Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 85(2): 324-331, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33604645

RESUMO

APS001F is a strain of Bifidobacterium longum genetically engineered to express cytosine deaminase that converts 5-fluorocytosine (5-FC) to 5-fluorouracil. In the present study, antitumor effects of APS001F plus 5-FC (APS001F/5-FC) in combination with anti-PD-1 monoclonal antibody were investigated using a CT26 syngeneic mouse model. Both of dosing of APS001F/5-FC before and after anti-PD-1 mAb in the combination dosing exhibited antitumor effects as well as prolonged survival over the nontreated control. The survival rate in the combination therapy significantly increased over the monotherapy with APS001F/5-FC and that with anti-PD-1 mAb. Regulatory T cells among CD4+ T cells in tumor decreased in the combination therapy, while the ratio of CD8+ T cells was maintained in all groups. Taken these results together, APS001F/5-FC not only demonstrates a direct antitumor activity, but also immunomodulatory effects once localized in the hypoxic region of the tumor, which allows anti-PD-1 mAb to exert potentiated antitumor effects.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos/farmacologia , Bifidobacterium longum/fisiologia , Flucitosina/farmacologia , Engenharia Genética , Receptor de Morte Celular Programada 1/imunologia , Animais , Bifidobacterium longum/genética , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Camundongos
2.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525627

RESUMO

Hypercholesterolemia is an independent risk factor of cardiovascular disease, which is among the major causes of death worldwide. The aim of this study was to explore whether Bifidobacterium longum strains exerted intra-species differences in cholesterol-lowering effects in hypercholesterolemic rats and to investigate the potential mechanisms. SD rats underwent gavage with each B. longum strain (CCFM 1077, I3, J3 and B3) daily for 28 days. B. longum CCFM 1077 exerted the most potent cholesterol-lowering effect, followed by B. longum I3 and B3, whereas B. longum B3 had no effect in alleviating hypercholesterolemia. Divergent alleviation of different B. longum strains on hypercholesterolemia can be attributed to the differences in bile salt deconjugation ability and cholesterol assimilation ability in vitro. By 16S rRNA metagenomics analysis, the relative abundance of beneficial genus increased in the B. longum CCFM 1077 treatment group. The expression of key genes involved in cholesterol metabolism were also altered after the B. longum CCFM 1077 treatment. In conclusion, B. longum exhibits strain-specific effects in the alleviation of hypercholesterolemia, mainly due to differences in bacterial characteristics, bile salt deconjugation ability, cholesterol assimilation ability, expressions of key genes involved in cholesterol metabolism and alterations of gut microbiota.


Assuntos
Bactérias/classificação , Bifidobacterium longum/fisiologia , Colesterol/efeitos adversos , Hipercolesterolemia/terapia , Análise de Sequência de DNA/métodos , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bifidobacterium longum/classificação , Colesterol/análise , DNA Bacteriano/genética , DNA Ribossômico/genética , Modelos Animais de Doenças , Fezes/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Hipercolesterolemia/induzido quimicamente , Hipercolesterolemia/genética , Hipercolesterolemia/microbiologia , Metagenômica , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
3.
Microb Cell Fact ; 18(1): 156, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31514746

RESUMO

Bifidobacterium inhabiting the human and animal intestinal tract is known for its health-promoting effect. Tolerance to acid stress is crucial for bifidobacteria to survive and then exert their beneficial effects in the gut. A long-term adaptation in successive batch cultures was used as evolutionary engineering strategy to improve acid stress tolerance in an industrial probiotic strain, B. longum JDM301. Its derivative, JDM301AR showed higher resistance to several stress conditions, including acid stress than the parental strain, JDM301. To better understand bifidobacterial acid stress response, the changes of fatty acid (FA) in cell membrane of these two strains were determined. A shift in the production of FA in cell membrane, characterized by increased C14:0 was found, when JDM301AR was exposed to low-pH environment. It was implied that the increased production of C14:0 is associated with the acquisition of acid-tolerant phenotype for JDM301AR. High-throughput RNA-sequencing was performed to analyze the changes of gene expression profile after acid-exposure. The transcriptional profiles of JDM301AR and JDM301 under normal condition and acid stress were compared to reveal the different acid response between them. A total of 5 genes involved in FA metabolism were upregulated and no downregulated genes were found in response to acid stress in JDM301AR. The up-regulated BLJ_0565 and BLJ_1105 may play important roles in the modification of membrane FA composition of JDM301AR after acid exposure. Overall, these results suggested that successive batch cultures induced the acid stress tolerance of B. longum involved in transcriptional and physiological responses, including modification of cell wall and cell membrane, metabolism of amino acid and neutralization of internal pH by strengthening NH3 production and transport.


Assuntos
Adaptação Fisiológica , Técnicas de Cultura Celular por Lotes , Bifidobacterium longum/genética , Bifidobacterium longum/fisiologia , Probióticos , Estresse Fisiológico , Ácidos/química , Bifidobacterium longum/ultraestrutura , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Transcrição Gênica
4.
Int J Mol Sci ; 20(17)2019 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31480481

RESUMO

The Insulin-like growth factor-I/Insulin-like growth factor-I receptor (IGF-1/IGF-1R) system is a major determinant in colorectal cancer (CRC) pathogenesis. Probiotics (Bifidobacterium longum, BF) and lycopene (LYC) have been individually researched for their beneficial effects in the prevention of CRC. However, the effect of a combined treatment of microencapsulated BF and LYC on IGF-1/IGF-1R/IGFBPs (Insulin-like growth factor-binding proteins) expression in an azoxymethane (AOM)-dextran sulfate sodium (DSS)-induced CRC model have not been demonstrated. BF was microencapsulated by the spray drying technique, with high viability, and daily gavaged with LYC for 16 weeks to CD-1 mice in an AOM-DSS model. The results indicated that BF- and BF + LYC-treated groups had significantly lower inflammation grade, tumor incidence (13-38%) and adenocarcinoma (13-14%) incidence compared to the AOM + DSS group (80%), whereas LYC treatment only protected against inflammation grade and incidence. Caecal, colonic and fecal pH and ß-glucuronidase (ß-GA) values were significantly normalized by BF and LYC. Similarly, BF and BF + LYC treatments significantly reduced both the positive rate and expression grade of IGF-1 and IGF-1R proteins and normalized Insulin-like growth factor-binding protein-3 (IGFBP3) expression. Based on intestinal parameters related to the specific colon carcinogenesis in an AOM-DSS-induced model, LYC and microencapsulated BF supplementation resulted in a significant chemopreventive potential through the modulation of IGF-1/IGF-1R system.


Assuntos
Anticarcinógenos/uso terapêutico , Bifidobacterium longum , Neoplasias Colorretais/terapia , Licopeno/uso terapêutico , Probióticos/uso terapêutico , Administração Oral , Animais , Anticarcinógenos/administração & dosagem , Bifidobacterium longum/fisiologia , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/análise , Fator de Crescimento Insulin-Like I/análise , Licopeno/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos ICR , Probióticos/administração & dosagem , Receptor IGF Tipo 1/análise
5.
Br J Nutr ; 120(8): 872-880, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30178731

RESUMO

Probiotics are bacteria among the intestinal flora that are beneficial for human health. Bifidobacterium longum (BL) is a prototypical probiotic that is widely used in yogurt making, supplements and others. Although various physiological effects of BL have been reported, those associated with longevity and anti-ageing still remain elusive. Here we aimed to elucidate the physiological effects of killed BL (BR-108) on stress tolerance and longevity of Caenorhabditis elegans and their mechanisms. Worms fed killed BL in addition to Escherichia coli (OP50) displayed reduced body length in a BL dose-dependent manner. When compared with those fed E. coli alone, these worms had a higher survival rate following heat stress at 35°C and hydrogen peroxide-induced oxidative stress. A general decrease in motility was observed over time in all worms; however, killed BL-fed ageing worms displayed increased movement and longer life span than those fed E. coli alone. However, the longevity effect was suppressed in sir-2.1, daf-16 and skn-1-deficient worms. Killed BL induced DAF-16 nuclear localisation and increased the expression of the DAF-16 target gene hsp-12.6. These results revealed that the physiological effects of killed BL in C. elegans were mediated by DAF-16 activation. These findings contradict previous observations with different Bifidobacterium and Lactobacillus strains, which showed the role for SKN-1 independently of DAF-16.


Assuntos
Bifidobacterium longum/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Longevidade/fisiologia , Estresse Fisiológico , Animais , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica
6.
Appl Microbiol Biotechnol ; 102(20): 8827-8840, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30121748

RESUMO

This study aimed to evaluate the effects of three treatments, i.e., Bifidobacterium longum BB-46 (T1), B. longum BB-46 combined with the pectin (T2), and harsh extracted pectin from lemon (T3) on obesity-related microbiota using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). The effects of the treatments were assessed by the analysis of the intestinal microbial composition (using 16S rRNA gene amplicon sequencing) and the levels of short-chain fatty acids (SCFAs) and ammonium ions (NH4+). Treatments T2 and T3 stimulated members of the Ruminococcaceae and Succinivibrionaceae families, which were positively correlated with an increase in butyric and acetic acids. Proteolytic bacteria were reduced by the two treatments, concurrently with a decrease in NH4+. Treatment T1 stimulated the production of butyric acid in the simulated transverse and descending colon, reduction of NH4+ as well as the growth of genera Lactobacillus, Megamonas, and members of Lachnospiracea. The results indicate that both B. longum BB-46 and pectin can modulate the obesity-related microbiota; however, when the pectin is combined with B. longum BB-46, the predominant effect of the pectin can be observed. This study showed that the citric pectin is able to stimulate butyrate-producing bacteria as well as genera related with anti-inflammatory effects. However, prospective clinical studies are necessary to evaluate the anti/pro-obesogenic and inflammatory effects of this pectin for future prevention of obesity.


Assuntos
Bactérias/isolamento & purificação , Bifidobacterium longum/fisiologia , Microbioma Gastrointestinal , Obesidade/microbiologia , Pectinas/metabolismo , Probióticos/administração & dosagem , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Butiratos/metabolismo , Ácidos Graxos Voláteis , Fezes/microbiologia , Fermentação , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Filogenia
7.
Int J Food Sci Nutr ; 69(2): 144-154, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28659066

RESUMO

This study compared the rate of short chain fatty acid (SCFA) production by different probiotic combinations of Lactobacillus and Bifidobacterium to determine any synergistic effects. Six different fibre fractions were fermented with nine combinations of Lactobacillus rhamnosus (LR), Lactobacillus acidophilus (LA), Bifidobacterium longum (BL) and Bifidobacterium breve (BB) for 0, 6, 24 and 48 h. SCFAs were quantified by gas chromatography. Inter-genus combinations of bacteria produced more SCFA, especially BB + BL + LR, compared to intra-genus that yielded the lowest SCFA production. Acetate was the most abundant, while propionate and butyrate were the most utilised. The SCFA formation was as acetate > propionate > butyrate and the total dietary fibre produced most of the SCFA. Most combinations utilised 60-80% of the fibre; BB + BL + LR digested the fibre completely. The quantity, pattern and the time of release of SCFA depends on the genus, but the combination of pre and probiotics is of great importance for the outcome.


Assuntos
Bifidobacterium breve/fisiologia , Bifidobacterium longum/fisiologia , Fibras na Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Lacticaseibacillus rhamnosus/fisiologia , Lactobacillus acidophilus/fisiologia , Probióticos , Bifidobacterium breve/crescimento & desenvolvimento , Bifidobacterium longum/crescimento & desenvolvimento , Fibras na Dieta/análise , Digestão , Fermentação , Manipulação de Alimentos , Humanos , Cinética , Lactobacillus acidophilus/crescimento & desenvolvimento , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Oryza/química , Oryza/metabolismo , Pigmentos Biológicos/biossíntese , Sementes/química , Sementes/metabolismo , Solubilidade , Especificidade da Espécie , Simbiose , Simbióticos
8.
Int J Mol Sci ; 19(5)2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29747442

RESUMO

Over the past decade, a variety of lactic acid bacteria have been commercially available to and steadily used by consumers. However, recent studies have shown that some lactic acid bacteria produce toxic substances and display properties of virulence. To establish safety guidelines for lactic acid bacteria, the Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) has suggested that lactic acid bacteria be characterized and proven safe for consumers’ health via multiple experiments (e.g., antibiotic resistance, metabolic activity, toxin production, hemolytic activity, infectivity in immune-compromised animal species, human side effects, and adverse-outcome analyses). Among the lactic acid bacteria, Bifidobacterium and Lactobacillus species are probiotic strains that are most commonly commercially produced and actively studied. Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI have been used in global functional food markets (e.g., China, Germany, Jordan, Korea, Lithuania, New Zealand, Poland, Singapore, Thailand, Turkey, and Vietnam) as nutraceutical ingredients for decades, without any adverse events. However, given that the safety of some newly screened probiotic species has recently been debated, it is crucial that the consumer safety of each commercially utilized strain be confirmed. Accordingly, this paper details a safety assessment of B. bifidum BGN4 and B. longum BORI via the assessment of ammonia production, hemolysis of blood cells, biogenic amine production, antimicrobial susceptibility pattern, antibiotic resistance gene transferability, PCR data on antibiotic resistance genes, mucin degradation, genome stability, and possession of virulence factors. These probiotic strains showed neither hemolytic activity nor mucin degradation activity, and they did not produce ammonia or biogenic amines (i.e., cadaverine, histamine or tyramine). B. bifidum BGN4 and B. longum BORI produced a small amount of putrescine, commonly found in living cells, at levels similar to or lower than that found in other foods (e.g., spinach, ketchup, green pea, sauerkraut, and sausage). B. bifidum BGN4 showed higher resistance to gentamicin than the European Food Safety Authority (EFSA) cut-off. However, this paper shows the gentamicin resistance of B. bifidum BGN4 was not transferred via conjugation with L. acidophilus ATCC 4356, the latter of which is highly susceptible to gentamicin. The entire genomic sequence of B. bifidum BGN4 has been published in GenBank (accession no.: CP001361.1), documenting the lack of retention of plasmids capable of transferring an antibiotic-resistant gene. Moreover, there was little genetic mutation between the first and 25th generations of B. bifidum BGN4. Tetracycline-resistant genes are prevalent among B. longum strains; B. longum BORI has a tet(W) gene on its chromosome DNA and has also shown resistance to tetracycline. However, this research shows that its tetracycline resistance was not transferred via conjugation with L. fermentum AGBG1, the latter of which is highly sensitive to tetracycline. These findings support the continuous use of B. bifidum BGN4 and B. longum BORI as probiotics, both of which have been reported as safe by several clinical studies, and have been used in food supplements for many years.


Assuntos
Amônia/metabolismo , Bifidobacterium bifidum/fisiologia , Bifidobacterium longum/fisiologia , Animais , Antibacterianos/farmacologia , Bifidobacterium bifidum/efeitos dos fármacos , Bifidobacterium bifidum/crescimento & desenvolvimento , Bifidobacterium bifidum/patogenicidade , Bifidobacterium longum/efeitos dos fármacos , Bifidobacterium longum/crescimento & desenvolvimento , Bifidobacterium longum/patogenicidade , Aminas Biogênicas/metabolismo , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Hemólise , Humanos , Testes de Sensibilidade Microbiana , Fatores de Virulência/metabolismo
9.
J Clin Gastroenterol ; 50 Suppl 2, Proceedings from the 8th Probiotics, Prebiotics & New Foods for Microbiota and Human Health meeting held in Rome, Italy on September 13-15, 2015: S126-S130, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27741155

RESUMO

GOALS: To investigate the modulation of human cytokines by Bifidobacterium longum strains isolated from Centenarians. In particular, we measured the production of interleukin (IL)-12p70, interferon-γ, IL-17A, and IL-4 from human peripheral blood mononuclear cells after stimulation with live bacteria. BACKGROUND: Probiotics may inhibit pathogens and modulate the immune system, bringing a beneficial effect on human health. Among the probiotic strains, bifidobacteria play a key role in the maturation of the host's immune system. At present, only a few comparative data are available on the effects of bifidobacteria associations on cytokine production. STUDY: Peripheral blood mononuclear cells were isolated, cultured, and stimulated (ratio 1:1) with B. longum DLBL07, B. longum DLBL08, B. longum DLBL09, B. longum DLBL10, or B. longum DLBL11, either alone or in association. Cytokine production was determined by an enzyme-linked immunosorbent assay. RESULTS: Both the B. longum DLBL mixture and the individual B. longum DLBL strains induced similar levels of IL-4, interferon-γ, and IL-17A. Under all conditions tested, no IL-12p70 release was detected. CONCLUSIONS: The fact that B. longum strains were obtained from Centenarians suggests a perfect homeostasis between this specific species and the host. Moreover all the B. longum strains from Centenarians used in our study share some biological similarities.


Assuntos
Bifidobacterium longum/fisiologia , Citocinas/biossíntese , Microbioma Gastrointestinal/fisiologia , Homeostase/fisiologia , Leucócitos Mononucleares/fisiologia , Idoso de 80 Anos ou mais , Ensaio de Imunoadsorção Enzimática , Humanos , Interferon gama/biossíntese , Interleucina-12/biossíntese , Interleucina-17/biossíntese , Interleucina-4/biossíntese , Leucócitos Mononucleares/microbiologia
10.
Can J Microbiol ; 62(7): 623-8, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27156738

RESUMO

A better understanding of the interactions among intestinal microbes is needed to decipher the complex cross talk that takes place within the human gut. Bacteroides and Bifidobacterium genera are among the most relevant intestinal bacteria, and it has been previously reported that coculturing of these 2 microorganisms affects their survival. Therefore, coculturing of Bifidobacterium longum NB667 and Bacteroides fragilis DSMZ2151 was performed with the aim of unravelling the mechanisms involved in their interaction. To this end, we applied proteomic (2D-DIGE) analyses, and by chromatographic techniques we quantified the bacterial metabolites produced during coincubation. Coculture stimulated the growth of B. longum, retarding that of B. fragilis, with concomitant changes in the production of some proteins and metabolites of both bacteria. The combined culture promoted upregulation of the bifidobacterial pyruvate kinase and downregulation of the Bacteroides phosphoenolpyruvate carboxykinase - 2 enzymes involved in the catabolism of carbohydrates. Moreover, B. fragilis FKBP-type peptidyl-prolyl cis-trans isomerase, a protein with chaperone-like activity, was found to be overproduced in coculture, suggesting the induction of a stress response in this microorganism. This study provides mechanistic data to deepen our understanding of the interaction between Bacteroides and Bifidobacterium intestinal populations.


Assuntos
Bacteroides fragilis/fisiologia , Bifidobacterium longum/fisiologia , Técnicas de Cocultura , Humanos , Intestinos/microbiologia , Proteômica
11.
Int J Food Sci Nutr ; 67(2): 83-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26754553

RESUMO

The aim of the present study was to evaluate the antimicrobial activity of two synbiotic combinations, Lactobacillus fermentum with short-chain fructooligosaccharides (FOS-LF) and Bifidobacterium longum with isomaltooligosaccharides (IMO-BL), against enterohaemorrhagic Escherichia coli O157:H7 and enteropathogenic E. coli O86. Antimicrobial activity was determined (1) by co-culturing the synbiotics and pathogens in batch cultures, and (2) with the three-stage continuous culture system (gut model), inoculated with faecal slurry from an elderly donor. In the co-culture experiments, IMO-BL was significantly inhibitory to both E. coli strains, while FOS-LF was slightly inhibitory or not inhibitory. Factors other than acid production appeared to play a role in the inhibition. In the gut models, both synbiotics effectively inhibited E. coli O157 in the first vessel, but not in vessels 2 and 3. E. coli O86 was not significantly inhibited.


Assuntos
Bifidobacterium longum/fisiologia , Escherichia coli Êntero-Hemorrágica/fisiologia , Escherichia coli Enteropatogênica/fisiologia , Limosilactobacillus fermentum/fisiologia , Simbióticos , Idoso , Antibiose/fisiologia , Técnicas Bacteriológicas , Técnicas de Cocultura , Fezes/microbiologia , Humanos , Probióticos
12.
Food Funct ; 15(7): 3653-3668, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38487897

RESUMO

Intestinal ischemia-reperfusion (IIR) injury leads to inflammation and oxidative stress, resulting in intestinal barrier damage. Probiotics, due to their anti-inflammatory and antioxidant properties, are considered for potential intervention to protect the intestinal barrier during IIR injury. Bifidobacterium longum, a recognized probiotic, has targeted effects on IIR injury, but its mechanisms of action are not yet understood. To investigate the mechanism of Bifidobacterium longum intervention in IIR injury, we conducted a study using a rat IIR injury model. The results showed that Bifidobacterium longum could alleviate inflammation and oxidative stress induced by IIR injury by suppressing the NF-κB inflammatory pathway and activating the Keap1/Nrf2 signaling pathway. Bifidobacterium longum GL001 also increased the abundance of the gut microbiota such as Oscillospira, Ouminococcus, Corynebacterium, Lactobacillus, and Akkermansia, while decreasing the abundance of Allobaculum, [Prevotella], Bacteroidaceae, Bacteroides, Shigella, and Helicobacter. In addition, Bifidobacterium longum GL001 reversed the changes in amino acids and bile acids induced by IIR injury and reduced the levels of DL-cysteine, an oxidative stress marker, in intestinal tissue. Spearman correlation analysis showed that L-cystine was positively correlated with Lactobacillus and negatively correlated with Shigella, while DL-proline was positively correlated with Akkermansia. Moreover, bile acids, cholic acid and lithocholic acid, were negatively correlated with Lactobacillus and positively correlated with Shigella. Therefore, Bifidobacterium longum GL001 may alleviate IIR injury by regulating the gut microbiota to modulate intestinal lipid peroxidation and bile acid metabolism.


Assuntos
Bifidobacterium longum , Microbioma Gastrointestinal , Probióticos , Traumatismo por Reperfusão , Ratos , Animais , Bifidobacterium longum/fisiologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Lactobacillus/metabolismo , Inflamação , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
13.
J Microbiol Biotechnol ; 34(1): 149-156, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38105432

RESUMO

In a preliminary study, live biotherapeutic products (LBPs) Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 inhibited the secretion of alanine transaminase (ALT) and aspartate transaminase (AST) in LPS-stimulated HepG2 cells, while Escherichia coli K1 (Ec) increased ALT and ALT secretion. Therefore, we examined the effects of LC27 and LC67 on LPS-induced liver injury and fibrosis in mice and the correlation between their biomarkers in cell and animal experiments. Orally administered LC27 or LC67 significantly decreased blood ALT, AST, γ-glutamyl transferase (γGTP), TNF-α, triglyceride (TG), total cholesterol (TCh), total bile acid, and LPS levels, liver TNF-α, toll-like receptor-4 gene (Tlr4), α-smooth muscle actin (αSMA), and collagen-1 expression and αSMA+GFAP+ and NF-κB+F4/80+ cell populations, and colonic Tlr4, TNF-α, and IL-6 expression and NF-κB-positive cell population in LPS-treated mice. Furthermore, they increased AMPKa phosphorylation in the liver and colon. However, Ec increased the expression of TNF-α and IL-6 in blood, liver, and colon. The suppression of LPS-stimulated ALT and AST secretion in HepG2 cells by LBPs was positively correlated with their ameliorating effects on LPS-induced blood γGTP, ALT, and AST levels and liver αSMA and collagen-1 expression in mice. Based on these findings, LC27 and LC67 may improve liver injury and fibrosis by regulating NF-κB and AMPK signaling pathway and a protocol that can assay the inhibitory activity of LBPs on LPS-induced ALT and AST secretion in HepG2 may be useful for guessing their antihepatitic effects in the in vivo experiments.


Assuntos
Bifidobacterium longum , Lactobacillus plantarum , Camundongos , Animais , NF-kappa B/metabolismo , Lactobacillus plantarum/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Interleucina-6/metabolismo , Bifidobacterium longum/fisiologia , Receptor 4 Toll-Like/metabolismo , Fígado , Transdução de Sinais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/prevenção & controle , Colágeno/metabolismo
14.
Nutrients ; 15(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36986251

RESUMO

Psychobiotics are probiotics that have the characteristics of modulating central nervous system (CNS) functions or reconciled actions by the gut-brain axis (GBA) through neural, humoral and metabolic pathways to improve gastrointestinal activity as well as anxiolytic and even antidepressant abilities. The aim of this work was to evaluate the effect of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 on the gut microbiota of mildly anxious adults using SHIME®. The protocol included a one-week control period and two weeks of treatment with L. helveticus R0052 and B. longum R0175. Ammonia (NH4+), short chain fatty acids (SCFAs), gamma-aminobutyric acid (GABA), cytokines and microbiota composition were determined. Probiotic strains decreased significantly throughout the gastric phase. The highest survival rates were exhibited by L. helveticus R0052 (81.58%; 77.22%) after the gastric and intestinal phase when compared to B. longum (68.80%; 64.64%). At the genus level, a taxonomic assignment performed in the ascending colon in the SHIME® model showed that probiotics (7 and 14 days) significantly (p < 0.005) increased the abundance of Lactobacillus and Olsenella and significantly decreased Lachnospira and Escheria-Shigella. The probiotic treatment (7 and 14 days) decreased (p < 0.001) NH4+ production when compared to the control period. For SCFAs, we observed after probiotic treatment (14 days) an increase (p < 0.001) in acetic acid production and total SCFAs when compared to the control period. Probiotic treatment increased (p < 0.001) the secretion of anti-inflammatory (IL-6 and IL-10) and decreased (p < 0.001) pro-inflammatory cytokines (TNF-alpha) when compared to the control period. The gut-brain axis plays an important role in the gut microbiota, producing SCFAs and GABA, stimulating the production of anti-anxiety homeostasis. The signature of the microbiota in anxiety disorders provides a promising direction for the prevention of mental illness and opens a new perspective for using the psychobiotic as a main actor of therapeutic targets.


Assuntos
Ansiolíticos , Bifidobacterium longum , Lactobacillus helveticus , Probióticos , Humanos , Adulto , Bifidobacterium longum/fisiologia , Ansiedade/tratamento farmacológico , Ácidos Graxos Voláteis , Citocinas , Probióticos/uso terapêutico
15.
Int J Biol Macromol ; 178: 53-62, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33581210

RESUMO

The ability of chitosan (1% w/v), Bifidobacterium longum (108 CFU mL-1) and Saccharomyces cerevisiae (108 CFU mL-1) separately or in combination (chitosan/B. longum, chitosan/S. cerevisiae, B. longum/S. cerevisiae) was assessed for lead (II) removal from aqueous solutions. The results showed chitosan/B. longum adsorbent had higher adsorption percentage in comparison with other adsorbents (p < 0.05). It was selected as the most efficient adsorbent and the effect of process variables including initial metal concentration (0.01-5 mg L-1), contact time (5-180 min), temperature (4-37 °C) and pH (3-6) on the its removal efficiency was evaluated with a Box-Behnken design. Twenty-seven test runs were performed and the optimal conditions for metal adsorption was observed at metal concentration of 2.5 mg L-1, contact time of 180 min, temperature of 37 °C and pH 4.5. The maximum lead (II) adsorption yield under optimal conditions was 97.6%. The foreign ions didn't diminish lead (II) adsorption by chitosan/B. longum and it had high selectivity toward the lead (II). Adsorption behavior was analyzed using the Freundlich and the Langmuir isotherms. The correlation coefficients (R2) demonstrated the Langmuir model had a better description on metal adsorption process. Overall, isotherms revealed chemisorption and physisorption were probably involved in metal adsorption on adsorbent.


Assuntos
Bifidobacterium longum/fisiologia , Quitosana/química , Chumbo/química , Saccharomyces cerevisiae/fisiologia , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção
16.
Food Funct ; 12(8): 3476-3492, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33900330

RESUMO

Bifidobacterium longum (B. longum) species are widely used to prevent and treat ulcerative colitis (UC). In this study, phylogenetic and pan-genomic characterization of 122 B. longum strains was performed on the basis of 936 core genes; among these, four strains from different branches of the phylogenetic tree were selected for an evaluation of anti-inflammatory and immune modulatory activities in a DSS-induced colitis mouse model. Among the tested B. longum strains (B. longum FBJ20M1, B. longum FGDLZ8M1, B. longum FGSZY16M3, and B. longum FJSWXJ2M1), B. longum FGDLZ8M1 was found to most effectively alleviate colitis by reducing the expression of pro-inflammatory cytokines, restoring the colon length, and maintaining the mucosal integrity. The anti-inflammatory mechanisms of B. longum FGDLZ8M1 were related to the inhibition of NF-κB signaling. Genomic analysis indicated that these protective effects of B. longum FGDLZ8M1 may be related to specific genes associated with carbohydrate transport and metabolism and defense mechanisms (e.g., tolerance to bile salts and acids). Correlation analysis indicated that gastrointestinal transit tolerance was the most strongly associated factor. Our findings may contribute to the rapid screening of lactic acid bacterial strains with UC-alleviating effects.


Assuntos
Bifidobacterium longum/fisiologia , Colite Ulcerativa/terapia , Animais , Anti-Inflamatórios , Bifidobacterium longum/classificação , Bifidobacterium longum/genética , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Colo/imunologia , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Microbioma Gastrointestinal , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Filogenia
17.
Nutrients ; 13(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525601

RESUMO

BACKGROUND: Oxysterol relationship with cardiovascular (CV) risk factors is poorly explored, especially in moderately hypercholesterolaemic subjects. Moreover, the impact of nutraceuticals controlling hypercholesterolaemia on plasma levels of 24-, 25- and 27-hydroxycholesterol (24-OHC, 25-OHC, 27-OHC) is unknown. METHODS: Subjects (n = 33; 18-70 years) with moderate hypercholesterolaemia (low-density lipoprotein cholesterol (LDL-C:): 130-200 mg/dL), in primary CV prevention as well as low CV risk were studied cross-sectionally. Moreover, they were evaluated after treatment with a nutraceutical combination (Bifidobacterium longum BB536, red yeast rice extract (10 mg/dose monacolin K)), following a double-blind, randomized, placebo-controlled design. We evaluated 24-OHC, 25-OHC and 27-OHC levels by gas chromatography/mass spectrometry analysis. RESULTS: 24-OHC and 25-OHC were significantly correlated, 24-OHC was correlated with apoB. 27-OHC and 27-OHC/total cholesterol (TC) were higher in men (median 209 ng/mL and 77 ng/mg, respectively) vs. women (median 168 ng/mL and 56 ng/mg, respectively); 27-OHC/TC was significantly correlated with abdominal circumference, visceral fat and, negatively, with high-density lipoprotein cholesterol (HDL-C). Triglycerides were significantly correlated with 24-OHC, 25-OHC and 27-OHC and with 24-OHC/TC and 25-OHC/TC. After intervention, 27-OHC levels were significantly reduced by 10.4% in the nutraceutical group Levels of 24-OHC, 24-OHC/TC, 25-OHC, 25-OHC/TC and 27-OHC/TC were unchanged. CONCLUSIONS: In this study, conducted in moderate hypercholesterolemic subjects, we observed novel relationships between 24-OHC, 25-OHC and 27-OHC and CV risk biomarkers. In addition, no adverse changes of OHC levels upon nutraceutical treatment were found.


Assuntos
Aterosclerose/metabolismo , Bifidobacterium longum/fisiologia , Produtos Biológicos/uso terapêutico , Biomarcadores/metabolismo , Suplementos Nutricionais , Hipercolesterolemia/tratamento farmacológico , Oxisteróis/metabolismo , Idoso , Aterosclerose/sangue , Colesterol/sangue , Feminino , Humanos , Hipercolesterolemia/sangue , Masculino , Pessoa de Meia-Idade , Oxisteróis/sangue , Placebos
18.
Benef Microbes ; 12(2): 199-209, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33573507

RESUMO

Allergic contact dermatitis (ACD) is a common allergic skin disease that affects individuals subjected to different antigen exposure conditions and significantly impacts the quality of life of those affected. Numerous studies have demonstrated that probiotics suppress inflammation through immunomodulatory effects. In this study, we aimed to evaluate the effect of the probiotic Bifidobacterium longum 51A as a preventive treatment for ACD using an oxazolone-induced murine model. We demonstrated that B. longum 51A exerted a prophylactic effect on oxazolone-induced ACD-like skin inflammation via reductions in ear and dermal thickness and leucocyte infiltration. The administration of inactivated B. longum 51A did not affect oxazolone-induced ACD-like skin inflammation, suggesting that the bacteria must be alive to be effective. Given that B. longum 51A is an acetate producer, we treated mice with acetate intraperitoneally, which also prevented ear and dermal thickening. Moreover, the tissue levels of the inflammatory cytokines and chemokines interleukin (IL)-10, IL-33, tumour necrosis factor-α, chemokine (C-C motif) ligand 2/monocyte chemoattractant protein-1 and chemokine (C-C motif) ligand 5/RANTES were significantly reduced after probiotic treatment, but only IL-33 and IL-10 were reduced when the mice were treated with acetate. These results show that B. longum 51A exerted a potential prophylactic effect on skin inflammation and that acetate represents one potential mechanism. However, other factors are likely involved since these two treatments do not yield the same results.


Assuntos
Bifidobacterium longum/fisiologia , Dermatite Alérgica de Contato/imunologia , Dermatite Alérgica de Contato/prevenção & controle , Probióticos/administração & dosagem , Animais , Citocinas/genética , Citocinas/imunologia , Dermatite Alérgica de Contato/etiologia , Dermatite Alérgica de Contato/genética , Feminino , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-33/genética , Interleucina-33/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Oxazolona/efeitos adversos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
19.
EBioMedicine ; 63: 103176, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33349590

RESUMO

BACKGROUND: The human gut microbiota has emerged as a key factor in the development of obesity. Certain probiotic strains have shown anti-obesity effects. The objective of this study was to investigate whether Bifidobacterium longum APC1472 has anti-obesity effects in high-fat diet (HFD)-induced obese mice and whether B. longum APC1472 supplementation reduces body-mass index (BMI) in healthy overweight/obese individuals as the primary outcome. B. longum APC1472 effects on waist-to-hip ratio (W/H ratio) and on obesity-associated plasma biomarkers were analysed as secondary outcomes. METHODS: B. longum APC1472 was administered to HFD-fed C57BL/6 mice in drinking water for 16 weeks. In the human intervention trial, participants received B. longum APC1472 or placebo supplementation for 12 weeks, during which primary and secondary outcomes were measured at the beginning and end of the intervention. FINDINGS: B. longum APC1472 supplementation was associated with decreased bodyweight, fat depots accumulation and increased glucose tolerance in HFD-fed mice. While, in healthy overweight/obese adults, the supplementation of B. longum APC1472 strain did not change primary outcomes of BMI (0.03, 95% CI [-0.4, 0.3]) or W/H ratio (0.003, 95% CI [-0.01, 0.01]), a positive effect on the secondary outcome of fasting blood glucose levels was found (-0.299, 95% CI [-0.44, -0.09]). INTERPRETATION: This study shows a positive translational effect of B. longum APC1472 on fasting blood glucose from a preclinical mouse model of obesity to a human intervention study in otherwise healthy overweight and obese individuals. This highlights the promising potential of B. longum APC1472 to be developed as a valuable supplement in reducing specific markers of obesity. FUNDING: This research was funded in part by Science Foundation Ireland in the form of a Research Centre grant (SFI/12/RC/2273) to APC Microbiome Ireland and by a research grant from Cremo S.A.


Assuntos
Bifidobacterium longum/fisiologia , Resistência à Doença , Interações entre Hospedeiro e Microrganismos , Obesidade/metabolismo , Adiposidade , Corticosteroides/sangue , Animais , Biomarcadores , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Modelos Animais de Doenças , Metabolismo Energético , Glucose/metabolismo , Leptina/sangue , Masculino , Camundongos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Obesidade/etiologia , Probióticos , Roedores , Pesquisa Translacional Biomédica
20.
Food Funct ; 12(17): 7728-7740, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34296722

RESUMO

Type 2 diabetes mellitus (T2DM) is a prevalent chronic disease characterized by hyperglycemia and insulin resistance. Regular exercise is one of the effective lifestyle interventions for maintaining healthy weight and blood glucose levels in the normal range and lowering risk factors. Probiotics, live microorganisms that are beneficial to health, are involved in the regulation of host metabolism. We thus hypothesize that the combination of exercise training and Bifidobacterium longum OLP-01 (OLP-01) could improve insulin sensitivity, blood glucose control and body composition in db/db mice. Twenty-four C57BL/6 J db/db male mice (20-weeks old) were divided into four groups (n = 6 per group): vehicle, OLP-01 supplementation (OLP-01), exercise training (EX) and exercise training with OLP-01 supplementation (EX + OLP-01). Animals in the EX and EX + OLP-01 groups underwent strength exercise training for 6 weeks, 5 days per week. After the exercise training, we tested forelimb grip strength, exhaustive running, oral glucose tolerance test (OGTT) and serum biomarkers. Results: Combined intervention of EX and OLP-01 prevented elevation of body weight and body fat. Grip strength and exhaustive swimming time were significantly higher in the EX + OLP-01 group than in the other groups. We found that EX OLP-01 reduced glycolipid parameters (fasting blood glucose and hemoglobin A1c), improved insulin sensitivity (oral glucose tolerance test and HOMA-IR), relieved liver injury parameters (aspartate aminotransferase and alanine aminotransferase) and repaired pancreas damage. Based on our findings, we speculate that the positive effects of combining EX with OLP-01 on capacity for physical activity, blood glucose control and body composition suggest an integrative approach to treating type 2 diabetes. Altogether, the combination of EX with OLP-01 treatment might be a good candidate for preventing and treating diabetes.


Assuntos
Bifidobacterium longum/fisiologia , Diabetes Mellitus Tipo 2/terapia , Terapia por Exercício , Resistência à Insulina , Probióticos/administração & dosagem , Animais , Glicemia/metabolismo , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Terapia Combinada , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Desempenho Físico Funcional , Treinamento Resistido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA