Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 678
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 162(2): 287-299, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26165940

RESUMO

Spindle assembly requires the coordinated action of multiple cellular structures to nucleate and organize microtubules in a precise spatiotemporal manner. Among them, the contributions of centrosomes, chromosomes, and microtubules have been well studied, yet the involvement of membrane-bound organelles remains largely elusive. Here, we provide mechanistic evidence for a membrane-based, Golgi-derived microtubule assembly pathway in mitosis. Upon mitotic entry, the Golgi matrix protein GM130 interacts with importin α via a classical nuclear localization signal that recruits importin α to the Golgi membranes. Sequestration of importin α by GM130 liberates the spindle assembly factor TPX2, which activates Aurora-A kinase and stimulates local microtubule nucleation. Upon filament assembly, nascent microtubules are further captured by GM130, thus linking Golgi membranes to the spindle. Our results reveal an active role for the Golgi in regulating spindle formation to ensure faithful organelle inheritance.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Animais , Aurora Quinase A/metabolismo , Células HeLa , Humanos , Carioferinas/metabolismo , Camundongos , Microtúbulos/metabolismo , Mitose , Fosfoproteínas/metabolismo , Fuso Acromático , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo
2.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785133

RESUMO

The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in regulating mRNA translation in oocytes. However, the specifics of how and which protein kinase cascades modulate CPEB1 activity are still controversial. Using genetic and pharmacological tools, and detailed time courses, we have re-evaluated the relationship between CPEB1 phosphorylation and translation activation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on CPEB1 phosphorylation during prometaphase of meiosis I. Only inactivation of the CDK1/MAPK pathway disrupts translation, whereas inactivation of either pathway alone leads to CPEB1 stabilization. However, CPEB1 stabilization induced by inactivation of the AURKA/PLK1 pathway does not affect translation, indicating that destabilization and/or degradation is not linked to translational activation. The accumulation of endogenous CCNB1 protein closely recapitulates the translation data that use an exogenous template. These findings support the overarching hypothesis that the activation of translation during prometaphase in mouse oocytes relies on a CDK1/MAPK-dependent CPEB1 phosphorylation, and that translational activation precedes CPEB1 destabilization.


Assuntos
Meiose , Oócitos , Biossíntese de Proteínas , Fatores de Poliadenilação e Clivagem de mRNA , Animais , Oócitos/metabolismo , Oócitos/citologia , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fosforilação , Camundongos , Feminino , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Aurora Quinase A/metabolismo , Aurora Quinase A/genética , Ciclina B1/metabolismo , Ciclina B1/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais
3.
J Hepatol ; 81(1): 120-134, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38428643

RESUMO

BACKGROUND & AIMS: The PTEN-AKT pathway is frequently altered in extrahepatic cholangiocarcinoma (eCCA). We aimed to evaluate the role of PTEN in the pathogenesis of eCCA and identify novel therapeutic targets for this disease. METHODS: The Pten gene was genetically deleted using the Cre-loxp system in biliary epithelial cells. The pathologies were evaluated both macroscopically and histologically. The characteristics were further analyzed by immunohistochemistry, reverse-transcription PCR, cell culture, and RNA sequencing. Some features were compared to those in human eCCA samples. Further mechanistic studies utilized the conditional knockout of Trp53 and Aurora kinase A (Aurka) genes. We also tested the effectiveness of an Aurka inhibitor. RESULTS: We observed that genetic deletion of the Pten gene in the extrahepatic biliary epithelium and peri-ductal glands initiated sclerosing cholangitis-like lesions in mice, resulting in enlarged and distorted extrahepatic bile ducts in mice as early as 1 month after birth. Histologically, these lesions exhibited increased epithelial proliferation, inflammatory cell infiltration, and fibrosis. With aging, the lesions progressed from low-grade dysplasia to invasive carcinoma. Trp53 inactivation further accelerated disease progression, potentially by downregulating senescence. Further mechanistic studies showed that both human and mouse eCCA showed high expression of AURKA. Notably, the genetic deletion of Aurka completely eliminated Pten deficiency-induced extrahepatic bile duct lesions. Furthermore, pharmacological inhibition of Aurka alleviated disease progression. CONCLUSIONS: Pten deficiency in extrahepatic cholangiocytes and peribiliary glands led to a cholangitis-to-cholangiocarcinoma continuum that was dependent on Aurka. These findings offer new insights into preventive and therapeutic interventions for extrahepatic CCA. IMPACT AND IMPLICATIONS: The aberrant PTEN-PI3K-AKT signaling pathway is commonly observed in human extrahepatic cholangiocarcinoma (eCCA), a disease with a poor prognosis. In our study, we developed a mouse model mimicking cholangitis to eCCA progression by conditionally deleting the Pten gene via Pdx1-Cre in epithelial cells and peribiliary glands of the extrahepatic biliary duct. The conditional Pten deletion in these cells led to cholangitis, which gradually advanced to dysplasia, ultimately resulting in eCCA. The loss of Pten heightened Akt signaling, cell proliferation, inflammation, fibrosis, DNA damage, epigenetic signaling, epithelial-mesenchymal transition, cell dysplasia, and cellular senescence. Genetic deletion or pharmacological inhibition of Aurka successfully halted disease progression. This model will be valuable for testing novel therapies and unraveling the mechanisms of eCCA tumorigenesis.


Assuntos
Aurora Quinase A , Neoplasias dos Ductos Biliares , Colangiocarcinoma , PTEN Fosfo-Hidrolase , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Animais , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Colangiocarcinoma/etiologia , Colangiocarcinoma/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Camundongos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/etiologia , Neoplasias dos Ductos Biliares/metabolismo , Humanos , Camundongos Knockout , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ductos Biliares Extra-Hepáticos/patologia , Modelos Animais de Doenças , Colangite/patologia , Colangite/etiologia , Colangite/metabolismo , Colangite/genética , Transdução de Sinais
4.
Biochem Biophys Res Commun ; 703: 149687, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38368674

RESUMO

BACKGROUND: ZNF468 is a relatively unexplored gene that has been implicated in potential oncogenic properties in various cancer types. However, the exact role of ZNF468 in radiotherapy resistance of esophageal squamous cell carcinomas (ESCCs) is not well understood. METHODS: Bioinformatic analysis was performed using the TCGA database to assess ZNF468 expression and prognostic significance in pan-cancer and ESCC. Functional experiments were conducted using ZNF468 overexpressing and knockdown cell lines to assess its impact on cell survival, DNA damage response, cell cycle, and apoptosis upon radiation. A luciferase reporter assay was utilized to validate ZNF468 binding to the AURKA promoter. RESULTS: ZNF468 was significantly upregulated in diverse cancer types, including ESCC, and its high expression correlated with adverse prognosis in specific tumors. In the ESCC cohort, ZNF468 exhibited substantial upregulation in post-radiotherapy tissues, indicating its potential role in conferring radiotherapy resistance. Functional experiments revealed that ZNF468 enhances cell viability and facilitates DNA damage repair in radiotherapy-treated ESCC cells, while dampening the G2/M cell cycle arrest and apoptosis induced by radiation. Moreover, ZNF468 facilitated AURKA transcription, resulting in upregulated Aurora A expression, and subsequently inhibited P53 expression, unveiling key molecular mechanisms underlying radiotherapy resistance in ESCC. CONCLUSION: ZNF468 plays an oncogenic role in ESCC and contributes to radiotherapy resistance. It enhances cell survival while dampening radiation-induced G2/M cell cycle arrest and apoptosis. By modulating AURKA and P53 expression, ZNF468 represents a promising therapeutic target for enhancing radiotherapy efficacy in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Apoptose/genética , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/radioterapia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Tolerância a Radiação/genética , Proteína Supressora de Tumor p53
5.
Development ; 148(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34636397

RESUMO

Mammalian oocytes are transcriptionally quiescent, and meiosis and early embryonic divisions rely on translation of stored maternal mRNAs. Activation of these mRNAs is mediated by polyadenylation. Cytoplasmic polyadenylation binding element 1 (CPEB1) regulates mRNA polyadenylation. One message is aurora kinase C (Aurkc), encoding a protein that regulates chromosome segregation. We previously demonstrated that AURKC levels are upregulated in oocytes lacking aurora kinase B (AURKB), and this upregulation caused increased aneuploidy rates, a role we investigate here. Using genetic and pharmacologic approaches, we found that AURKB negatively regulates CPEB1-dependent translation of many messages. To determine why translation is increased, we evaluated aurora kinase A (AURKA), a kinase that activates CPEB1 in other organisms. We find that AURKA activity is increased in Aurkb knockout mouse oocytes and demonstrate that this increase drives the excess translation. Importantly, removal of one copy of Aurka from the Aurkb knockout strain background reduces aneuploidy rates. This study demonstrates that AURKA is required for CPEB1-dependent translation, and it describes a new AURKB requirement to maintain translation levels through AURKA, a function crucial to generating euploid eggs.


Assuntos
Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Oócitos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro Estocado/metabolismo , Animais , Aurora Quinase A/genética , Aurora Quinase B/genética , Meiose , Camundongos , Camundongos Knockout , Fatores de Transcrição/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
6.
Development ; 148(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33766930

RESUMO

Stem cells self-renew or give rise to transit-amplifying cells (TACs) that differentiate into specific functional cell types. The fate determination of stem cells to TACs and their transition to fully differentiated progeny is precisely regulated to maintain tissue homeostasis. Arid1a, a core component of the switch/sucrose nonfermentable complex, performs epigenetic regulation of stage- and tissue-specific genes that is indispensable for stem cell homeostasis and differentiation. However, the functional mechanism of Arid1a in the fate commitment of mesenchymal stem cells (MSCs) and their progeny is not clear. Using the continuously growing adult mouse incisor model, we show that Arid1a maintains tissue homeostasis through limiting proliferation, promoting cell cycle exit and differentiation of TACs by inhibiting the Aurka-Cdk1 axis. Loss of Arid1a overactivates the Aurka-Cdk1 axis, leading to expansion of the mitotic TAC population but compromising their differentiation ability. Furthermore, the defective homeostasis after loss of Arid1a ultimately leads to reduction of the MSC population. These findings reveal the functional significance of Arid1a in regulating the fate of TACs and their interaction with MSCs to maintain tissue homeostasis.


Assuntos
Aurora Quinase A/metabolismo , Proteína Quinase CDC2/metabolismo , Proteínas de Ligação a DNA/metabolismo , Incisivo/embriologia , Células-Tronco Mesenquimais/metabolismo , Mitose , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Aurora Quinase A/genética , Proteína Quinase CDC2/genética , Proteínas de Ligação a DNA/genética , Camundongos , Camundongos Transgênicos , Fatores de Transcrição/genética
7.
Blood Cells Mol Dis ; 104: 102799, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839173

RESUMO

Myeloproliferative neoplasms (MPN) are consolidated as a relevant group of diseases derived from the malfunction of the hematopoiesis process and have as a particular attribute the increased proliferation of myeloid lineage. Among these, chronic neutrophilic leukemia (CNL) is distinguished, caused by the T618I mutation of the CSF3R gene, a trait that generates ligand-independent receptor activation and downstream JAK2/STAT signaling. Previous studies reported that mutations in BCR::ABL1 and JAK2V617F increased the expression of the aurora kinase A (AURKA) and B (AURKB) in Ba/F3 cells and their pharmacological inhibition displays antineoplastic effects in human BCR::ABL1 and JAK2V617F positive cells. Delimiting the current scenario, aspects related to the AURKA and AURKB as a potential target in CSF3RT618I-driven models is little known. In the present study, the cellular and molecular effects of pharmacological inhibitors of aurora kinases, such as aurora A inhibitor I, AZD1152-HQPA, and reversine, were evaluated in Ba/F3 expressing the CSF3RT618I mutation. AZD1152-HQPA and reversine demonstrated antineoplastic potential, causing a decrease in cell viability, clonogenicity, and proliferative capacity. At molecular levels, all inhibitors reduced histone H3 phosphorylation, aurora A inhibitor I and reversine reduced STAT5 phosphorylation, and AZD1152-HQPA and reversine induced PARP1 cleavage and γH2AX expression. Reversine more efficiently modulated genes associated with cell cycle and apoptosis compared to other drugs. In summary, our findings shed new insights into the use of AURKB inhibitors in the context of CNL.


Assuntos
Antineoplásicos , Aurora Quinase A , Humanos , Aurora Quinase A/metabolismo , Quinazolinas/farmacologia , Organofosfatos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptores de Fator Estimulador de Colônias
8.
J Virol ; 97(2): e0187222, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36715516

RESUMO

The expression of human papillomavirus (HPV) oncoproteins perturbed multiple cellular events of the host cells, leading to the formation of cancer phenotypes. Our current and previous studies indicated that Aurora kinase A (AurA), a mitotic regulator that is often aberrantly expressed in human cancers, is preferentially bound to E6-encoded by cancer-causing HPV. AurA is believed to be important for the proliferation and survival of HPV-positive cells. Nonetheless, the interaction between AurA and E6, and the mechanism of how this association is involved in carcinogenesis, have not been elucidated clearly. Hence, we performed a series of biochemical assays to characterize the AurA-E6 association and complex formation. We found the C-terminus of E6, upstream of the PDZ binding motif of E6, is important to forming the AurA-E6 complex in the nucleus. We also showed that the expression level of E6 corresponded positively with AurA expression. Meanwhile, the functional consequences of the AurA-E6 association to AurA kinase function and host cellular events were also delineated. Intriguingly, we revealed that AurA-E6 association regulated the expression of cyclin E and phosphor-Histone H3, which are involved in G1/S and mitotic phases of the cell cycle, respectively. Depletion of AurA also reduced the invasive ability of HPV-positive cells. AurA inhibition may not be sufficient to reduce the oncogenic potential exerted by E6. Altogether, our study unleashed the mechanism of how HPVE6 deploy AurA to promote cancer phenotypes, particularly through dysregulation of cell cycle checkpoints and suggests that the AurA-E6 complex possesses a therapeutic value. IMPORTANCE We unveiled the mechanism of how HPV employs Aurora kinase A (AurA) of host cells to exert its oncogenic capability synergistically. We systematically characterized the mode of interaction between E6-encoded by cancer-causing HPV and AurA. Then, we delineated the consequences of AurA-E6 complex formation on AurA kinase function and changes to cellular events at molecular levels. Using a cell-based approach, we unleashed that disruption of AurA-E6 association can halt cancer phenotype exhibited by HPV-positive cancer cells. Our findings are vital for the designing of state-of-the-art therapies for HPV-associated cancers.


Assuntos
Aurora Quinase A , Papillomavirus Humano , Neoplasias , Infecções por Papillomavirus , Proteínas do Envelope Viral , Humanos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Carcinogênese/patologia , Papillomavirus Humano/genética , Papillomavirus Humano/metabolismo , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/virologia , Proteínas do Envelope Viral/metabolismo , Regulação Viral da Expressão Gênica , Neoplasias/etiologia , Neoplasias/fisiopatologia , Neoplasias/virologia
9.
J Chem Inf Model ; 64(12): 4759-4772, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38857305

RESUMO

The accurate experimental estimation of protein-ligand systems' residence time (τ) has become very relevant in drug design projects due to its importance in the last stages of refinement of the drug's pharmacodynamics and pharmacokinetics. It is now well-known that it is not sufficient to estimate the affinity of a protein-drug complex in the thermodynamic equilibrium process in in vitro experiments (closed systems), where the concentrations of the drug and protein remain constant. On the contrary, it is mandatory to consider the conformational dynamics of the system in terms of the binding and unbinding processes between protein and drugs in in vivo experiments (open systems), where their concentrations are in constant flux. This last model has been proven to dictate much of several drugs' pharmacological activities in vivo. At the atomistic level, molecular dynamics simulations can explain why some drugs are more effective than others or unveil the molecular aspects that make some drugs work better in one molecular target. Here, the protein kinases Aurora A/B, complexed with its inhibitor Danusertib, were studied using conventional and enhanced molecular dynamics (MD) simulations to estimate the dissociation paths and, therefore, the computational τ values and their comparison with experimental ones. Using classical molecular dynamics (cMD), three differential residues within the Aurora A/B active site, which seems to play an essential role in the observed experimental Danusertib's residence time against these kinases, were characterized. Then, using WT-MetaD, the relative Danusertib's residence times against Aurora A/B kinases were measured in a nanosecond time scale and were compared to those τ values observed experimentally. In addition, the potential dissociation paths of Danusertib in Aurora A and B were characterized, and differences that might be explained by the differential residues in the enzyme's active sites were found. In perspective, it is expected that this computational protocol can be applied to other protein-ligand complexes to understand, at the molecular level, the differences in residence times and amino acids that may contribute to it.


Assuntos
Aurora Quinase A , Aurora Quinase B , Simulação de Dinâmica Molecular , Aurora Quinase B/metabolismo , Aurora Quinase B/química , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase A/metabolismo , Aurora Quinase A/química , Aurora Quinase A/antagonistas & inibidores , Pirazóis/química , Pirazóis/metabolismo , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Ligação Proteica , Humanos , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacologia , Termodinâmica
10.
Drug Resist Updat ; 68: 100958, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990046

RESUMO

AIM: While most patients with RET-altered cancer responded to the RET protein tyrosine kinase inhibitors (TKIs) pralsetinib (BLU667) and selpercatinib (LOXO292), few achieved a complete response. Heterogeneity in residual tumors makes it difficult to target their diverse genetic alterations individually. The aim of this study is to characterize the cancer cells that persist under continuous RET TKI treatment and identify the shared vulnerability of these cells. METHODS: We analyzed residual RET-altered cancer cells under prolonged RET TKI treatment by whole exome sequencing (WES), RNA-seq analysis, and drug-sensitivity screening. These were followed by tumor xenograft experiments of mono- and combinational drug treatments. RESULTS: BLU667- and LOXO292-tolerated persisters were cellularly heterogeneous, contained slowly proliferating cells, regained low levels of active ERK1/2, and displayed plasticity in growth rate, which we designated as in the transition state of resistance (TSR). TSR cells were genetically heterogeneous. Aurora A/B kinases were among the most significantly upregulated genes and that the MAPK pathway activity had significantly higher transcript footprints. MEK1/2 and Aurora kinase inhibitors were the most effective drugs when combined with a RET kinase inhibitor. In a TSR tumor model, combination of BLU667 with an Aurora kinase or a MEK1/2 kinase inhibitor caused TSR tumor regression. CONCLUSION: Our experiments reveal that the heterogeneous TSR cancer cells under continuous RET TKI treatment converge on the targetable ERK1/2-driven Aurora A/B kinases. The discovery of the targetable convergent point in the genetically heterogeneous TSR points to an effective combination therapy approach to eliminate the residual tumors.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Humanos , Sistema de Sinalização das MAP Quinases , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Aurora Quinase A/uso terapêutico , Aurora Quinase B/metabolismo , Aurora Quinase B/uso terapêutico , Neoplasia Residual/tratamento farmacológico , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico
11.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892390

RESUMO

Aurora kinase A (AURKA) is a serine/threonine-protein kinase that regulates microtubule organization during neuron migration and neurite formation. Decreased activity of AURKA was found in Alzheimer's disease (AD) brain samples, but little is known about the role of AURKA in AD pathogenesis. Here, we demonstrate that AURKA is expressed in primary cultured rat neurons, neurons from adult mouse brains, and neurons in postmortem human AD brains. AURKA phosphorylation, which positively correlates with its activity, is reduced in human AD brains. In SH-SY5Y cells, pharmacological activation of AURKA increased AURKA phosphorylation, acidified endolysosomes, decreased the activity of amyloid beta protein (Aß) generating enzyme ß-site amyloid precursor protein cleaving enzyme (BACE-1), increased the activity of the Aß degrading enzyme cathepsin D, and decreased the intracellular and secreted levels of Aß. Conversely, pharmacological inhibition of AURKA decreased AURKA phosphorylation, de-acidified endolysosomes, decreased the activity of cathepsin D, and increased intracellular and secreted levels of Aß. Thus, reduced AURKA activity in AD may contribute to the development of intraneuronal accumulations of Aß and extracellular amyloid plaque formation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Aurora Quinase A , Lisossomos , Neurônios , Aurora Quinase A/metabolismo , Animais , Neurônios/metabolismo , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos , Ratos , Lisossomos/metabolismo , Fosforilação , Linhagem Celular Tumoral , Encéfalo/metabolismo , Células Cultivadas , Masculino , Secretases da Proteína Precursora do Amiloide/metabolismo
12.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673957

RESUMO

Cuproptosis and ferroptosis represent copper- and iron-dependent forms of cell death, respectively, and both are known to play pivotal roles in head and neck squamous cell carcinoma (HNSCC). However, few studies have explored the prognostic signatures related to cuproptosis and ferroptosis in HNSCC. Our objective was to construct a prognostic model based on genes associated with cuproptosis and ferroptosis. We randomly assigned 502 HSNCC samples from The Cancer Genome Atlas (TCGA) into training and testing sets. Pearson correlation analysis was utilized to identify cuproptosis-associated ferroptosis genes in the training set. Cox proportional hazards (COX) regression and least absolute shrinkage operator (LASSO) were employed to construct the prognostic model. The performance of the prognostic model was internally validated using single-factor COX regression, multifactor COX regression, Kaplan-Meier analysis, principal component analysis (PCA), and receiver operating curve (ROC) analysis. Additionally, we obtained 97 samples from the Gene Expression Omnibus (GEO) database for external validation. The constructed model, based on 12 cuproptosis-associated ferroptosis genes, proved to be an independent predictor of HNSCC prognosis. Among these genes, the increased expression of aurora kinase A (AURKA) has been implicated in various cancers. To further investigate, we employed small interfering RNAs (siRNAs) to knock down AURKA expression and conducted functional experiments. The results demonstrated that AURKA knockdown significantly inhibited the proliferation and migration of HNSCC cells (Cal27 and CNE2). Therefore, AURKA may serve as a potential biomarker in HNSCC.


Assuntos
Aurora Quinase A , Biomarcadores Tumorais , Ferroptose , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Ferroptose/genética , Aurora Quinase A/metabolismo , Aurora Quinase A/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Prognóstico , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Masculino , Feminino , Estimativa de Kaplan-Meier , Proliferação de Células/genética
13.
Pharm Biol ; 62(1): 394-403, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38739003

RESUMO

CONTEXT: Tabersonine has been investigated for its role in modulating inflammation-associated pathways in various diseases. However, its regulatory effects on triple-negative breast cancer (TNBC) have not yet been fully elucidated. OBJECTIVE: This study uncovers the anticancer properties of tabersonine in TNBC cells, elucidating its role in enhancing chemosensitivity to cisplatin (CDDP). MATERIALS AND METHODS: After tabersonine (10 µM) and/or CDDP (10 µM) treatment for 48 h in BT549 and MDA-MB-231 cells, cell proliferation was evaluated using the cell counting kit-8 and colony formation assays. Quantitative proteomics, online prediction tools and molecular docking analyses were used to identify potential downstream targets of tabersonine. Transwell and wound-healing assays and Western blot analysis were used to assess epithelial-mesenchymal transition (EMT) phenotypes. RESULTS: Tabersonine demonstrated inhibitory effects on TNBC cells, with IC50 values at 48 h being 18.1 µM for BT549 and 27.0 µM for MDA-MB-231. The combined treatment of CDDP and tabersonine synergistically suppressed cell proliferation in BT549 and MDA-MB-231 cells. Enrichment analysis revealed that the proteins differentially regulated by tabersonine were involved in EMT-related signalling pathways. This combination treatment also effectively restricted EMT-related phenotypes. Through the integration of online target prediction and proteomic analysis, Aurora kinase A (AURKA) was identified as a potential downstream target of tabersonine. AURKA expression was reduced in TNBC cells post-treatment with tabersonine. DISCUSSION AND CONCLUSIONS: Tabersonine significantly enhances the chemosensitivity of CDDP in TNBC cells, underscoring its potential as a promising therapeutic agent for TNBC treatment.


Assuntos
Aurora Quinase A , Cisplatino , Transição Epitelial-Mesenquimal , Alcaloides Indólicos , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Antineoplásicos/farmacologia , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Alcaloides Indólicos/farmacologia , Simulação de Acoplamento Molecular , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia
14.
J Biol Chem ; 298(5): 101895, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378133

RESUMO

Long noncoding RNAs (lncRNAs) have gained widespread attention as a new layer of regulation in biological processes during development and disease. The lncRNA ELDR (EGFR long noncoding downstream RNA) was recently shown to be highly expressed in oral cancers as compared to adjacent nontumor tissue, and we previously reported that ELDR may be an oncogene as inhibition of ELDR reduces tumor growth in oral cancer models. Furthermore, overexpression of ELDR induces proliferation and colony formation in normal oral keratinocytes (NOKs). In this study, we examined in further detail how ELDR drives the neoplastic transformation of normal keratinocytes. We performed RNA-seq analysis on NOKs stably expressing ELDR (NOK-ELDR), which revealed that ELDR enhances the expression of cell cycle-related genes. Expression of Aurora kinase A and its downstream targets Polo-like kinase 1, cell division cycle 25C, cyclin-dependent kinase 1, and cyclin B1 (CCNB1) are significantly increased in NOK-ELDR cells, suggesting induction of G2/M progression. We further identified CCCTC-binding factor (CTCF) as a binding partner of ELDR in NOK-ELDR cells. We show that ELDR stabilizes CTCF and increases its expression. Finally, we demonstrate the ELDR-CTCF axis upregulates transcription factor Forkhead box M1, which induces Aurora kinase A expression and downstream G2/M transition. These findings provide mechanistic insights into the role of the lncRNA ELDR as a potential driver of oral cancer during neoplastic transformation of normal keratinocytes.


Assuntos
Fenômenos Biológicos , Queratinócitos , Neoplasias Bucais , RNA Longo não Codificante , Aurora Quinase A/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , RNA Longo não Codificante/genética
15.
J Biol Chem ; 298(12): 102692, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372230

RESUMO

Triple-negative breast cancer (TNBC) poses significant challenges for treatment given the lack of targeted therapies and increased probability of relapse. It is pertinent to identify vulnerabilities in TNBC and develop newer treatments. Our prior research demonstrated that transcription factor EB (TFEB) is necessary for TNBC survival by regulating DNA repair, apoptosis signaling, and the cell cycle. However, specific mechanisms by which TFEB targets DNA repair and cell cycle pathways are unclear, and whether these effects dictate TNBC survival is yet to be determined. Here, we show that TFEB knockdown decreased the expression of genes and proteins involved in DNA replication and cell cycle progression in MDA-MB-231 TNBC cells. DNA replication was decreased in cells lacking TFEB, as measured by EdU incorporation. TFEB silencing in MDA-MB-231 and noncancerous MCF10A cells impaired progression through the S-phase following G1/S synchronization; however, this proliferation defect could not be rescued by co-knockdown of suppressor RB1. Instead, TFEB knockdown reduced origin licensing in G1 and early S-phase MDA-MB-231 cells. TFEB silencing was associated with replication stress in MCF10A but not in TNBC cells. Lastly, we identified that TFEB knockdown renders TNBC cells more sensitive to inhibitors of Aurora Kinase A, a protein facilitating mitosis. Thus, inhibition of TFEB impairs cell cycle progress by decreasing origin licensing, leading to delayed entry into the S-phase, while rendering TNBC cells sensitive to Aurora kinase A inhibitors and decreasing cell viability. In contrast, TFEB silencing in noncancerous cells is associated with replication stress and leads to G1/S arrest.


Assuntos
Aurora Quinase A , Ciclo Celular , Células Epiteliais , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas , Humanos , Apoptose/genética , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Replicação do DNA/genética , Células Epiteliais/metabolismo , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Técnicas de Silenciamento de Genes , Transdução de Sinais/genética , Ciclo Celular/genética
16.
Crit Rev Eukaryot Gene Expr ; 33(5): 39-59, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37199313

RESUMO

Non-small-cell lung cancer (NSCLC) is a malignancy with high overall morbidity and mortality due to a lack of reliable methods for early diagnosis and successful treatment of the condition. We identified genes that would be valuable for the diagnosis and prognosis of lung cancer. Common DEGs (DEGs) in three GEO datasets were selected for KEGG and GO enrichment analysis. A protein-protein interaction (PPI) network was constructed using the STRING database, and molecular complex detection (MCODE) identified hub genes. Gene expression profiling interactive analysis (GEPIA) and the Kaplan-Meier method analyzed hub genes expression and prognostic value. Quantitative PCR and western blotting were used to test for differences in hub gene expression in multiple cell lines. The CCK-8 assay was used to determine the IC50 of the AURKA inhibitor CCT137690 in H1993 cells. Transwell and clonogenic assays validated the function of AURKA in lung cancer, and cell cycle experiments explored its possible mechanism of action. Overall, 239 DEGs were identified from three datasets. AURKA, BIRC5, CCNB1, DLGAP5, KIF11, and KIF15 had shown great potential for lung cancer diagnosis and prognosis. In vitro experiments suggested that AURKA significantly influenced the proliferation and migration of lung cancer cells and activities related to the dysregulation of the cell cycle. AURKA, BIRC5, CCNB1, DLGAP5, KIF11, and KIF15 may be critical genes that influence the occurrence, development, and prognosis of NSCLC. AURKA significantly affects the proliferation and migration of lung cancer cells by disrupting the cell cycle.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Cinesinas/genética , Cinesinas/metabolismo
17.
Mol Med ; 29(1): 39, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977984

RESUMO

BACKGROUND: Diabetes-related limb ischemia is a challenge for lower extremity amputation. Aurora Kinase A (AURKA) is an essential serine/threonine kinase for mitosis, while its role in limb ischemia remains unclear. METHOD: Human microvascular endothelial cells (HMEC-1) were cultured in high glucose (HG, 25 mmol/L D-glucose) and no additional growth factors (ND) medium to mimic diabetes and low growth factors deprivation as in vitro model. Diabetic C57BL/6 mice were induced by streptozotocin (STZ) administration. After seven days, ischemia was surgically performed by left unilateral femoral artery ligation on diabetic mice. The vector of adenovirus was utilized to overexpress AURKA in vitro and in vivo. RESULTS: In our study, HG and ND-mediated downregulation of AURKA impaired the cell cycle progression, proliferation, migration, and tube formation ability of HMEC-1, which were rescued by overexpressed AURKA. Increased expression of vascular endothelial growth factor A (VEGFA) induced by overexpressed AURKA were likely regulatory molecules that coordinate these events. Mice with AURKA overexpression exhibited improved angiogenesis in response to VEGF in Matrigel plug assay, with increased capillary density and hemoglobin content. In diabetic limb ischemia mice, AURKA overexpression rescued blood perfusion and motor deficits, accompanied by the recovery of gastrocnemius muscles observed by H&E staining and positive Desmin staining. Moreover, AURKA overexpression rescued diabetes-related impairment of angiogenesis, arteriogenesis, and functional recovery in the ischemic limb. Signal pathway results revealed that VEGFR2/PI3K/AKT pathway might be involved in AURKA triggered angiogenesis procedure. In addition, AURKA overexpression impeded oxidative stress and subsequent following lipid peroxidation both in vitro and in vivo, indicating another protective mechanism of AURKA function in diabetic limb ischemia. The changes in lipid peroxidation biomarkers (lipid ROS, GPX4, SLC7A11, ALOX5, and ASLC4) in in vitro and in vivo were suggestive of the possible involvement of ferroptosis and interaction between AUKRA and ferroptosis in diabetic limb ischemia, which need further investigation. CONCLUSIONS: These results implicated a potent role of AURKA in diabetes-related impairment of ischemia-mediated angiogenesis and implied a potential therapeutic target for ischemic diseases of diabetes.


Assuntos
Diabetes Mellitus Experimental , Fator A de Crescimento do Endotélio Vascular , Humanos , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Aurora Quinase A/metabolismo , Aurora Quinase A/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Fosfatidilinositol 3-Quinases/metabolismo , Membro Posterior , Camundongos Endogâmicos C57BL , Isquemia , Músculo Esquelético/metabolismo
18.
Nat Chem Biol ; 17(5): 567-575, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33664520

RESUMO

The discovery of effective therapeutic treatments for cancer via cell differentiation instead of antiproliferation remains a great challenge. Cyclin-dependent kinase 2 (CDK2) inactivation, which overcomes the differentiation arrest of acute myeloid leukemia (AML) cells, may be a promising method for AML treatment. However, there is no available selective CDK2 inhibitor. More importantly, the inhibition of only the enzymatic function of CDK2 would be insufficient to promote notable AML differentiation. To further validate the role and druggability of CDK2 involved in AML differentiation, a suitable chemical tool is needed. Therefore, we developed first-in-class CDK2-targeted proteolysis-targeting chimeras (PROTACs), which promoted rapid and potent CDK2 degradation in different cell lines without comparable degradation of other targets, and induced remarkable differentiation of AML cell lines and primary patient cells. These data clearly demonstrated the practicality and importance of PROTACs as alternative tools for verifying CDK2 protein functions.


Assuntos
Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células Progenitoras Mieloides/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Triazóis/farmacologia , Antineoplásicos/síntese química , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Desenho de Fármacos , Descoberta de Drogas , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Concentração Inibidora 50 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Células Progenitoras Mieloides/enzimologia , Células Progenitoras Mieloides/patologia , Piperazinas/farmacologia , Cultura Primária de Células , Piridinas/farmacologia , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Transdução de Sinais , Relação Estrutura-Atividade , Transcriptoma , Triazóis/síntese química
19.
Bioorg Med Chem ; 80: 117173, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36696874

RESUMO

We combined a mechanism-informed phenotypic screening (MIPS) assay with a structural simplification strategy to guide the discovery of compounds that disrupt the localization of the mitotic regulator, Aurora kinase B (AURKB), rather than inhibiting its catalytic activity. An initial hit 4-(4-methylthiophen-2-yl)-N-(4-(quinolin-4-yloxy)phenyl)phthalazin-1-amine was identified after screening an in-house library of small molecules and phenocopied the loss of function mutations in AURKB without inhibiting its catalytic activity. We isolated this hit compound activity to its 4-phenoxy-quinoline moiety. The fragment was further optimized into a class of new chemical entities that potently disrupt the mitotic localization of AURKB at low nanomolar concentrations and consequently elicit severe growth inhibition in diverse human cancer cell lines. A lead compound, N-(3-methoxy-5-(6-methoxyquinolin-4-yl)oxy)phenyl)acetamide possessed desirable pharmacokinetic properties such as AUC0-∞: 227.15 [ng∙h/mL/(mg/kg)]; Cmax: 3378.52 ng/mL T1/2: 3.52 h; and F%: 42 % and produced the AURKB-inhibitory phenotypes in a mouse xenograft model. A lead compound is a powerful tool for interrogating the regulation of AURKB and has the potential to be further developed as a first-in-class oncology therapeutic.


Assuntos
Neoplasias , Quinolinas , Humanos , Camundongos , Animais , Aurora Quinase B , Fenótipo , Aurora Quinase A/metabolismo
20.
Bioorg Chem ; 132: 106352, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682147

RESUMO

Aurora A (Aurora kinase A), a critical regulator of cell mitosis, is frequently overexpressed in many malignant cancers, and has been considered as a promising drug target for cancer therapy. Likewise, Phosphatidylinositol 3-kinase alpha (PI3Kα) is also regarded as one of the most important targets in cancer therapy by mediating the cell growth and angiogenesis of various human cancers. In addition, Bromodomain-containing protein 4 (BRD4) modulates oncogene expressions of Myc, Aurora kinase and various RTKs. Recently, accumulating evidences indicated that hyperactivated or abnormally expressed Aurora A, PI3Kα or BRD4 are closely associated with drug resistance and poor prognosis of non-small cell lung cancer (NSCLC). Hence, simultaneous inhibition of Aurora A, PI3Kα, and BRD4 is expected to be a new strategy for NSCLC therapy. In this study, we performed further structure optimization of 6-(2-amino-1H-benzo[d]imidazole-6-yl)-quinazolin-4(3H) -one based on previous study to obtain a series of derivatives for discovering potential Aurora A, PI3Kα and BRD4 multi-targeted inhibitors. MTT assay showed that most of the newly synthesized compounds exhibited an evident anticancer activity against the NSCLC cells. Among them, the IC50 values of the most potent compound 9a were 0.83, 0.26 and 1.02 µM against A549, HCC827 and H1975 cells, respectively. In addition, 9a markedly inhibited the Aurora A and PI3Kα kinase activities with IC50 values of 10.19 nM and 13.12 nM. Compound 9a induced G2/M phase arrests and apoptosis of HCC827 cells by simultaneous inhibition of Aurora A/PI3K/ BRD4 signaling pathways. Collectively, our studies suggested that 9a might be a potential multi-targeted inhibitor for NSCLC therapy.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Relação Estrutura-Atividade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Nucleares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Proteínas Quinases , Aurora Quinase A/metabolismo , Aurora Quinase A/farmacologia , Fatores de Transcrição , Antineoplásicos/química , Proliferação de Células , Imidazóis/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA