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/parasitologia , Trato Gastrointestinal/virologia , Humanos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/parasitologia , Pulmão/virologia , Sistema Respiratório/imunologia , Sistema Respiratório/microbiologia , Sistema Respiratório/parasitologia , Sistema Respiratório/virologia
3.
Immunity ; 50(4): 975-991, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995510

RESUMO

Asthma is a chronic inflammatory airway disease associated with type 2 cytokines interleukin-4 (IL-4), IL-5, and IL-13, which promote airway eosinophilia, mucus overproduction, bronchial hyperresponsiveness (BHR), and immunogloubulin E (IgE) synthesis. However, only half of asthma patients exhibit signs of an exacerbated Type 2 response. "Type 2-low" asthma has different immune features: airway neutrophilia, obesity-related systemic inflammation, or in some cases, few signs of immune activation. Here, we review the cytokine networks driving asthma, placing these in cellular context and incorporating insights from cytokine-targeting therapies in the clinic. We discuss established and emerging paradigms in the context of the growing appreciation of disease heterogeneity and argue that the development of new and improved therapeutics will require understanding the diverse mechanisms underlying the spectrum of asthma pathologies.


Assuntos
Asma/imunologia , Citocinas/imunologia , Imunidade Adaptativa , Corticosteroides/uso terapêutico , Alérgenos/imunologia , Animais , Antiasmáticos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Asma/classificação , Asma/tratamento farmacológico , Asma/fisiopatologia , Ensaios Clínicos como Assunto , Citocinas/antagonistas & inibidores , Células Epiteliais/imunologia , Humanos , Inflamação/imunologia , Interferons/imunologia , Camundongos , Camundongos Knockout , Modelos Imunológicos , Células Th2/imunologia
4.
Am J Respir Crit Care Med ; 209(10): 1196-1207, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113166

RESUMO

Rationale: Density thresholds in computed tomography (CT) lung scans quantify air trapping (AT) at the whole-lung level but are not informative for AT in specific bronchopulmonary segments. Objectives: To apply a segment-based measure of AT in asthma to investigate the clinical determinants of AT in asthma. Methods: In each of 19 bronchopulmonary segments in CT lung scans from 199 patients with asthma, AT was categorized as present if lung attenuation was less than -856 Hounsfield units at expiration in ⩾15% of the lung area. The resulting AT segment score (0-19) was related to patient outcomes. Measurements and Main Results: AT varied at the lung segment level and tended to persist at the patient and lung segment levels over 3 years. Patients with widespread AT (⩾10 segments) had more severe asthma (P < 0.05). The mean (±SD) AT segment score in patients with a body mass index ⩾30 kg/m2 was lower than in patients with a body mass index <30 kg/m2 (3.5 ± 4.6 vs. 5.5 ± 6.3; P = 0.008), and the frequency of AT in lower lobe segments in obese patients was less than in upper and middle lobe segments (35% vs. 46%; P = 0.001). The AT segment score in patients with sputum eosinophils ⩾2% was higher than in patients without sputum eosinophilia (7.0 ± 6.1 vs. 3.3 ± 4.9; P < 0.0001). Lung segments with AT more frequently had airway mucus plugging than lung segments without AT (48% vs. 18%; P ⩽ 0.0001). Conclusions: In patients with asthma, air trapping is more severe in those with airway eosinophilia and mucus plugging, whereas those who are obese have less severe trapping because their lower lobe segments are spared.


Assuntos
Asma , Eosinofilia , Obesidade , Tomografia Computadorizada por Raios X , Humanos , Asma/diagnóstico por imagem , Asma/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/fisiopatologia , Adulto , Eosinofilia/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Idoso , Índice de Massa Corporal
5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35210367

RESUMO

Mounting evidence suggests that nematode infection can protect against disorders of immune dysregulation. Administration of live parasites or their excretory/secretory (ES) products has shown therapeutic effects across a wide range of animal models for immune disorders, including asthma. Human clinical trials of live parasite ingestion for the treatment of immune disorders have produced promising results, yet concerns persist regarding the ingestion of pathogenic organisms and the immunogenicity of protein components. Despite extensive efforts to define the active components of ES products, no small molecules with immune regulatory activity have been identified from nematodes. Here we show that an evolutionarily conserved family of nematode pheromones called ascarosides strongly modulates the pulmonary immune response and reduces asthma severity in mice. Screening the inhibitory effects of ascarosides produced by animal-parasitic nematodes on the development of asthma in an ovalbumin (OVA) murine model, we found that administration of nanogram quantities of ascr#7 prevented the development of lung eosinophilia, goblet cell metaplasia, and airway hyperreactivity. Ascr#7 suppressed the production of IL-33 from lung epithelial cells and reduced the number of memory-type pathogenic Th2 cells and ILC2s in the lung, both key drivers of the pathology of asthma. Our findings suggest that the mammalian immune system recognizes ascarosides as an evolutionarily conserved molecular signature of parasitic nematodes. The identification of a nematode-produced small molecule underlying the well-documented immunomodulatory effects of ES products may enable the development of treatment strategies for allergic diseases.


Assuntos
Inflamação/prevenção & controle , Nematoides/química , Traqueia/efeitos dos fármacos , Animais , Asma/fisiopatologia , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Hipersensibilidade/fisiopatologia , Inflamação/induzido quimicamente , Camundongos , Camundongos Endogâmicos BALB C , Nematoides/patogenicidade , Ovalbumina/efeitos adversos , Bibliotecas de Moléculas Pequenas/farmacologia , Traqueia/fisiopatologia
6.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34949717

RESUMO

Airway remodeling and airway hyperresponsiveness are central drivers of asthma severity. Airway remodeling is a structural change involving the dedifferentiation of airway smooth muscle (ASM) cells from a quiescent to a proliferative and secretory phenotype. Here, we show up-regulation of the endoplasmic reticulum Ca2+ sensor stromal-interacting molecule 1 (STIM1) in ASM of asthmatic mice. STIM1 is required for metabolic and transcriptional reprogramming that supports airway remodeling, including ASM proliferation, migration, secretion of cytokines and extracellular matrix, enhanced mitochondrial mass, and increased oxidative phosphorylation and glycolytic flux. Mechanistically, STIM1-mediated Ca2+ influx is critical for the activation of nuclear factor of activated T cells 4 and subsequent interleukin-6 secretion and transcription of pro-remodeling transcription factors, growth factors, surface receptors, and asthma-associated proteins. STIM1 drives airway hyperresponsiveness in asthmatic mice through enhanced frequency and amplitude of ASM cytosolic Ca2+ oscillations. Our data advocates for ASM STIM1 as a target for asthma therapy.


Assuntos
Remodelação das Vias Aéreas , Asma/fisiopatologia , Músculo Liso/fisiopatologia , Hipersensibilidade Respiratória , Molécula 1 de Interação Estromal/fisiologia , Animais , Asma/patologia , Cálcio/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Reprogramação Celular/fisiologia , Doença Crônica , Transporte de Íons , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Músculo Liso/patologia , Molécula 1 de Interação Estromal/genética , Transcrição Gênica/fisiologia
7.
Proc Natl Acad Sci U S A ; 119(26): e2121513119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737832

RESUMO

Both chronic obstructive pulmonary disease (COPD) and asthma are severe respiratory diseases. Bitter receptor-mediated bronchodilation is a potential therapy for asthma, but the mechanism underlying the agonistic relaxation of airway smooth muscle (ASM) is not well defined. By exploring the ASM relaxation mechanism of bitter substances, we observed that pretreatment with the bitter substances nearly abolished the methacholine (MCh)-induced increase in the ASM cell (ASMC) calcium concentration, thereby suppressing the calcium-induced contraction release. The ASM relaxation was significantly inhibited by simultaneous deletion of three Gαt proteins, suggesting an interaction between Tas2R and AChR signaling cascades in the relaxation process. Biochemically, the Gαt released by Tas2R activation complexes with AChR and blocks the Gαq cycling of AChR signal transduction. More importantly, a bitter substance, kudinoside A, not only attenuates airway constriction but also significantly inhibits pulmonary inflammation and tissue remodeling in COPD rats, indicating its modulation of additional Gαq-associated pathological processes. Thus, our results suggest that Tas2R activation may be an ideal strategy for halting multiple pathological processes of COPD.


Assuntos
Asma , Músculo Liso , Doença Pulmonar Obstrutiva Crônica , Receptores Acoplados a Proteínas G , Ativação Transcricional , Animais , Asma/genética , Asma/metabolismo , Asma/fisiopatologia , Broncodilatadores/farmacologia , Cálcio/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
8.
J Allergy Clin Immunol ; 153(5): 1181-1193, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395082

RESUMO

Airway hyperresponsiveness (AHR) is a key clinical feature of asthma. The presence of AHR in people with asthma provides the substrate for bronchoconstriction in response to numerous diverse stimuli, contributing to airflow limitation and symptoms including breathlessness, wheeze, and chest tightness. Dysfunctional airway smooth muscle significantly contributes to AHR and is displayed as increased sensitivity to direct pharmacologic bronchoconstrictor stimuli, such as inhaled histamine and methacholine (direct AHR), or to endogenous mediators released by activated airway cells such as mast cells (indirect AHR). Research in in vivo human models has shown that the disrupted airway epithelium plays an important role in driving inflammation that mediates indirect AHR in asthma through the release of cytokines such as thymic stromal lymphopoietin and IL-33. These cytokines upregulate type 2 cytokines promoting airway eosinophilia and induce the release of bronchoconstrictor mediators from mast cells such as histamine, prostaglandin D2, and cysteinyl leukotrienes. While bronchoconstriction is largely due to airway smooth muscle contraction, airway structural changes known as remodeling, likely mediated in part by epithelial-derived mediators, also lead to airflow obstruction and may enhance AHR. In this review, we outline the current knowledge of the role of the airway epithelium in AHR in asthma and its implications on the wider disease. Increased understanding of airway epithelial biology may contribute to better treatment options, particularly in precision medicine.


Assuntos
Asma , Mucosa Respiratória , Humanos , Asma/imunologia , Asma/fisiopatologia , Animais , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Citocinas/metabolismo , Citocinas/imunologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/fisiopatologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/fisiopatologia , Mastócitos/imunologia , Broncoconstrição
9.
J Allergy Clin Immunol ; 153(5): 1268-1281, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38551536

RESUMO

BACKGROUND: Novel biomarkers (BMs) are urgently needed for bronchial asthma (BA) with various phenotypes and endotypes. OBJECTIVE: We sought to identify novel BMs reflecting tissue pathology from serum extracellular vesicles (EVs). METHODS: We performed data-independent acquisition of serum EVs from 4 healthy controls, 4 noneosinophilic asthma (NEA) patients, and 4 eosinophilic asthma (EA) patients to identify novel BMs for BA. We confirmed EA-specific BMs via data-independent acquisition validation in 61 BA patients and 23 controls. To further validate these findings, we performed data-independent acquisition for 6 patients with chronic rhinosinusitis without nasal polyps and 7 patients with chronic rhinosinusitis with nasal polyps. RESULTS: We identified 3032 proteins, 23 of which exhibited differential expression in EA. Ingenuity pathway analysis revealed that protein signatures from each phenotype reflected disease characteristics. Validation revealed 5 EA-specific BMs, including galectin-10 (Gal10), eosinophil peroxidase, major basic protein, eosinophil-derived neurotoxin, and arachidonate 15-lipoxygenase. The potential of Gal10 in EVs was superior to that of eosinophils in terms of diagnostic capability and detection of airway obstruction. In rhinosinusitis patients, 1752 and 8413 proteins were identified from EVs and tissues, respectively. Among 11 BMs identified in EVs and tissues from patients with chronic rhinosinusitis with nasal polyps, 5 (including Gal10 and eosinophil peroxidase) showed significant correlations between EVs and tissues. Gal10 release from EVs was implicated in eosinophil extracellular trapped cell death in vitro and in vivo. CONCLUSION: Novel BMs such as Gal10 from serum EVs reflect disease pathophysiology in BA and may represent a new target for liquid biopsy approaches.


Assuntos
Asma , Biomarcadores , Vesículas Extracelulares , Galectinas , Sinusite , Humanos , Asma/sangue , Asma/fisiopatologia , Asma/imunologia , Asma/diagnóstico , Vesículas Extracelulares/metabolismo , Feminino , Masculino , Galectinas/sangue , Biomarcadores/sangue , Adulto , Pessoa de Meia-Idade , Sinusite/sangue , Sinusite/imunologia , Rinite/sangue , Rinite/imunologia , Rinite/fisiopatologia , Pólipos Nasais/imunologia , Pólipos Nasais/sangue , Eosinófilos/imunologia , Idoso , Doença Crônica
10.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L3-L18, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38742284

RESUMO

Signal transduction by G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immunoreceptors converge at the activation of phospholipase C (PLC) for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This is a point for second-messenger bifurcation where DAG via protein kinase C (PKC) and IP3 via calcium activate distinct protein targets and regulate cellular functions. IP3 signaling is regulated by multiple calcium influx and efflux proteins involved in calcium homeostasis. A family of lipid kinases belonging to DAG kinases (DGKs) converts DAG to phosphatidic acid (PA), negatively regulating DAG signaling and pathophysiological functions. PA, through a series of biochemical reactions, is recycled to produce new molecules of PIP2. Therefore, DGKs act as a central switch in terminating DAG signaling and resynthesis of membrane phospholipids precursor. Interestingly, calcium and PKC regulate the activation of α and ζ isoforms of DGK that are predominantly expressed in airway and immune cells. Thus, DGK forms a feedback and feedforward control point and plays a crucial role in fine-tuning phospholipid stoichiometry, signaling, and functions. In this review, we discuss the previously underappreciated complex and intriguing DAG/DGK-driven mechanisms in regulating cellular functions associated with asthma, such as contraction and proliferation of airway smooth muscle (ASM) cells and inflammatory activation of immune cells. We highlight the benefits of manipulating DGK activity in mitigating salient features of asthma pathophysiology and shed light on DGK as a molecule of interest for heterogeneous diseases such as asthma.


Assuntos
Asma , Diacilglicerol Quinase , Transdução de Sinais , Asma/metabolismo , Asma/patologia , Asma/fisiopatologia , Asma/enzimologia , Humanos , Diacilglicerol Quinase/metabolismo , Animais , Diglicerídeos/metabolismo , Proteína Quinase C/metabolismo
11.
Clin Immunol ; 263: 110228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663494

RESUMO

Asthma is a heterogeneous disease characterized by chronic airway inflammation, reversible airflow limitation, and airway remodeling. Eosinophil peroxidase (EPX) is the most abundant secondary granule protein unique to activated eosinophils. In this study, we aimed to illustrate the effect of EPX on the epithelial-mesenchymal transition (EMT) in BEAS-2B cells. Our research found that both EPX and ADAM33 were negatively correlated with FEV1/FVC and FEV1%pred, and positively correlated with IL-5 levels. Asthma patients had relatively higher levels of ADAM33 and EPX compared to the healthy control group. The expression of TSLP, TGF-ß1 and ADAM33 in the EPX intervention group was significantly higher. Moreover, EPX could promote the proliferation, migration and EMT of BEAS-2B cells, and the effect of EPX on various factors was significantly improved by the PI3K inhibitor LY294002. The findings from this study could potentially offer a novel therapeutic target for addressing airway remodeling in bronchial asthma, particularly focusing on EMT.


Assuntos
Remodelação das Vias Aéreas , Asma , Brônquios , Peroxidase de Eosinófilo , Células Epiteliais , Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta1 , Humanos , Asma/metabolismo , Asma/patologia , Asma/fisiopatologia , Asma/imunologia , Masculino , Feminino , Células Epiteliais/metabolismo , Peroxidase de Eosinófilo/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Pessoa de Meia-Idade , Adulto , Brônquios/patologia , Interleucina-5/metabolismo , Cromonas/farmacologia , Citocinas/metabolismo , Linhagem Celular , Linfopoietina do Estroma do Timo , Proliferação de Células , Movimento Celular , Morfolinas/farmacologia , Proteínas ADAM
12.
N Engl J Med ; 385(24): 2230-2240, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34879449

RESUMO

BACKGROUND: Children with moderate-to-severe asthma continue to have disease complications despite the receipt of standard-of-care therapy. The monoclonal antibody dupilumab has been approved for the treatment of adults and adolescents with asthma as well as with other type 2 inflammatory diseases. METHODS: In this 52-week phase 3, randomized, double-blind, placebo-controlled trial, we assigned 408 children between the ages of 6 and 11 years who had uncontrolled moderate-to-severe asthma to receive a subcutaneous injection of dupilumab (at a dose of 100 mg for those weighing ≤30 kg and 200 mg for those weighing >30 kg) or matched placebo every 2 weeks. All the children continued to receive a stable dose of standard background therapy. The primary end point was the annualized rate of severe asthma exacerbations. Secondary end points included the change from baseline in the percentage of predicted prebronchodilator forced expiratory volume in 1 second (ppFEV1) at week 12 and in the score on the Asthma Control Questionnaire 7 Interviewer-Administered (ACQ-7-IA) at week 24. End points were evaluated in the two primary efficacy populations who had either a type 2 inflammatory asthma phenotype (≥150 blood eosinophils per cubic millimeter or a fraction of exhaled nitric oxide of ≥20 ppb at baseline) or a blood eosinophil count of at least 300 cells per cubic millimeter at baseline. RESULTS: In patients with the type 2 inflammatory phenotype, the annualized rate of severe asthma exacerbations was 0.31 (95% confidence interval [CI], 0.22 to 0.42) with dupilumab and 0.75 (95% CI, 0.54 to 1.03) with placebo (relative risk reduction in the dupilumab group, 59.3%; 95% CI, 39.5 to 72.6; P<0.001). The mean (±SE) change from baseline in the ppFEV1 was 10.5±1.0 percentage points with dupilumab and 5.3±1.4 percentage points with placebo (mean difference, 5.2 percentage points; 95% CI, 2.1 to 8.3; P<0.001). Dupilumab also resulted in significantly better asthma control than placebo (P<0.001). Similar results were observed in the patients with an eosinophil count of at least 300 cells per cubic millimeter at baseline. The incidence of serious adverse events was similar in the two groups. CONCLUSIONS: Among children with uncontrolled moderate-to-severe asthma, those who received add-on dupilumab had fewer asthma exacerbations and better lung function and asthma control than those who received placebo. (Funded by Sanofi and Regeneron Pharmaceuticals; Liberty Asthma VOYAGE ClinicalTrials.gov number, NCT02948959.).


Assuntos
Antiasmáticos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Asma/tratamento farmacológico , Antiasmáticos/administração & dosagem , Antiasmáticos/efeitos adversos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Asma/fisiopatologia , Biomarcadores/análise , Testes Respiratórios , Criança , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Volume Expiratório Forçado , Humanos , Injeções Subcutâneas , Pulmão/fisiopatologia , Masculino , Óxido Nítrico/administração & dosagem , Gravidade do Paciente , Exacerbação dos Sintomas
13.
Thorax ; 79(6): 573-580, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38514183

RESUMO

BACKGROUND: Airway obstruction is defined by spirometry as a low forced expiratory volume in 1 s (FEV1) to forced vital capacity (FVC) ratio. This impaired ratio may originate from a low FEV1 (classic) or a normal FEV1 in combination with a large FVC (dysanaptic). The clinical implications of dysanaptic obstruction during childhood and adolescence in the general population remain unclear. AIMS: To investigate the association between airway obstruction with a low or normal FEV1 in childhood and adolescence, and asthma, wheezing and bronchial hyperresponsiveness (BHR). METHODS: In the BAMSE (Barn/Child, Allergy, Milieu, Stockholm, Epidemiology; Sweden) and PIAMA (Prevention and Incidence of Asthma and Mite Allergy; the Netherlands) birth cohorts, obstruction (FEV1:FVC ratio less than the lower limit of normal, LLN) at ages 8, 12 (PIAMA only) or 16 years was classified as classic (FEV1

Assuntos
Obstrução das Vias Respiratórias , Asma , Sons Respiratórios , Espirometria , Humanos , Criança , Volume Expiratório Forçado/fisiologia , Adolescente , Masculino , Feminino , Asma/fisiopatologia , Asma/epidemiologia , Sons Respiratórios/fisiopatologia , Obstrução das Vias Respiratórias/fisiopatologia , Capacidade Vital/fisiologia , Suécia/epidemiologia , Prevalência , Estudos Transversais , Hiper-Reatividade Brônquica/fisiopatologia , Hiper-Reatividade Brônquica/epidemiologia , Países Baixos/epidemiologia
14.
Eur Respir J ; 63(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636990

RESUMO

BACKGROUND: Accelerated lung function decline is characteristic of COPD. However, the association between blood eosinophil counts and lung function decline, accounting for current smoking status, in young individuals without prevalent lung disease is not fully understood. METHODS: This is a cohort study of 629 784 Korean adults without COPD or a history of asthma at baseline who participated in health screening examinations including spirometry and differential white blood cell counts. We used a linear mixed-effects model to estimate the annual change in forced expiratory volume in 1 s (FEV1) (mL) by baseline blood eosinophil count, adjusting for covariates including smoking status. In addition, we performed a stratified analysis by baseline and time-varying smoking status. RESULTS: During a mean follow-up of 6.5 years (maximum 17.8 years), the annual change in FEV1 (95% CI) in participants with eosinophil counts <100, 100-199, 200-299, 300-499 and ≥500 cells·µL-1 in the fully adjusted model were -23.3 (-23.9--22.7) mL, -24.3 (-24.9--23.7) mL, -24.8 (-25.5--24.2) mL, -25.5 (-26.2--24.8) mL and -26.8 (-27.7--25.9) mL, respectively. When stratified by smoking status, participants with higher eosinophil count had a faster decline in FEV1 than those with lower eosinophil count in both never- and ever-smokers, which persisted when time-varying smoking status was used. CONCLUSIONS: Higher blood eosinophil counts were associated with a faster lung function decline among healthy individuals without lung disease, independent of smoking status. The findings suggest that higher blood eosinophil counts contribute to the risk of faster lung function decline, particularly among younger adults without a history of lung disease.


Assuntos
Eosinófilos , Fumar , Espirometria , Humanos , Masculino , Feminino , Volume Expiratório Forçado , Adulto , República da Coreia , Pessoa de Meia-Idade , Contagem de Leucócitos , Estudos de Coortes , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Modelos Lineares , Pulmão/fisiopatologia , Asma/sangue , Asma/fisiopatologia
15.
Osteoporos Int ; 35(6): 1007-1017, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38430243

RESUMO

The study, using data from Chongqing, China, and employing Mendelian randomization along with bioinformatics, establishes a causal link between asthma and osteoporosis, beyond glucocorticoid effects. Asthma may contribute to osteoporosis by accelerating bone turnover through inflammatory factors, disrupting the coupling between osteoblasts and osteoclasts, ultimately leading to osteoporosis. INTRODUCTION: Asthma and osteoporosis are prevalent health conditions with substantial public health implications. However, their potential interplay and the underlying mechanisms have not been fully elucidated. Previous research has primarily focused on the impact of glucocorticoids on osteoporosis, often overlooking the role of asthma itself. METHODS: We conducted a multi-stage stratified random sampling in Chongqing, China and excluded individuals with a history of glucocorticoid use. Participants underwent comprehensive health examinations, and their clinical data, including asthma status, were recorded. Logistic regression and Mendelian randomization were employed to investigate the causal link between asthma and osteoporosis. Furthermore, bioinformatics analyses and serum biomarker assessments were conducted to explore potential mechanistic pathways. RESULTS: We found a significant association between asthma and osteoporosis, suggesting a potential causal link. Mendelian Randomization analysis provided further support for this causal link. Bioinformatics analyses revealed that several molecular pathways might mediate the impact of asthma on bone health. Serum alkaline phosphatase levels were significantly elevated in the asthma group, suggesting potential involvement in bone turnover. CONCLUSION: Our study confirms a causal link between asthma and osteoporosis and highlights the importance of considering asthma in osteoporosis prediction models. It also suggests that asthma may accelerate osteoporosis by increasing bone turnover through inflammatory factors, disrupting the coupling between osteoblasts and osteoclasts, ultimately leading to bone loss.


Assuntos
Asma , Biologia Computacional , Análise da Randomização Mendeliana , Osteoporose , Humanos , Análise da Randomização Mendeliana/métodos , Asma/genética , Asma/fisiopatologia , Asma/epidemiologia , Osteoporose/genética , Osteoporose/etiologia , Osteoporose/epidemiologia , Osteoporose/fisiopatologia , Feminino , Pessoa de Meia-Idade , Biologia Computacional/métodos , Masculino , Estudos Transversais , Idoso , Remodelação Óssea/fisiologia , Remodelação Óssea/genética , Adulto , Biomarcadores/sangue , Polimorfismo de Nucleotídeo Único , China/epidemiologia , Predisposição Genética para Doença , Osteoclastos , Densidade Óssea/genética , Densidade Óssea/fisiologia
16.
Respir Res ; 25(1): 194, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702779

RESUMO

Asthma is a common chronic disease amongst children. Epidemiological studies showed that the mortality rate of asthma in children is still high worldwide. Asthma control is therefore essential to minimize asthma exacerbations, which can be fatal if the condition is poorly controlled. Frequent monitoring could help to detect asthma progression and ensure treatment effectiveness. Although subjective asthma monitoring tools are available, the results vary as they rely on patients' self-perception. Emerging evidence suggests several objective tools could have the potential for monitoring purposes. However, there is no consensus to standardise the use of objective monitoring tools. In this review, we start with the prevalence and severity of childhood asthma worldwide. Then, we detail the latest available objective monitoring tools, focusing on their effectiveness in paediatric asthma management. Publications of spirometry, fractional exhaled nitric oxide (FeNO), hyperresponsiveness tests and electronic monitoring devices (EMDs) between 2016 and 2023 were included. The potential advantages and limitations of each tool were also discussed. Overall, this review provides a summary for researchers dedicated to further improving objective paediatric asthma monitoring and provides insights for clinicians to incorporate different objective monitoring tools in clinical practices.


Assuntos
Asma , Humanos , Asma/diagnóstico , Asma/terapia , Asma/fisiopatologia , Asma/epidemiologia , Criança , Espirometria/métodos , Monitorização Fisiológica/métodos , Gerenciamento Clínico , Teste da Fração de Óxido Nítrico Exalado/métodos
17.
Respir Res ; 25(1): 178, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658975

RESUMO

Severe asthma is associated with an increased risk for exacerbations, reduced lung function, fixed airflow obstruction, and substantial morbidity and mortality. The concept of remission in severe asthma as a new treatment goal has recently gained attention due to the growing use of monoclonal antibody therapies, which target specific pathologic pathways of inflammation. This review evaluates the current definitions of asthma remission and unveils some of the barriers for achieving this state in the severe asthma population. Although there is no unified definition, the concept of clinical remission in asthma should be based on a sustained period of symptom control, elimination of oral corticosteroid exposure and exacerbations, and stabilization of pulmonary function. The conjugation of these criteria seems a realistic treatment target in a minority of asthmatic patients. Some unmet needs in severe asthma may affect the achievement of clinical remission. Late intervention with targeted therapies in the severe asthma population may increase the risk of corticosteroid exposure and the development of irreversible structural airway changes. Moreover, airway infection is an important component in persistent exacerbations in patients on biologic therapies. Phenotyping exacerbations may be useful to guide therapy decisions and to avoid the liberal use of oral corticosteroids. Another challenge associated with the aim of clinical remission in severe asthma is the multifaceted interaction between the disease and its associated comorbidities. Behavioural factors should be evaluated in case of persistent symptoms despite optimised treatment, and assessing biomarkers and targeting treatable traits may allow for a more objective way of reaching remission. The concept of clinical remission will benefit from an international consensus to establish unifying criteria for its assessment, and it should be addressed in the future management guidelines.


Assuntos
Antiasmáticos , Asma , Indução de Remissão , Índice de Gravidade de Doença , Humanos , Asma/tratamento farmacológico , Asma/diagnóstico , Asma/fisiopatologia , Asma/epidemiologia , Indução de Remissão/métodos , Antiasmáticos/uso terapêutico , Resultado do Tratamento
18.
Allergy ; 79(5): 1195-1207, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38164813

RESUMO

BACKGROUND: Lung function is an independent predictor of mortality. We evaluated the lung function trajectories of a cohort of patients with asthma receiving biologic therapy. METHODS: We identified 229 monoclonal antibody-naïve adult patients with moderate-to-severe asthma who initiated omalizumab, mepolizumab, or dupilumab between 2010 and 2022 in a large healthcare system in Boston, MA. Generalized additive mixed models were used to estimate the lung function trajectories during the 156 weeks following biologic initiation. Response was defined as an improvement in FEV1 or a decrease of ≤0.5% per year. The Kaplan-Meier estimator was used to assess time to no additional improvement in FEV1 in responders. All models were adjusted for age, sex, body mass index, smoking status, baseline exacerbation rate, and baseline blood eosinophil count. RESULTS: Eighty-eight patients initiated mepolizumab, 76 omalizumab, and 65 dupilumab. Baseline eosinophil count was highest in the mepolizumab group (405 cells/mcL) and lowest for omalizumab (250 cells/mcL). Both FEV1 and FVC improved in the mepolizumab group (FEV1 + 20 mL/year; FVC +43 mL/year). For omalizumab, there was an initial improvement in the first year followed by decline with an overall FEV1 loss of -44 mL/year and FVC -32 mL/year. For dupilumab, both FEV1 (+61 mL/year) and FVC (+74 mL/year) improved over time. Fifty percent of the mepolizumab group, 58% omalizumab, and 72% of dupilumab were responders. The median time to no additional FEV1 improvement in responders was 24 weeks for omalizumab, 48 weeks for mepolizumab, and 57 weeks for dupilumab. CONCLUSION: In this clinical cohort, mepolizumab, omalizumab, and dupilumab had beneficial effects on FEV1 and FVC with distinct post-initiation trajectories.


Assuntos
Antiasmáticos , Anticorpos Monoclonais Humanizados , Asma , Omalizumab , Testes de Função Respiratória , Humanos , Asma/tratamento farmacológico , Asma/fisiopatologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Masculino , Feminino , Omalizumab/uso terapêutico , Pessoa de Meia-Idade , Antiasmáticos/uso terapêutico , Adulto , Resultado do Tratamento , Índice de Gravidade de Doença , Pulmão/fisiopatologia , Pulmão/efeitos dos fármacos , Estudos de Coortes , Idoso
19.
PLoS Biol ; 19(3): e3001063, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684096

RESUMO

The function of Sprouty2 (Spry2) in T cells is unknown. Using 2 different (inducible and T cell-targeted) knockout mouse strains, we found that Spry2 positively regulated extracellular signal-regulated kinase 1/2 (ERK1/2) signaling by modulating the activity of LCK. Spry2-/- CD4+ T cells were unable to activate LCK, proliferate, differentiate into T helper cells, or produce cytokines. Spry2 deficiency abrogated type 2 inflammation and airway hyperreactivity in a murine model of asthma. Spry2 expression was higher in blood and airway CD4+ T cells from patients with asthma, and Spry2 knockdown impaired human T cell proliferation and cytokine production. Spry2 deficiency up-regulated the lipid raft protein caveolin-1, enhanced its interaction with CSK, and increased CSK interaction with LCK, culminating in augmented inhibitory phosphorylation of LCK. Knockdown of CSK or dislodgment of caveolin-1-bound CSK restored ERK1/2 activation in Spry2-/- T cells, suggesting an essential role for Spry2 in LCK activation and T cell function.


Assuntos
Asma/fisiopatologia , Proteína Tirosina Quinase CSK/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteínas de Membrana/metabolismo , Adulto , Animais , Asma/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ativação Linfocitária , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia
20.
J Theor Biol ; 588: 111835, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38643962

RESUMO

Obesity is a contributing factor to asthma severity; while it has long been understood that obesity is related to greater asthma burden, the mechanisms though which this occurs have not been fully elucidated. One common explanation is that obesity mechanically reduces lung volume through accumulation of adipose tissue external to the thoracic cavity. However, it has been recently demonstrated that there is substantial adipose tissue within the airway wall itself, and that the presence of adipose tissue within the airway wall is related to body mass index. This suggests the possibility of an additional mechanism by which obesity may worsen asthma, namely by altering the behaviour of the airways themselves. To this end, we modify Anafi & Wilson's classic model of the bistable terminal airway to incorporate adipose tissue within the airway wall in order to answer the question of how much adipose tissue would be required in order to drive substantive functional changes. This analysis suggests that adipose tissue within the airway wall on the order of 1%-2% of total airway cross-sectional area could be sufficient to drive meaningful changes, and further that these changes may interact with volume effects to magnify the overall burden.


Assuntos
Tecido Adiposo , Asma , Modelos Biológicos , Obesidade , Tecido Adiposo/metabolismo , Humanos , Asma/fisiopatologia , Obesidade/fisiopatologia , Obesidade/metabolismo , Pulmão/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA