Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.762
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 17(4): 406-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26950237

RESUMO

The acute phase of sepsis is characterized by a strong inflammatory reaction. At later stages in some patients, immunoparalysis may be encountered, which is associated with a poor outcome. By transcriptional and metabolic profiling of human patients with sepsis, we found that a shift from oxidative phosphorylation to aerobic glycolysis was an important component of initial activation of host defense. Blocking metabolic pathways with metformin diminished cytokine production and increased mortality in systemic fungal infection in mice. In contrast, in leukocytes rendered tolerant by exposure to lipopolysaccharide or after isolation from patients with sepsis and immunoparalysis, a generalized metabolic defect at the level of both glycolysis and oxidative metabolism was apparent, which was restored after recovery of the patients. Finally, the immunometabolic defects in humans were partially restored by therapy with recombinant interferon-γ, which suggested that metabolic processes might represent a therapeutic target in sepsis.


Assuntos
Citocinas/imunologia , Endotoxemia/imunologia , Metabolismo Energético/imunologia , Tolerância Imunológica/imunologia , Imunidade Inata/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Sepse/imunologia , Trifosfato de Adenosina/metabolismo , Adulto , Animais , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergilose/imunologia , Aspergilose/metabolismo , Candidíase Invasiva/tratamento farmacológico , Candidíase Invasiva/imunologia , Candidíase Invasiva/metabolismo , Endotoxemia/metabolismo , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Feminino , Glicólise , Humanos , Immunoblotting , Interferon gama/uso terapêutico , Ácido Láctico/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos/metabolismo , NAD/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Estudos Prospectivos , Sepse/tratamento farmacológico , Sepse/metabolismo , Transcriptoma , Adulto Jovem
2.
PLoS Pathog ; 20(6): e1012315, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889192

RESUMO

Invasive aspergillosis causes significant morbidity and mortality in immunocompromised patients. Natural killer (NK) cells are pivotal for antifungal defense. Thus far, CD56 is the only known pathogen recognition receptor on NK cells triggering potent antifungal activity against Aspergillus fumigatus. However, the underlying cellular mechanisms and the fungal ligand of CD56 have remained unknown. Using purified cell wall components, biochemical treatments, and ger mutants with altered cell wall composition, we herein found that CD56 interacts with the A. fumigatus cell wall carbohydrate galactosaminogalactan (GAG). This interaction induced NK-cell activation, degranulation, and secretion of immune-enhancing chemokines and cytotoxic effectors. Supernatants from GAG-stimulated NK cells elicited antifungal activity and enhanced antifungal effector responses of polymorphonuclear cells. In conclusion, we identified A. fumigatus GAG as a ligand of CD56 on human primary NK cells, stimulating potent antifungal effector responses and activating other immune cells.


Assuntos
Aspergilose , Aspergillus fumigatus , Antígeno CD56 , Células Matadoras Naturais , Humanos , Aspergillus fumigatus/imunologia , Células Matadoras Naturais/imunologia , Antígeno CD56/metabolismo , Antígeno CD56/imunologia , Aspergilose/imunologia , Aspergilose/microbiologia , Ativação Linfocitária/imunologia , Polissacarídeos/metabolismo , Polissacarídeos/imunologia , Parede Celular/imunologia , Parede Celular/metabolismo
3.
Nat Immunol ; 15(2): 143-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24362892

RESUMO

Here we identified a population of bone marrow neutrophils that constitutively expressed the transcription factor RORγt and produced and responded to interleukin 17A (IL-17A (IL-17)). IL-6, IL-23 and RORγt, but not T cells or natural killer (NK) cells, were required for IL-17 production in neutrophils. IL-6 and IL-23 induced expression of the receptors IL-17RC and dectin-2 on neutrophils, and IL-17RC expression was augmented by activation of dectin-2. Autocrine activity of IL-17A and its receptor induced the production of reactive oxygen species (ROS), and increased fungal killing in vitro and in a model of Aspergillus-induced keratitis. Human neutrophils also expressed RORγt and induced the expression of IL-17A, IL-17RC and dectin-2 following stimulation with IL-6 and IL-23. Our findings identify a population of human and mouse neutrophils with autocrine IL-17 activity that probably contribute to the etiology of microbial and inflammatory diseases.


Assuntos
Aspergilose/imunologia , Aspergillus/imunologia , Interleucina-17/metabolismo , Ceratite/imunologia , Neutrófilos/imunologia , Receptores de Interleucina/metabolismo , Animais , Aspergilose/complicações , Comunicação Autócrina , Células da Medula Óssea/imunologia , Degranulação Celular , Células Cultivadas , Citotoxicidade Imunológica/genética , Modelos Animais de Doenças , Humanos , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-23/imunologia , Interleucina-6/imunologia , Ceratite/etiologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
J Immunol ; 213(7): 971-987, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39178124

RESUMO

Glucocorticoids are a major class of therapeutic anti-inflammatory and immunosuppressive drugs prescribed to patients with inflammatory diseases, to avoid transplant rejection, and as part of cancer chemotherapy. However, exposure to these drugs increases the risk of opportunistic infections such as with the fungus Aspergillus fumigatus, which causes mortality in >50% of infected patients. The mechanisms by which glucocorticoids increase susceptibility to A. fumigatus are poorly understood. In this article, we used a zebrafish larva Aspergillus infection model to identify innate immune mechanisms altered by glucocorticoid treatment. Infected larvae exposed to dexamethasone succumb to infection at a significantly higher rate than control larvae. However, both macrophages and neutrophils are still recruited to the site of infection, and dexamethasone treatment does not significantly affect fungal spore killing. Instead, the primary effect of dexamethasone manifests later in infection with treated larvae exhibiting increased invasive hyphal growth. In line with this, dexamethasone predominantly inhibits neutrophil function rather than macrophage function. Dexamethasone-induced mortality also depends on the glucocorticoid receptor. Dexamethasone partially suppresses NF-κB activation at the infection site by inducing the transcription of IκB via the glucocorticoid receptor. Independent CRISPR/Cas9 targeting of IKKγ to prevent NF-κB activation also increases invasive A. fumigatus growth and larval mortality. However, dexamethasone treatment of IKKγ crispant larvae further increases invasive hyphal growth and host mortality, suggesting that dexamethasone may suppress other pathways in addition to NF-κB to promote host susceptibility. Collectively, we find that dexamethasone acts through the glucocorticoid receptor to suppress NF-κB-mediated neutrophil control of A. fumigatus hyphae in zebrafish larvae.


Assuntos
Aspergilose , Aspergillus fumigatus , Dexametasona , Glucocorticoides , NF-kappa B , Neutrófilos , Peixe-Zebra , Animais , Aspergillus fumigatus/imunologia , Neutrófilos/imunologia , Neutrófilos/efeitos dos fármacos , Peixe-Zebra/imunologia , NF-kappa B/metabolismo , Aspergilose/imunologia , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Hifas/imunologia , Hifas/crescimento & desenvolvimento , Hifas/efeitos dos fármacos , Larva/imunologia , Larva/microbiologia , Receptores de Glucocorticoides/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças , Imunidade Inata/efeitos dos fármacos , Humanos
5.
Nature ; 588(7839): 688-692, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268895

RESUMO

Inflammasomes are important sentinels of innate immune defence that are activated in response to diverse stimuli, including pathogen-associated molecular patterns (PAMPs)1. Activation of the inflammasome provides host defence against aspergillosis2,3, which is a major health concern for patients who are immunocompromised. However, the Aspergillus fumigatus PAMPs that are responsible for inflammasome activation are not known. Here we show that the polysaccharide galactosaminogalactan (GAG) of A. fumigatus is a PAMP that activates the NLRP3 inflammasome. The binding of GAG to ribosomal proteins inhibited cellular translation machinery, and thus activated the NLRP3 inflammasome. The galactosamine moiety bound to ribosomal proteins and blocked cellular translation, which triggered activation of the NLRP3 inflammasome. In mice, a GAG-deficient Aspergillus mutant (Δgt4c) did not elicit protective activation of the inflammasome, and this strain exhibited enhanced virulence. Moreover, administration of GAG protected mice from colitis induced by dextran sulfate sodium in an inflammasome-dependent manner. Thus, ribosomes connect the sensing of this fungal PAMP to the activation of an innate immune response.


Assuntos
Aspergilose/prevenção & controle , Aspergillus fumigatus/metabolismo , Inflamassomos/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Polissacarídeos/metabolismo , Animais , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergillus fumigatus/imunologia , Biofilmes , Colite/induzido quimicamente , Colite/prevenção & controle , Sulfato de Dextrana , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Imunidade Inata , Inflamassomos/imunologia , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Polissacarídeos/imunologia , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
6.
PLoS Pathog ; 19(5): e1011152, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126504

RESUMO

Hyphal growth is essential for host colonization during Aspergillus infection. The transcription factor ZfpA regulates A. fumigatus hyphal development including branching, septation, and cell wall composition. However, how ZfpA affects fungal growth and susceptibility to host immunity during infection has not been investigated. Here, we use the larval zebrafish-Aspergillus infection model and primary human neutrophils to probe how ZfpA affects A. fumigatus pathogenesis and response to antifungal drugs in vivo. ZfpA deletion promotes fungal clearance and attenuates virulence in wild-type hosts and this virulence defect is abrogated in neutrophil-deficient zebrafish. ZfpA deletion also increases susceptibility to human neutrophils ex vivo while overexpression impairs fungal killing. Overexpression of ZfpA confers protection against the antifungal caspofungin by increasing chitin synthesis during hyphal development, while ZfpA deletion reduces cell wall chitin and increases caspofungin susceptibility in neutrophil-deficient zebrafish. These findings suggest a protective role for ZfpA activity in resistance to the innate immune response and antifungal treatment during A. fumigatus infection.


Assuntos
Aspergilose , Aspergillus fumigatus , Animais , Humanos , Antifúngicos/farmacologia , Caspofungina/farmacologia , Neutrófilos , Peixe-Zebra/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Aspergilose/microbiologia , Regulação Fúngica da Expressão Gênica , Quitina
7.
Infect Immun ; 92(2): e0038023, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168666

RESUMO

Macrophages act as a first line of defense against pathogens. Against Aspergillus fumigatus, a fungus with pathogenic potential in immunocompromised patients, macrophages can phagocytose fungal spores and inhibit spore germination to prevent the development of tissue-invasive hyphae. However, the cellular pathways that macrophages use to accomplish these tasks and any roles macrophages have later in infection against invasive forms of fungi are still not fully known. Rac-family Rho GTPases are signaling hubs for multiple cellular functions in leukocytes, including cell migration, phagocytosis, reactive oxygen species (ROS) generation, and transcriptional activation. We therefore aimed to further characterize the function of macrophages against A. fumigatus in an in vivo vertebrate infection model by live imaging of the macrophage behavior in A. fumigatus-infected rac2 mutant zebrafish larvae. While Rac2-deficient zebrafish larvae are susceptible to A. fumigatus infection, Rac2 deficiency does not impair macrophage migration to the infection site, interaction with and phagocytosis of spores, spore trafficking to acidified compartments, or spore killing. However, we reveal a role for Rac2 in macrophage-mediated inhibition of spore germination and control of invasive hyphae. Re-expression of Rac2 under a macrophage-specific promoter rescues the survival of A. fumigatus-infected rac2 mutant larvae through increased control of germination and hyphal growth. Altogether, we describe a new role for macrophages against extracellular hyphal growth of A. fumigatus and report that the function of the Rac2 Rho GTPase in macrophages is required for this function.


Assuntos
Aspergilose , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/microbiologia , GTP Fosfo-Hidrolases , Macrófagos/microbiologia , Fagocitose , Aspergilose/microbiologia , Aspergillus fumigatus/fisiologia , Esporos Fúngicos , Proteínas rac de Ligação ao GTP/genética , Proteínas de Peixe-Zebra/genética
8.
Emerg Infect Dis ; 30(8): 1531-1541, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38935978

RESUMO

Azole-resistant Aspergillus fumigatus (ARAf) fungi have been found inconsistently in the environment in Denmark since 2010. During 2018-2020, nationwide surveillance of clinical A. fumigatus fungi reported environmental TR34/L98H or TR46/Y121F/T289A resistance mutations in 3.6% of isolates, prompting environmental sampling for ARAf and azole fungicides and investigation for selection of ARAf in field and microcosmos experiments. ARAf was ubiquitous (20% of 366 samples; 16% TR34/L98H- and 4% TR46/Y121F/T289A-related mechanisms), constituting 4.2% of 4,538 A. fumigatus isolates. The highest proportions were in flower- and compost-related samples but were not correlated with azole-fungicide application concentrations. Genotyping showed clustering of tandem repeat-related ARAf and overlaps with clinical isolates in Denmark. A. fumigatus fungi grew poorly in the field experiment with no postapplication change in ARAf proportions. However, in microcosmos experiments, a sustained complete (tebuconazole) or partial (prothioconazole) inhibition against wild-type A. fumigatus but not ARAf indicated that, under some conditions, azole fungicides may favor growth of ARAf in soil.


Assuntos
Antifúngicos , Aspergillus fumigatus , Azóis , Farmacorresistência Fúngica , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Azóis/farmacologia , Dinamarca/epidemiologia , Antifúngicos/farmacologia , Humanos , Aspergilose/epidemiologia , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Testes de Sensibilidade Microbiana , Mutação , Fungicidas Industriais/farmacologia , Genótipo
9.
J Clin Microbiol ; 62(5): e0039424, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38602412

RESUMO

Aspergillus species and Mucorales agents are the primary etiologies of invasive fungal disease (IFD). Biomarkers that predict outcomes are needed to improve care. Patients diagnosed with invasive aspergillosis and mucormycosis using plasma cell-free DNA (cfDNA) PCR were retested weekly for 4 weeks. The primary outcome included all-cause mortality at 6 weeks and 6 months based on baseline cycle threshold (CT) values and results of follow-up cfDNA PCR testing. Forty-five patients with Aspergillus and 30 with invasive Mucorales infection were retested weekly for a total of 197 tests. Using the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium (EORTC/MSG) criteria, 30.7% (23/75), 25.3% (19/75), and 38.7% (29/75) had proven, probable, and possible IFD, respectively. In addition, 97.3% (73/75) were immunocompromised. Baseline CT increased significantly starting at week 1 for Mucorales and week 2 for Aspergillus. Aspergillosis and mucormycosis patients with higher baseline CT (CT >40 and >35, respectively) had a nonsignificantly higher survival rate at 6 weeks, compared with patients with lower baseline CT. Mucormycosis patients with higher baseline CT had a significantly higher survival rate at 6 months. Mucormycosis, but not aspergillosis patients, with repeat positive cfDNA PCR results had a nonsignificantly lower survival rate at 6 weeks and 6 months compared with patients who reverted to negative. Aspergillosis patients with baseline serum Aspergillus galactomannan index <0.5 and <1.0 had significantly higher survival rates at 6 weeks when compared with those with index ≥0.5 and ≥1.0, respectively. Baseline plasma cfDNA PCR CT can potentially be used to prognosticate survival in patients with invasive Aspergillus and Mucorales infections. IMPORTANCE: We show that Aspergillus and Mucorales plasma cell-free DNA PCR can be used not only to noninvasively diagnose patients with invasive fungal disease but also to correlate the baseline cycle threshold with survival outcomes, thus potentially allowing the identification of patients at risk for poor outcomes, who may benefit from more targeted therapies.


Assuntos
Ácidos Nucleicos Livres , DNA Fúngico , Infecções Fúngicas Invasivas , Mucormicose , Reação em Cadeia da Polimerase , Humanos , Mucormicose/diagnóstico , Mucormicose/mortalidade , Mucormicose/sangue , Mucormicose/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Ácidos Nucleicos Livres/sangue , Reação em Cadeia da Polimerase/métodos , Adulto , DNA Fúngico/genética , DNA Fúngico/sangue , Infecções Fúngicas Invasivas/diagnóstico , Infecções Fúngicas Invasivas/mortalidade , Infecções Fúngicas Invasivas/microbiologia , Aspergillus/genética , Aspergillus/isolamento & purificação , Aspergilose/diagnóstico , Aspergilose/mortalidade , Aspergilose/microbiologia , Mucorales/genética , Mucorales/isolamento & purificação , Biomarcadores/sangue , Idoso de 80 Anos ou mais , Estudos Prospectivos
10.
J Antimicrob Chemother ; 79(4): 703-711, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38252921

RESUMO

INTRODUCTION: Therapeutic drug monitoring (TDM) is a tool that supports personalized dosing, but its role for liposomal amphotericin B (L-amb) is unclear. This systematic review assessed the evidence for L-amb TDM in children. OBJECTIVES: To evaluate the concentration-efficacy relationship, concentration-toxicity relationship and pharmacokinetic/pharmacodynamic (PK/PD) variability of L-amb in children. METHODS: We systematically reviewed PubMed and Embase databases following PRISMA guidelines. Eligible studies included L-amb PK/PD studies in children aged 0-18 years. Review articles, case series of 600 mg·h/L for nephrotoxicity. L-amb doses of 2.5-10 mg/kg/day were reported to achieve Cmax/MIC > 25 using an MIC of 1 mg/L. CONCLUSIONS: While significant PK variability was observed in children, evidence to support routine L-amb TDM was limited. Further studies on efficacy and toxicity benefits are required before routine TDM of L-amb can be recommended.


Assuntos
Anfotericina B , Antifúngicos , Monitoramento de Medicamentos , Humanos , Anfotericina B/farmacocinética , Anfotericina B/administração & dosagem , Anfotericina B/efeitos adversos , Anfotericina B/uso terapêutico , Criança , Antifúngicos/farmacocinética , Antifúngicos/administração & dosagem , Antifúngicos/efeitos adversos , Antifúngicos/uso terapêutico , Pré-Escolar , Adolescente , Lactente , Recém-Nascido , Aspergilose/tratamento farmacológico , Testes de Sensibilidade Microbiana
11.
PLoS Pathog ; 18(3): e1010040, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35333905

RESUMO

Invasive aspergillosis is a common opportunistic infection, causing >50% mortality in infected immunocompromised patients. The specific molecular mechanisms of the innate immune system that prevent pathogenesis of invasive aspergillosis in immunocompetent individuals are not fully understood. Here, we used a zebrafish larva-Aspergillus infection model to identify cyclooxygenase (COX) enzyme signaling as one mechanism that promotes host survival. Larvae exposed to the pan-COX inhibitor indomethacin succumb to infection at a significantly higher rate than control larvae. COX signaling is both macrophage- and neutrophil-mediated. However, indomethacin treatment has no effect on phagocyte recruitment. Instead, COX signaling promotes phagocyte-mediated inhibition of germination and invasive hyphal growth. Increased germination and invasive hyphal growth is also observed in infected F0 crispant larvae with mutations in genes encoding for COX enzymes (ptgs2a/b). Protective COX-mediated signaling requires the receptor EP2 and exogenous prostaglandin E2 (PGE2) rescues indomethacin-induced decreased immune control of fungal growth. Collectively, we find that COX signaling activates the PGE2-EP2 pathway to increase control A. fumigatus hyphal growth by phagocytes in zebrafish larvae.


Assuntos
Aspergilose , Ciclo-Oxigenase 2 , Dinoprostona , Proteínas de Peixe-Zebra , Animais , Humanos , Aspergilose/microbiologia , Aspergillus fumigatus , Ciclo-Oxigenase 2/genética , Dinoprostona/metabolismo , Indometacina/farmacologia , Larva/metabolismo , Fagócitos/metabolismo , Prostaglandina-Endoperóxido Sintases , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
12.
PLoS Pathog ; 18(12): e1011066, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36574449

RESUMO

Invasive aspergillosis remains one of the most devastating fungal diseases and is predominantly linked to infections caused by the opportunistic human mold pathogen Aspergillus fumigatus. Major treatment regimens for the disease comprise the administration of antifungals belonging to the azole, polyene and echinocandin drug class. The prodrug 5-fluorocytosine (5FC), which is the only representative of a fourth class, the nucleobase analogs, shows unsatisfactory in vitro activities and is barely used for the treatment of aspergillosis. The main route of 5FC activation in A. fumigatus comprises its deamination into 5-fluorouracil (5FU) by FcyA, which is followed by Uprt-mediated 5FU phosphoribosylation into 5-fluorouridine monophosphate (5FUMP). In this study, we characterized and examined the role of a metabolic bypass that generates this nucleotide via 5-fluorouridine (5FUR) through uridine phosphorylase and uridine kinase activities. Resistance profiling of mutants lacking distinct pyrimidine salvage activities suggested a minor contribution of the alternative route in 5FUMP formation. We further analyzed the contribution of drug efflux in 5FC tolerance and found that A. fumigatus cells exposed to 5FC reduce intracellular fluoropyrimidine levels through their export into the environment. This release, which was particularly high in mutants lacking Uprt, generates a toxic environment for cytosine deaminase lacking mutants as well as mammalian cells. Employing the broad-spectrum fungal efflux pump inhibitor clorgyline, we demonstrate synergistic properties of this compound in combination with 5FC, 5FU as well as 5FUR.


Assuntos
Antineoplásicos , Aspergilose , Animais , Humanos , Flucitosina/farmacologia , Flucitosina/metabolismo , Flucitosina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antineoplásicos/farmacologia , Antimetabólitos , Fluoruracila/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/metabolismo , Farmacorresistência Fúngica , Mamíferos
13.
Appl Environ Microbiol ; 90(4): e0126023, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38501925

RESUMO

The hydrophobic layer of Aspergillus conidia, composed of RodA, plays a crucial role in conidia transfer and immune evasion. It self-assembles into hydrophobic rodlets through intramolecular disulfide bonds. However, the secretory process of RodA and its regulatory elements remain unknown. Since protein disulfide isomerase (PDI) is essential for the secretion of many disulfide-bonded proteins, we investigated whether PDI is also involved in RodA secretion and assembly. By gene knockout and phenotypic analysis, we found that Pdi1, one of the four PDI-related proteins of Aspergillus fumigatus, determines the hydrophobicity and integrity of the rodlet layer of the conidia. Preservation of the thioredoxin-active domain of Pdi1 was sufficient to maintain conidial hydrophobicity, suggesting that Pdi1 mediates RodA assembly through its disulfide isomerase activity. In the absence of Pdi1, the disulfide mismatch of RodA in conidia may prevent its delivery from the inner to the outer layer of the cell wall for rodlet assembly. This was demonstrated using a strain expressing a key cysteine-mutated RodA. The dormant conidia of the Pdi1-deficient strain (Δpdi) elicited an immune response, suggesting that the defective conidia surface in the absence of Pdi1 exposes internal immunogenic sources. In conclusion, Pdi1 ensures the correct folding of RodA in the inner layer of conidia, facilitating its secretion into the outer layer of the cell wall and allowing self-assembly of the hydrophobic layer. This study has identified a regulatory element for conidia rodlet assembly.IMPORTANCEAspergillus fumigatus is the major cause of invasive aspergillosis, which is mainly transmitted by the inhalation of conidia. The spread of conidia is largely dependent on their hydrophobicity, which is primarily attributed to the self-assembly of the hydrophobic protein RodA on the cell wall. However, the mechanisms underlying RodA secretion and transport to the outermost layer of the cell wall are still unclear. Our study identified a critical role for Pdi1, a fungal protein disulfide isomerase found in regulating RodA secretion and assembly. Inhibition of Pdi1 prevents the formation of correct S-S bonds in the inner RodA, creating a barrier to RodA delivery and resulting in a defective hydrophobic layer. Our findings provided insight into the formation of the conidial hydrophobic layer and suggested potential drug targets to inhibit A. fumigatus infections by limiting conidial dispersal and altering their immune inertia.


Assuntos
Aspergilose , Aspergillus fumigatus , Aspergillus fumigatus/genética , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Fúngicas/metabolismo , Esporos Fúngicos/genética , Aspergilose/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Dissulfetos/metabolismo
14.
BMC Microbiol ; 24(1): 111, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570761

RESUMO

BACKGROUND: Aspergillus species cause a variety of serious clinical conditions with increasing trend in antifungal resistance. The present study aimed at evaluating hospital epidemiology and antifungal susceptibility of all isolates recorded in our clinical database since its implementation. METHODS: Data on date of isolation, biological samples, patients' age and sex, clinical settings, and antifungal susceptibility tests for all Aspergillus spp. isolated from 2015 to 2022 were extracted from the clinical database. Score test for trend of odds, non-parametric Mann Kendall trend test and logistic regression analysis were used to analyze prevalence, incidence, and seasonality of Aspergillus spp. isolates. RESULTS: A total of 1126 Aspergillus spp. isolates were evaluated. A. fumigatus was the most prevalent (44.1%) followed by A. niger (22.3%), A. flavus (17.7%) and A. terreus (10.6%). A. niger prevalence increased over time in intensive care units (p-trend = 0.0051). Overall, 16 (1.5%) were not susceptible to one azole compound, and 108 (10.9%) to amphotericin B, with A. niger showing the highest percentage (21.9%). The risk of detecting A. fumigatus was higher in June, (OR = 2.14, 95% CI [1.16; 3.98] p = 0.016) and reduced during September (OR = 0.48, 95% CI [0.27; 0.87] p = 0.015) and October as compared to January (OR = 0.39, 95% CI [0.21; 0.70] p = 0.002. A. niger showed a reduced risk of isolation from all clinical samples in the month of June as compared to January (OR = 0.34, 95% CI [0.14; 0.79] p = 0.012). Seasonal trend for A. flavus showed a higher risk of detection in September (OR = 2.7, 95% CI [1.18; 6.18] p = 0.019), October (OR = 2.32, 95% CI [1.01; 5.35] p = 0.048) and November (OR = 2.42, 95% CI [1.01; 5.79] p = 0.047) as compared to January. CONCLUSIONS: This is the first study to analyze, at once, data regarding prevalence, time trends, seasonality, species distribution and antifungal susceptibility profiles of all Aspergillus spp. isolates over a 8-year period in a tertiary care center. Surprisingly no increase in azole resistance was observed over time.


Assuntos
Antifúngicos , Aspergilose , Humanos , Antifúngicos/farmacologia , Centros de Atenção Terciária , Aspergilose/epidemiologia , Aspergilose/microbiologia , Testes de Sensibilidade Microbiana , Aspergillus , Azóis , Farmacorresistência Fúngica
15.
Cytokine ; 175: 156483, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38159472

RESUMO

PURPOSE: The purpose of this research study was to investigate the impact of schaftoside on Aspergillus fumigatus (A. fumigatus) keratitis and elucidate its underlying mechanisms. METHODS: In order to establish safe experimental concentrations of schaftoside in human corneal epithelial cells (HCECs), RAW264.7 cells, and mouse models, various techniques were employed including cytotoxicity assay (CCK-8) assay, cell scratch assay, and Draize test. The therapeutic effect of schaftoside was assessed using slit-lamp biomicroscopy, clinical scores, as well as determination of neutrophil infiltration through hematoxylin and eosin (HE) staining, immunofluorescence (IF) staining, and myeloperoxidase (MPO) assay. The levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), pro-inflammatory mediators interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-6 were determined using quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and IF techniques. RESULTS: Schaftoside at a concentration of 160 µM displayed no harmful side effects on HCECs, RAW cells, and mouse corneas, rendering it suitable for further experiments. In a murine fungal keratitis model, schaftoside mitigated the severity of fungal keratitis by inhibiting neutrophil infiltration and reducing MPO activity. Both in vitro and in vivo experiments demonstrated that schaftoside treatment suppressed the upregulation of IL-1ß, TNF-α, and IL-6 expression, while also downregulating the expressions of TLR4 as well as MyD88 at both mRNA and protein levels. CONCLUSIONS: Schaftoside demonstrated a protective effect against A. fumigatus keratitis by reducing corneal damage through inhibition of neutrophil recruitment and downstream inflammatory cytokines. The anti-inflammatory properties of schaftoside in A. fumigatus keratitis may involve modulation of the TLR4/MyD88 pathway.


Assuntos
Aspergilose , Glicosídeos , Ceratite , Animais , Camundongos , Humanos , Aspergillus fumigatus , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Aspergilose/tratamento farmacológico , Interleucina-6/metabolismo , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Ceratite/microbiologia , Inflamação/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Camundongos Endogâmicos C57BL
16.
Cytokine ; 182: 156717, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067394

RESUMO

PURPOSE: Aspergillus fumigatus (A. fumigatus) keratitis is a type of infectious corneal disease that significantly impairs vision. The objective of this study is to evaluate the therapeutic potential of chelerythrine (CHE) on A. fumigatus keratitis. METHODS: The antifungal activity of CHE was assessed through various tests including the minimum inhibitory concentration test, scanning electron microscopy, transmission electron microscopy, propidium iodide uptake test and plate count. Neutrophil infiltration and activity were assessed using immunofluorescence staining and the myeloperoxidase test. RT-PCR, western blotting assay, and ELISA were performed to measure the expression levels of proinflammatory cytokines (IL-1ß and IL-6), NF-E2-related factor (Nrf2), heme oxygenase-1 (HO-1), and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), as well as to determine the ratio of phosphorylated-p38 (p-p38) mitogen-activated protein kinase (MAPK) to p38 MAPK. RESULTS: In vitro, CHE inhibited the growth of A. fumigatus conidia, reduced fungal hyphae survival, and prevented fungal biofilm formation. In vivo, CHE reduced the severity of A. fumigatus keratitis and exhibited an excellent anti-inflammatory effect by blocking neutrophil infiltration. Furthermore, CHE decreased the expression levels of proinflammatory cytokines and LOX-1 at both mRNA and protein levels, while also decreasing the p-p38 MAPK/p38 MAPK ratio. Additionally, CHE increased the expression levels of Nrf2 and HO-1. CONCLUSION: CHE provides protection against A. fumigatus keratitis through multiple mechanisms, including reducing fungal survival, inducing anti-inflammatory effects, enhancing Nrf2 and HO-1 expression, and suppressing the signaling pathway of LOX-1/p38 MAPK.


Assuntos
Aspergilose , Aspergillus fumigatus , Benzofenantridinas , Ceratite , Fator 2 Relacionado a NF-E2 , Receptores Depuradores Classe E , Proteínas Quinases p38 Ativadas por Mitógeno , Aspergillus fumigatus/efeitos dos fármacos , Receptores Depuradores Classe E/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Ceratite/microbiologia , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Animais , Benzofenantridinas/farmacologia , Benzofenantridinas/uso terapêutico , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Heme Oxigenase-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Feminino , Citocinas/metabolismo
17.
Cytokine ; 179: 156626, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38678810

RESUMO

PURPOSE: To determine the antifungal, anti-inflammatory and neuroprotective effects of resveratrol (RES) in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS: Cytotoxicity assay and Draize eye assay were performed to assess the toxicity of RES. The antifungal effect of RES was assessed by minimal inhibitory concentration, scanning or transmission electron microscopy, propidium iodide uptake assay, and Calcofluor white staining. Phosphorylation of p38 MAPK, mRNA and protein levels of Dectin-1 and related inflammatory factors were measured by qRT-PCR, ELISA and Western blot in vitro and in vivo. Clinical score, HE staining, plate count, and myeloperoxidase test were used to observe the progress of fungal keratitis. IF staining, qRT-PCR, and the Von Frey test were selected to assess the neuroprotective effects of RES. RESULTS: RES suppressed A. fumigatus hyphae growth and altered hyphae morphology in vitro. RES decreased the expression of Dectin-1, IL-1ß and TNF-α, as well as p38 MAPK phosphorylation expression, and also decreased clinical scores, reduced inflammatory cell infiltration and neutrophil activity, and decreased fungal load. RES also protected corneal basal nerve fibers, down-regulated mechanosensitivity thresholds, and increased the mRNA levels of CGRP and TRPV-1.. CONCLUSION: These evidences revealed that RES could exert antifungal effects on A. fumigatus and ameliorate FK through suppressing the Dectin-1/p38 MAPK pathway to down-regulate IL-1ß, IL-6, etc. expression and play protective effect on corneal nerves.


Assuntos
Anti-Inflamatórios , Aspergillus fumigatus , Ceratite , Lectinas Tipo C , Fármacos Neuroprotetores , Resveratrol , Proteínas Quinases p38 Ativadas por Mitógeno , Aspergillus fumigatus/efeitos dos fármacos , Lectinas Tipo C/metabolismo , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Ceratite/microbiologia , Resveratrol/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Fármacos Neuroprotetores/farmacologia , Anti-Inflamatórios/farmacologia , Camundongos , Aspergilose/tratamento farmacológico , Aspergilose/metabolismo , Antifúngicos/farmacologia , Masculino , Transdução de Sinais/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Córnea/efeitos dos fármacos , Córnea/metabolismo
18.
Eur J Nucl Med Mol Imaging ; 51(11): 3223-3234, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38787397

RESUMO

PURPOSE: Invasive fungal diseases, such as pulmonary aspergillosis, are common life-threatening infections in immunocompromised patients and effective treatment is often hampered by delays in timely and specific diagnosis. Fungal-specific molecular imaging ligands can provide non-invasive readouts of deep-seated fungal pathologies. In this study, the utility of antibodies and antibody fragments (Fab) targeting ß-glucans in the fungal cell wall to detect Aspergillus infections was evaluated both in vitro and in preclinical mouse models. METHODS: The binding characteristics of two commercially available ß-glucan antibody clones and their respective antigen-binding Fabs were tested using biolayer interferometry (BLI) assays and immunofluorescence staining. In vivo binding of the Zirconium-89 labeled antibodies/Fabs to fungal pathogens was then evaluated using PET/CT imaging in mouse models of fungal infection, bacterial infection and sterile inflammation. RESULTS: One of the evaluated antibodies (HA-ßG-Ab) and its Fab (HA-ßG-Fab) bound to ß-glucans with high affinity (KD = 0.056 & 21.5 nM respectively). Binding to the fungal cell wall was validated by immunofluorescence staining and in vitro binding assays. ImmunoPET imaging with intact antibodies however showed slow clearance and high background signal as well as nonspecific accumulation in sites of infection/inflammation. Conversely, specific binding of [89Zr]Zr-DFO-HA-ßG-Fab to sites of fungal infection was observed when compared to the isotype control Fab and was significantly higher in fungal infection than in bacterial infection or sterile inflammation. CONCLUSIONS: [89Zr]Zr-DFO-HA-ßG-Fab can be used to detect fungal infections in vivo. Targeting distinct components of the fungal cell wall is a viable approach to developing fungal-specific PET tracers.


Assuntos
Aspergilose , Radioisótopos , Zircônio , beta-Glucanas , Zircônio/química , Animais , Camundongos , Aspergilose/diagnóstico por imagem , Aspergilose/imunologia , beta-Glucanas/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Aspergillus , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/imunologia
19.
Exp Eye Res ; 240: 109830, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364932

RESUMO

Fungal keratitis (FK) is a refractory keratitis caused by excessive inflammation and fungal damage. Excessive inflammation can lead to tissue damage and corneal opacity, resulting in a poor prognosis for FK. Oxymatrine (OMT) is a natural alkaloid, which has rich pharmacological effects, such as antioxidant and anti-inflammation. However, its antifungal activity and the mechanism of action in FK have not been elucidated. This study confirmed that OMT suppressed Aspergillus fumigatus growth, biofilm formation, the integrity of fungal cell and conidial adherence. OMT not only effectively reduced corneal fungal load but also inflammation responses. OMT lessened the recruitment of neutrophils and macrophages in FK. In addition, OMT up-regulated the expression of Nrf2 and down-regulated the expression of IL-18, IL-1ß, caspase-1, NLRP3 and GSDMD. Pre-treatment with Nrf2 inhibitor up-regulated the expression of IL-1ß, IL-18, caspase-1, NLRP3 and GSDMD supressed by OMT. In conclusion, OMT has efficient anti-inflammatory and antifungal effects by suppressing fungal activity and restricting pyroptosis via Nrf2 pathway. OMT is considered as a potential option for the treatment of FK.


Assuntos
Aspergilose , Úlcera da Córnea , Infecções Oculares Fúngicas , Ceratite , Matrinas , Animais , Camundongos , Aspergillus fumigatus/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Interleucina-18 , Aspergilose/tratamento farmacológico , Aspergilose/metabolismo , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Piroptose , Fator 2 Relacionado a NF-E2 , Ceratite/microbiologia , Inflamação , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/metabolismo , Caspase 1/metabolismo , Camundongos Endogâmicos C57BL
20.
Exp Eye Res ; 244: 109944, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797260

RESUMO

Fungal keratitis (FK) is an infectious keratopathy can cause serious damage to vision. Its severity is related to the virulence of fungus and response of inflammatory. Rosmarinic acid (RA) extracted from Rosmarinus officinalis exhibits antioxidant, anti-inflammatory and anti-viral properties. The aim of this study was to investigate the effect of RA on macrophage autophagy and its therapeutic effect on FK. In this study, we demonstrated that RA reduced expression of proinflammatory cytokine, lessened the recruitment of inflammatory cells in FK. The relative contents of autophagy markers, such as LC3 and Beclin-1, were significantly up-regulated in RAW 264.7 cells and FK. In addition, RA restored mitochondrial membrane potential (MMP) of macrophage to normal level. RA not only reduced the production of intracellular reactive oxygen species (ROS) but also mitochondria ROS (mtROS) in macrophage. At the same time, RA induced macrophage to M2 phenotype and down-regulated the mRNA expression of IL-6, IL-1ß, TNF-α. All the above effects could be offset by the autophagy inhibitor 3-Methyladenine (3-MA). Besides, RA promote phagocytosis of RAW 264.7 cells and inhibits spore germination, biofilm formation and conidial adherence, suggesting a potential therapeutic role for RA in FK.


Assuntos
Aspergilose , Aspergillus fumigatus , Autofagia , Cinamatos , Depsídeos , Infecções Oculares Fúngicas , Macrófagos , Espécies Reativas de Oxigênio , Ácido Rosmarínico , Depsídeos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Camundongos , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergilose/metabolismo , Infecções Oculares Fúngicas/microbiologia , Infecções Oculares Fúngicas/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Cinamatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ceratite/microbiologia , Ceratite/tratamento farmacológico , Ceratite/metabolismo , Modelos Animais de Doenças , Células RAW 264.7 , Citocinas/metabolismo , Fagocitose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA