Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.432
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(35): e2305049120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603767

RESUMO

The conserved eight-subunit COP9 signalosome (CSN) is required for multicellular fungal development. The CSN deneddylase cooperates with the Cand1 exchange factor to control replacements of E3 ubiquitin cullin RING ligase receptors, providing specificity to eukaryotic protein degradation. Aspergillus nidulans CSN assembles through a heptameric pre-CSN, which is activated by integration of the catalytic CsnE deneddylase. Combined genetic and biochemical approaches provided the assembly choreography within a eukaryotic cell for native fungal CSN. Interactomes of functional GFP-Csn subunit fusions in pre-CSN deficient fungal strains were compared by affinity purifications and mass spectrometry. Two distinct heterotrimeric CSN subcomplexes were identified as pre-CSN assembly intermediates. CsnA-C-H and CsnD-F-G form independently of CsnB, which connects the heterotrimers to a heptamer and enables subsequent integration of CsnE to form the enzymatically active CSN complex. Surveillance mechanisms control accurate Csn subunit amounts and correct cellular localization for sequential assembly since deprivation of Csn subunits changes the abundance and location of remaining Csn subunits.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/genética , Complexo do Signalossomo COP9/genética , Catálise , Núcleo Celular , Cromatografia de Afinidade , Ubiquitina-Proteína Ligases
2.
PLoS Genet ; 18(12): e1010502, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36508464

RESUMO

Fungal growth and development are coordinated with specific secondary metabolism. This coordination requires 8 of 74 F-box proteins of the filamentous fungus Aspergillus nidulans. F-box proteins recognize primed substrates for ubiquitination by Skp1-Cul1-Fbx (SCF) E3 ubiquitin RING ligases and degradation by the 26S proteasome. 24 F-box proteins are found in the nuclear fraction as part of SCFs during vegetative growth. 43 F-box proteins interact with SCF proteins during growth, development or stress. 45 F-box proteins are associated with more than 700 proteins that have mainly regulatory roles. This corroborates that accurate surveillance of protein stability is prerequisite for organizing multicellular fungal development. Fbx23 combines subcellular location and protein stability control, illustrating the complexity of F-box mediated regulation during fungal development. Fbx23 interacts with epigenetic methyltransferase VipC which interacts with fungal NF-κB-like velvet domain regulator VeA that coordinates fungal development with secondary metabolism. Fbx23 prevents nuclear accumulation of methyltransferase VipC during early development. These results suggest that in addition to their role in protein degradation, F-box proteins also control subcellular accumulations of key regulatory proteins for fungal development.


Assuntos
Aspergillus nidulans , Proteínas F-Box , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Metiltransferases/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo
3.
PLoS Genet ; 18(1): e1009965, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041649

RESUMO

Aspergillus fumigatus causes a range of human and animal diseases collectively known as aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of virulence, which facilitate colonisation and disease progression, including the secretion of mycotoxins. Gliotoxin (GT) is the best studied A. fumigatus mycotoxin with a wide range of known toxic effects that impair human immune cell function. GT is also highly toxic to A. fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT efflux pump GliA, (ii) the GT neutralising enzyme GliT, and (iii) the negative regulation of GT biosynthesis by the bis-thiomethyltransferase GtmA. The transcription factor (TF) RglT is the main regulator of GliT and this GT protection mechanism also occurs in the non-GT producing fungus A. nidulans. However, the A. nidulans genome does not encode GtmA and GliA. This work aimed at analysing the transcriptional response to exogenous GT in A. fumigatus and A. nidulans, two distantly related Aspergillus species, and to identify additional components required for GT protection. RNA-sequencing shows a highly different transcriptional response to exogenous GT with the RglT-dependent regulon also significantly differing between A. fumigatus and A. nidulans. However, we were able to observe homologs whose expression pattern was similar in both species (43 RglT-independent and 11 RglT-dependent). Based on this approach, we identified a novel RglT-dependent methyltranferase, MtrA, involved in GT protection. Taking into consideration the occurrence of RglT-independent modulated genes, we screened an A. fumigatus deletion library of 484 transcription factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae, was also essential for virulence and GT biosynthesis in A. fumigatus, and for GT protection in A. fumigatus, A. nidulans, and A. oryzae. KojR regulates rglT, gliT, gliJ expression and sulfur metabolism in Aspergillus species. Together, this study identified conserved components required for GT protection in Aspergillus species.


Assuntos
Aspergillus/crescimento & desenvolvimento , Gliotoxina/farmacologia , Metiltransferases/genética , Fatores de Transcrição/genética , Aspergillus/efeitos dos fármacos , Aspergillus/genética , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus oryzae/efeitos dos fármacos , Aspergillus oryzae/genética , Aspergillus oryzae/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Gliotoxina/biossíntese , RNA-Seq
4.
BMC Bioinformatics ; 25(1): 312, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333869

RESUMO

BACKGROUND: Derivative profiling is a novel approach to identify differential signals from dynamic omics data sets. This approach applies variable step-size differentiation to time dynamic omics data. This work assumes that there is a general omics derivative that is a useful and descriptive feature of dynamic omics experiments. We assert that this omics derivative, or omics flux, is a valuable descriptor that can be used instead of, or with, fold change calculations. RESULTS: The results of derivative profiling are compared to established methods such as Multivariate Adaptive Regression Splines, significance versus fold change analysis (Volcano), and an adjusted ratio over intensity (M/A) analysis to find that there is a statistically significant similarity between the results. This comparison is repeated for transcriptomic and phosphoproteomic expression profiles previously characterized in Aspergillus nidulans. This method has been packaged in an open-source, GUI-based MATLAB app, the Derivative Profiling omics Package (DPoP). Gene Ontology (GO) term enrichment has been included in the app so that a user can automatically/programmatically describe the over/under-represented GO terms in the derivative profiling results using domain specific knowledge found in their organism's specific GO database file. The advantage of the DPoP analysis is that it is computationally inexpensive, it does not require fold change calculations, it describes both instantaneous as well as overall behavior, and it achieves statistical confidence with signal trajectories of a single bio-replicate over four or more points. CONCLUSIONS: While we apply this method to time dynamic transcriptomic and phosphoproteomic datasets, it is a numerically generalizable technique that can be applied to any organism and any field interested in time series data analysis. The app described in this work enables omics researchers with no computer science background to apply derivative profiling to their data sets, while also allowing multidisciplined users to build on the nascent idea of profiling derivatives in omics.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Perfilação da Expressão Gênica/métodos , Software , Proteômica/métodos , Transcriptoma/genética , Algoritmos , Genômica/métodos , Ontologia Genética , Biologia Computacional/métodos
5.
J Am Chem Soc ; 146(14): 9614-9622, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38545685

RESUMO

Glycosides make up a biomedically important class of secondary metabolites. Most naturally occurring glycosides were isolated from plants and bacteria; however, the chemical diversity of glycosylated natural products in fungi remains largely unexplored. Herein, we present a paradigm to specifically discover diverse and bioactive glycosylated natural products from fungi by combining tailoring enzyme-guided genome mining with mass spectrometry (MS)-based metabolome analysis. Through in vivo genes deletion and heterologous expression, the first fungal C-glycosyltransferase AuCGT involved in the biosynthesis of stromemycin was identified from Aspergillus ustus. Subsequent homology-based genome mining for fungal glycosyltransferases by using AuCGT as a probe revealed a variety of biosynthetic gene clusters (BGCs) containing its homologues in diverse fungi, of which the glycoside-producing capability was corroborated by high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. Consequently, 28 fungal aromatic polyketide C/O-glycosides, including 20 new compounds, were efficiently discovered and isolated from the three selected fungi. Moreover, several novel fungal C/O-glycosyltransferases, especially three novel α-pyrone C-glycosyltransferases, were functionally characterized and verified in the biosynthesis of these glycosides. In addition, a proof of principle for combinatorial biosynthesis was applied to design the production of unnatural glycosides in Aspergillus nidulans. Notably, the newly discovered glycosides exhibited significant antiviral, antibacterial, and antidiabetic activities. Our work demonstrates the promise of tailoring enzyme-guided genome-mining approach for the targeted discovery of fungal glycosides and promotes the exploration of a broader chemical space for natural products with a target structural motif in microbial genomes.


Assuntos
Aspergillus nidulans , Produtos Biológicos , Glicosiltransferases/metabolismo , Metaboloma , Espectrometria de Massas , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Glicosídeos , Família Multigênica
6.
Mol Microbiol ; 119(5): 630-639, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024243

RESUMO

There are multiple RNA degradation mechanisms in eukaryotes, key among these is mRNA decapping, which requires the Dcp1-Dcp2 complex. Decapping is involved in various processes including nonsense-mediated decay (NMD), a process by which aberrant transcripts with a premature termination codon are targeted for translational repression and rapid decay. NMD is ubiquitous throughout eukaryotes and the key factors involved are highly conserved, although many differences have evolved. We investigated the role of Aspergillus nidulans decapping factors in NMD and found that they are not required, unlike Saccharomyces cerevisiae. Intriguingly, we also observed that the disruption of one of the decapping factors, Dcp1, leads to an aberrant ribosome profile. Importantly this was not shared by mutations disrupting Dcp2, the catalytic component of the decapping complex. The aberrant profile is associated with the accumulation of a high proportion of 25S rRNA degradation intermediates. We identified the location of three rRNA cleavage sites and show that a mutation targeted to disrupt the catalytic domain of Dcp2 partially suppresses the aberrant profile of Δdcp1 strains. This suggests that in the absence of Dcp1, cleaved ribosomal components accumulate and Dcp2 may be directly involved in mediating these cleavage events. We discuss the implications of this.


Assuntos
Aspergillus nidulans , Proteínas de Saccharomyces cerevisiae , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Ribossomos/genética , Ribossomos/metabolismo , Endorribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Fungal Genet Biol ; 171: 103877, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38447800

RESUMO

Airborne fungal spores are a major cause of fungal diseases in humans, animals, and plants as well as contamination of foods. Previous studies found a variety of regulators including VosA, VelB, WetA, and SscA for sporogenesis and the long-term viability in Aspergillus nidulans. To gain a mechanistic understanding of the complex regulatory mechanisms in asexual spores, here, we focused on the relationship between VosA and SscA using comparative transcriptomic analysis and phenotypic studies. The ΔsscA ΔvosA double-mutant conidia have lower spore viability and stress tolerance compared to the ΔsscA or ΔvosA single mutant conidia. Deletion of sscA or vosA affects chitin levels and mRNA levels of chitin biosynthetic genes in conidia. In addition, SscA and VosA are required for the dormant state of conidia and conidial germination by modulating the mRNA levels of the cytoskeleton and development-associated genes. Overall, these results suggest that SscA and VosA play interdependent roles in governing spore maturation, dormancy, and germination in A. nidulans.


Assuntos
Aspergillus nidulans , Animais , Humanos , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , RNA Mensageiro , Quitina/genética
8.
Metab Eng ; 82: 147-156, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382797

RESUMO

Cyclo-diphenylalanine (cFF) is a symmetrical aromatic diketopiperazine (DKP) found wide-spread in microbes, plants, and resulting food products. As different bioactivities continue being discovered and relevant food and pharmaceutical applications gradually emerge for cFF, there is a growing need for establishing convenient and efficient methods to access this type of compound. Here, we present a robust cFF production system which entailed stepwise engineering of the filamentous fungal strain Aspergillus nidulans A1145 as a heterologous expression host. We first established a preliminary cFF producing strain by introducing the heterologous nonribosomal peptide synthetase (NRPS) gene penP1 to A. nidulans A1145. Key metabolic pathways involving shikimate and aromatic amino acid biosynthetic support were then engineered through a combination of gene deletions of competitive pathway steps, over-expressing feedback-insensitive enzymes in phenylalanine biosynthesis, and introducing a phosphoketolase-based pathway, which diverted glycolytic flux toward the formation of erythrose 4-phosphate (E4P). Through the stepwise engineering of A. nidulans A1145 outlined above, involving both heterologous pathway addition and native pathway metabolic engineering, we were able to produce cFF with titers reaching 611 mg/L in shake flask culture and 2.5 g/L in bench-scale fed-batch bioreactor culture. Our study establishes a production platform for cFF biosynthesis and successfully demonstrates engineering of phenylalanine derived diketopiperazines in a filamentous fungal host.


Assuntos
Aspergillus nidulans , Dipeptídeos , Engenharia Metabólica , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Reatores Biológicos , Fenilalanina/genética , Fenilalanina/metabolismo
9.
J Nat Prod ; 87(7): 1704-1713, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38990199

RESUMO

Fungal secondary metabolite (SM) biosynthetic gene clusters (BGCs) containing dimethylallyltryptophan synthases (DMATSs) produce structurally diverse prenylated indole alkaloids with wide-ranging activities that have vast potential as human therapeutics. To discover new natural products produced by DMATSs, we mined the Department of Energy Joint Genome Institute's MycoCosm database for DMATS-containing BGCs. We found a DMATS BGC in Aspergillus homomorphus CBS 101889, which also contains a nonribosomal peptide synthetase (NRPS). This BGC appeared to have a previously unreported combination of genes, which suggested the cluster might make novel SMs. We refactored this BGC with highly inducible promoters into the model fungus Aspergillus nidulans. The expression of this refactored BGC in A. nidulans resulted in the production of eight tryptophan-containing diketopiperazines, six of which are new to science. We have named them homomorphins A-F (2, 4-8). Perhaps even more intriguingly, to our knowledge, this is the first discovery of C4-prenylated tryptophan-containing diketopiperazines and their derivatives. In addition, the NRPS from this BGC is the first described that has the ability to promiscuously combine tryptophan with either of two different amino acids, in this case, l-valine or l-allo-isoleucine.


Assuntos
Aspergillus nidulans , Aspergillus , Dicetopiperazinas , Peptídeo Sintases , Triptofano , Triptofano/metabolismo , Triptofano/química , Dicetopiperazinas/química , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Aspergillus/química , Peptídeo Sintases/metabolismo , Peptídeo Sintases/genética , Estrutura Molecular , Família Multigênica , Alcaloides Indólicos/química , Alcaloides Indólicos/metabolismo , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética
10.
Appl Microbiol Biotechnol ; 108(1): 427, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046587

RESUMO

Filamentous fungi are prolific producers of bioactive natural products and play a vital role in drug discovery. Yet, their potential cannot be fully exploited since many biosynthetic genes are silent or cryptic under laboratory culture conditions. Several strategies have been applied to activate these genes, with heterologous expression as one of the most promising approaches. However, successful expression and identification of new products are often hindered by host-dependent factors, such as low gene targeting efficiencies, a high metabolite background, or a lack of selection markers. To overcome these challenges, we have constructed a Penicillium crustosum expression host in a pyrG deficient strain by combining the split-marker strategy and CRISPR-Cas9 technology. Deletion of ligD and pcribo improved gene targeting efficiencies and enabled the use of an additional selection marker in P. crustosum. Furthermore, we reduced the secondary metabolite background by inactivation of two highly expressed gene clusters and abolished the formation of the reactive ortho-quinone methide. Finally, we replaced the P. crustosum pigment gene pcr4401 with the commonly used Aspergillus nidulans wA expression site for convenient use of constructs originally designed for A. nidulans in our P. crustosum host strain. As proof of concept, we successfully expressed a single polyketide synthase gene and an entire gene cluster at the P. crustosum wA locus. Resulting transformants were easily detected by their albino phenotype. With this study, we provide a highly efficient platform for heterologous expression of fungal genes. KEY POINTS: Construction of a highly efficient Penicillium crustosum heterologous expression host Reduction of secondary metabolite background by genetic dereplication strategy Integration of wA site to provide an alternative host besides Aspergillus nidulans.


Assuntos
Sistemas CRISPR-Cas , Penicillium , Metabolismo Secundário , Penicillium/genética , Penicillium/metabolismo , Metabolismo Secundário/genética , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Família Multigênica , Marcação de Genes/métodos , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Vias Biossintéticas/genética , Engenharia Metabólica/métodos , Expressão Gênica
11.
Nucleic Acids Res ; 50(17): 9797-9813, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36095118

RESUMO

Chromatin complexes control a vast number of epigenetic developmental processes. Filamentous fungi present an important clade of microbes with poor understanding of underlying epigenetic mechanisms. Here, we describe a chromatin binding complex in the fungus Aspergillus nidulans composing of a H3K4 histone demethylase KdmB, a cohesin acetyltransferase (EcoA), a histone deacetylase (RpdA) and a histone reader/E3 ligase protein (SntB). In vitro and in vivo evidence demonstrate that this KERS complex is assembled from the EcoA-KdmB and SntB-RpdA heterodimers. KdmB and SntB play opposing roles in regulating the cellular levels and stability of EcoA, as KdmB prevents SntB-mediated degradation of EcoA. The KERS complex is recruited to transcription initiation start sites at active core promoters exerting promoter-specific transcriptional effects. Interestingly, deletion of any one of the KERS subunits results in a common negative effect on morphogenesis and production of secondary metabolites, molecules important for niche securement in filamentous fungi. Consequently, the entire mycotoxin sterigmatocystin gene cluster is downregulated and asexual development is reduced in the four KERS mutants. The elucidation of the recruitment of epigenetic regulators to chromatin via the KERS complex provides the first mechanistic, chromatin-based understanding of how development is connected with small molecule synthesis in fungi.


Assuntos
Aspergillus nidulans , Cromatina , Acetiltransferases/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Genes Reguladores , Histona Desacetilases/metabolismo , Histona Desmetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Esterigmatocistina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
Biotechnol Lett ; 46(3): 409-430, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38416309

RESUMO

One of the four cutinases encoded in the Aspergillus nidulans genome, ANCUT1, is described here. Culture conditions were evaluated, and it was found that this enzyme is produced only when cutin is present in the culture medium, unlike the previously described ANCUT2, with which it shares 62% amino acid identity. The differences between them include the fact that ANCUT1 is a smaller enzyme, with experimental molecular weight and pI values of 22 kDa and 6, respectively. It shows maximum activity at pH 9 and 60 °C under assayed conditions and retains more than 60% of activity after incubation for 1 h at 60 °C in a wide range of pH values (6-10) after incubations of 1 or 3 h. It has a higher activity towards medium-chain esters and can modify long-chain length hydroxylated fatty acids constituting cutin. Its substrate specificity properties allow the lipophilization of alkyl coumarates, valuable antioxidants and its thermoalkaline behavior, which competes favorably with other fungal cutinases, suggests it may be useful in many more applications.


Assuntos
Aspergillus nidulans , Hidrolases de Éster Carboxílico , Aspergillus nidulans/genética , Aspergillus nidulans/enzimologia , Especificidade por Substrato , Concentração de Íons de Hidrogênio , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/química , Temperatura , Peso Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Estabilidade Enzimática , Meios de Cultura/química
13.
PLoS Genet ; 17(10): e1009845, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34679095

RESUMO

Fungi sense light of different wavelengths using blue-, green-, and red-light photoreceptors. Blue light sensing requires the "white-collar" proteins with flavin as chromophore, and red light is sensed through phytochrome. Here we analyzed genome-wide gene expression changes caused by short-term, low-light intensity illumination with blue-, red- or far-red light in Aspergillus nidulans and found that more than 1100 genes were differentially regulated. The largest number of up- and downregulated genes depended on the phytochrome FphA and the attached HOG pathway. FphA and the white-collar orthologue LreA fulfill activating but also repressing functions under all light conditions and both appear to have roles in the dark. Additionally, we found about 100 genes, which are red-light induced in the absence of phytochrome, suggesting alternative red-light sensing systems. We also found blue-light induced genes in the absence of the blue-light receptor LreA. We present evidence that cryptochrome may be part of this regulatory cue, but that phytochrome is essential for the response. In addition to in vivo data showing that FphA is involved in blue-light sensing, we performed spectroscopy of purified phytochrome and show that it responds indeed to blue light.


Assuntos
Aspergillus nidulans/genética , Genes Reguladores/genética , Células Fotorreceptoras/fisiologia , Fotorreceptores Microbianos/genética , Criptocromos/genética , Proteínas Fúngicas/genética , Estudo de Associação Genômica Ampla/métodos , Luz , Fitocromo/genética
14.
Molecules ; 29(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675612

RESUMO

Kinesin-14s, a subfamily of the large superfamily of kinesin motor proteins, function mainly in spindle assembly and maintenance during mitosis and meiosis. KlpA from Aspergillus nidulans and GiKIN14a from Giardia intestinalis are two types of kinesin-14s. Available experimental results puzzlingly showed that while KlpA moves preferentially toward the minus end in microtubule-gliding setups and inside parallel microtubule overlaps, it moves preferentially toward the plus end on single microtubules. More puzzlingly, the insertion of an extra polypeptide linker in the central region of the neck stalk switches the motility direction of KlpA on single microtubules to the minus end. Prior experimental results showed that GiKIN14a moves preferentially toward the minus end on single microtubules in either tailless or full-length forms. The tail not only greatly enhances the processivity but also accelerates the ATPase rate and velocity of GiKIN14a. The insertion of an extra polypeptide linker in the central region of the neck stalk reduces the ATPase rate of GiKIN14a. However, the underlying mechanism of these puzzling dynamical features for KlpA and GiKIN14a is unclear. Here, to understand this mechanism, the dynamics of KlpA and GiKIN14a were studied theoretically on the basis of the proposed model, incorporating potential changes between the kinesin head and microtubule, as well as the potential between the tail and microtubule. The theoretical results quantitatively explain the available experimental results and provide predicted results. It was found that the elasticity of the neck stalk determines the directionality of KlpA on single microtubules and affects the ATPase rate and velocity of GiKIN14a on single microtubules.


Assuntos
Cinesinas , Microtúbulos , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Cinesinas/metabolismo , Cinesinas/química , Microtúbulos/metabolismo , Modelos Moleculares , Giardia lamblia/genética , Giardia lamblia/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
15.
J Am Chem Soc ; 145(1): 413-421, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36542862

RESUMO

Genome mining of cryptic natural products (NPs) remains challenging, especially in filamentous fungi, owing to their complex genetic regulation. Increasing evidence indicates that several epigenetic modifications often act cooperatively to control fungal gene transcription, yet the ability to predictably manipulate multiple genes simultaneously is still largely limited. Here, we developed a multiplex base-editing (MBE) platform that significantly improves the capability and throughput of fungal genome manipulation, leading to the simultaneous inactivation of up to eight genes using a single transformation. We then employed MBE to inactivate three negative epigenetic regulators combinatorially in Aspergillus nidulans, enabling the activation of eight cryptic gene clusters compared to the wild-type strains. A group of novel NPs harboring unique cichorine and polyamine hybrid chemical scaffolds were identified, which were not reported previously. We envision that our scalable and efficient MBE platform can be readily applied in other filamentous fungi for the genome mining of novel NPs, providing a powerful approach for the exploitation of fungal chemical diversity.


Assuntos
Aspergillus nidulans , Produtos Biológicos , Epigênese Genética , Genes Fúngicos , Genoma Fúngico , Fungos/genética , Aspergillus nidulans/genética , Família Multigênica
16.
J Cell Sci ; 134(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328180

RESUMO

Centrosomes are important microtubule-organizing centers (MTOC) in animal cells. In addition, non-centrosomal MTOCs (ncMTOCs) have been described in many cell types. The functional analogs of centrosomes in fungi are the spindle pole bodies (SPBs). In Aspergillus nidulans, additional MTOCs have been discovered at septa (sMTOC). Although the core components are conserved in both MTOCs, their composition and organization are different and dynamic. Here, we show that the polo-like kinase PlkA binds the γ-tubulin ring complex (γ-TuRC) receptor protein ApsB and contributes to targeting ApsB to both MTOCs. PlkA coordinates the activities of the SPB outer plaque and the sMTOC. PlkA kinase activity was required for astral MT formation involving ApsB recruitment. PlkA also interacted with the γ-TuRC inner plaque receptor protein PcpA. Mitosis was delayed without PlkA, and the PlkA protein was required for proper mitotic spindle morphology, although this function was independent of its catalytic activity. Our results suggest that the polo-like kinase is a regulator of MTOC activities and acts as a scaffolding unit through interaction with γ-TuRC receptors.


Assuntos
Aspergillus nidulans , Centro Organizador dos Microtúbulos , Animais , Aspergillus nidulans/genética , Centrossomo , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos , Fuso Acromático , Corpos Polares do Fuso , Tubulina (Proteína)
17.
Curr Genet ; 69(2-3): 175-188, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37071151

RESUMO

In fungi, the cell wall plays a crucial role in morphogenesis and response to stress from the external environment. Chitin is one of the main cell wall components in many filamentous fungi. In Aspergillus nidulans, a class III chitin synthase ChsB plays a pivotal role in hyphal extension and morphogenesis. However, little is known about post-translational modifications of ChsB and their functional impacts. In this study, we showed that ChsB is phosphorylated in vivo. We characterized strains that produce ChsB using stepwise truncations of its N-terminal disordered region or deletions of some residues in that region and demonstrated its involvement in ChsB abundance on the hyphal apical surface and in hyphal tip localization. Furthermore, we showed that some deletions in this region affected the phosphorylation states of ChsB, raising the possibility that these states are important for the localization of ChsB to the hyphal surface and the growth of A. nidulans. Our findings indicate that ChsB transport is regulated by its N-terminal disordered region.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/genética , Hifas , Parede Celular/metabolismo , Quitina Sintase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
18.
Fungal Genet Biol ; 167: 103800, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37146898

RESUMO

In eukaryotes, the combination of different histone post-translational modifications (PTMs) - the histone code - impacts the chromatin organization as compact and transcriptionally silent heterochromatin or accessible and transcriptionally active euchromatin. Although specific histone PTMs have been studied in fungi, an overview of histone PTMs and their relative abundance is still lacking. Here, we used mass spectrometry to detect and quantify histone PTMs in three fungal species belonging to three distinct taxonomic sections of the genus Aspergillus (Aspergillus niger, Aspergillus nidulans (two strains), and Aspergillus fumigatus). We overall detected 23 different histone PTMs, including a majority of lysine methylations and acetylations, and 23 co-occurrence patterns of multiple histone PTMs. Among those, we report for the first time the detection of H3K79me1, H3K79me2, and H4K31ac in Aspergilli. Although all three species harbour the same PTMs, we found significant differences in the relative abundance of H3K9me1/2/3, H3K14ac, H3K36me1 and H3K79me1, as well as the co-occurrence of acetylation on both K18 and K23 of histone H3 in a strain-specific manner. Our results provide novel insights about the underexplored complexity of the histone code in filamentous fungi, and its functional implications on genome architecture and gene regulation.


Assuntos
Aspergillus nidulans , Histonas , Histonas/genética , Histonas/metabolismo , Código das Histonas/genética , Processamento de Proteína Pós-Traducional , Heterocromatina , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo
19.
Org Biomol Chem ; 21(17): 3552-3556, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807630

RESUMO

The hydroxyl groups in the amino acid residues of echinocandin B were related to the biological activity, the instability, and the drug resistance. The modification of hydroxyl groups was expected to obtain the new lead compounds for next generation of echinocandin drug development. In this work one method for heterologous production of the tetradeoxy echinocandin was achieved. A reconstructed biosynthetic gene cluster for tetradeoxy echinocandins composed of ecdA/I/K and htyE was designed and successfully hetero-expressed in Aspergillus nidulans. The target product of echinocandin E (1) together with one unexpected derivative echinocandin F (2), were isolated from the fermentation culture of engineered strain. Both of compounds were unreported echinocandin derivatives and the structures were identified on the basis of mass and NMR spectral data analysis. Compared with echinocandin B, echinocandin E demonstrated superior stability and comparable antifungal activity.


Assuntos
Aspergillus nidulans , Equinocandinas , Equinocandinas/farmacologia , Equinocandinas/química , Equinocandinas/genética , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Família Multigênica , Aminoácidos/metabolismo , Testes de Sensibilidade Microbiana
20.
J Nat Prod ; 86(7): 1779-1785, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37382166

RESUMO

The hydroxylated and diacetylated cyclo-l-Trp-l-Leu derivative (-)-protubonine B was isolated from a culture of Aspergillus ustus 3.3904. Genome mining led to the identification of a putative biosynthetic gene cluster coding for a bimodular nonribosomal peptide synthetase, a flavin-dependent monooxygenase, and two acetyltransferases. Heterologous expression of the pbo cluster in Aspergillus nidulans showed that it is responsible for the formation of the isolated metabolite. Gene deletion experiments and structural elucidation of the isolated intermediates confirmed the biosynthetic steps. In vitro experiments with the recombinant protein proved that the flavin-dependent oxygenase is responsible for stereospecific hydroxylation at the indole ring accompanied by pyrrolidine ring formation.


Assuntos
Aspergillus nidulans , Oxigenases , Oxigenases/genética , Hidroxilação , Aspergillus nidulans/genética , Flavinas/genética , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA