RESUMO
Oncogene-induced senescence (OIS) is an inherent and important tumor suppressor mechanism. However, if not removed timely via immune surveillance, senescent cells also have detrimental effects. Although this has mostly been attributed to the senescence-associated secretory phenotype (SASP) of these cells, we recently proposed that "escape" from the senescent state is another unfavorable outcome. The mechanism underlying this phenomenon remains elusive. Here, we exploit genomic and functional data from a prototypical human epithelial cell model carrying an inducible CDC6 oncogene to identify an early-acquired recurrent chromosomal inversion that harbors a locus encoding the circadian transcription factor BHLHE40. This inversion alone suffices for BHLHE40 activation upon CDC6 induction and driving cell cycle re-entry of senescent cells, and malignant transformation. Ectopic overexpression of BHLHE40 prevented induction of CDC6-triggered senescence. We provide strong evidence in support of replication stress-induced genomic instability being a causative factor underlying "escape" from oncogene-induced senescence.
Assuntos
Senescência Celular , Inversão Cromossômica , Cromossomos/ultraestrutura , Transição Epitelial-Mesenquimal , Neoplasias/genética , Oncogenes , Recombinação Genética , Animais , Brônquios/metabolismo , Sistemas CRISPR-Cas , Ciclo Celular , Transformação Celular Neoplásica , Ritmo Circadiano , Biologia Computacional , Células Epiteliais/metabolismo , Citometria de Fluxo , Genômica , Humanos , Cariotipagem , Camundongos , Camundongos SCID , Neoplasias/metabolismo , Fenótipo , Ligação Proteica , Domínios Proteicos , Fenótipo Secretor Associado à SenescênciaRESUMO
Tobacco smoking causes lung cancer1-3, a process that is driven by more than 60 carcinogens in cigarette smoke that directly damage and mutate DNA4,5. The profound effects of tobacco on the genome of lung cancer cells are well-documented6-10, but equivalent data for normal bronchial cells are lacking. Here we sequenced whole genomes of 632 colonies derived from single bronchial epithelial cells across 16 subjects. Tobacco smoking was the major influence on mutational burden, typically adding from 1,000 to 10,000 mutations per cell; massively increasing the variance both within and between subjects; and generating several distinct mutational signatures of substitutions and of insertions and deletions. A population of cells in individuals with a history of smoking had mutational burdens that were equivalent to those expected for people who had never smoked: these cells had less damage from tobacco-specific mutational processes, were fourfold more frequent in ex-smokers than current smokers and had considerably longer telomeres than their more-mutated counterparts. Driver mutations increased in frequency with age, affecting 4-14% of cells in middle-aged subjects who had never smoked. In current smokers, at least 25% of cells carried driver mutations and 0-6% of cells had two or even three drivers. Thus, tobacco smoking increases mutational burden, cell-to-cell heterogeneity and driver mutations, but quitting promotes replenishment of the bronchial epithelium from mitotically quiescent cells that have avoided tobacco mutagenesis.
Assuntos
Brônquios/metabolismo , Mutagênese , Mutação/genética , Mucosa Respiratória/metabolismo , Fumar Tabaco/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brônquios/citologia , Brônquios/patologia , Criança , Células Clonais/citologia , Células Clonais/metabolismo , Análise Mutacional de DNA , Feminino , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mucosa Respiratória/citologia , Mucosa Respiratória/patologia , Fumantes , Telômero/genética , Telômero/metabolismo , Fumar Tabaco/efeitos adversos , Fumar Tabaco/patologia , Adulto JovemRESUMO
Cigarette smoke (CS) is a major risk factor for chronic lung diseases and promotes activation of pattern recognition receptors in the bronchial epithelium. NOD-like receptor family, pyrin domain-containing 3 (NLRP3) is a pattern recognition receptor whose activation leads to caspase-1 cleavage, maturation/release of IL-1ß and IL-18, and eventually pyroptosis. Whether the NLRP3 inflammasome participates in CS-induced inflammation in bronchial epithelial cells is still unclear. Herein, we evaluated the involvement of NLRP3 in CS-induced inflammatory responses in human primary bronchial epithelial cells. To this purpose, human primary bronchial epithelial cells were stimulated with CS extracts (CSE) and lytic cell death, caspase activation (-1, -8, -3/7), cytokine release (IL-1ß, IL-18, and IL-8), NLRP3, pro-IL-1ß/pro-IL-18 mRNA, and protein expression were measured. The impact of inhibitors of NLRP3 (MCC950), caspases, and the effect of the antioxidant N-acetyl cysteine were evaluated. We found that CSE increased pro-IL-1ß expression and induced activation of caspase-1 and release of IL-1ß and IL-18. These events were independent of NLRP3 and we found that NLRP3 was not expressed. N-acetyl cysteine reverted CSE-induced caspase-1 activation. Overall, our findings support that the bronchial epithelium may play a central role in the release of IL-1 family cytokines independently of NLRP3 in the lungs of smokers.
Assuntos
Brônquios , Células Epiteliais , Inflamassomos , Interleucina-18 , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Células Epiteliais/metabolismo , Brônquios/citologia , Brônquios/patologia , Brônquios/metabolismo , Inflamassomos/metabolismo , Células Cultivadas , Fumaça/efeitos adversos , Caspase 1/metabolismo , Fumar Cigarros/efeitos adversosRESUMO
Upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), patients with critical coronavirus disease 2019 (COVID-19) present with life-threatening respiratory distress, pulmonary damage, and cytokine storm. One unexplored component in COVID-19 is the neuropeptide calcitonin gene-related peptide (CGRP), which is highly abundant in the airways and could converge in multiple aspects of COVID-19-related pulmonary pathophysiology. Whether CGRP affects SARS-CoV-2 infection directly remains elusive. We show that in critical COVID-19 patients, CGRP is increased in both plasma and lungs. Importantly, CGRP pulmonary levels are elevated in early SARS-CoV-2-positive patients and restored to baseline upon subsequent viral clearance in SARS-CoV-2-negative patients. We further show that CGRP and its stable analog SAX directly inhibit infection of bronchial Calu-3 epithelial cells with SARS-CoV-2 Omicron and Alpha variants in a dose-dependent manner. Both pre- and post-infection treatments with CGRP and/or SAX are enough to block SARS-CoV-2 productive infection of Calu-3 cells. CGRP-mediated inhibition occurs via activation of the CGRP receptor and involves down-regulation of both SARS-CoV-2 entry receptors at the surface of Calu-3 cells. Together, we propose that increased pulmonary CGRP mediates beneficial viral clearance in critical COVID-19 patients by directly inhibiting SARS-CoV-2 propagation. Hence, CGRP-based interventions could be harnessed for management of COVID-19.IMPORTANCEThe neuropeptide CGRP is highly abundant in the airways. Due to its immunomodulatory, vasodilatory, and anti-viral functions, CGRP could affect multiple aspects of COVID-19-related pulmonary pathophysiology. Yet, the interplay between CGRP and SARS-CoV-2 during COVID-19 remains elusive. Herein, we show that pulmonary levels of CGRP are increased in critical COVID-19 patients, at an early stage of their disease when patients are SARS-CoV-2-positive. Upon subsequent viral clearance, CGRP levels are restored to baseline in SARS-CoV-2-negative patients. We further show that pre- and post-infection treatments with CGRP directly inhibit infection of Calu-3 bronchial epithelial cells with SARS -CoV-2, via activation of the CGRP receptor leading to decreased expression of both SARS-CoV-2 entry receptors. Together, we propose that increased pulmonary CGRP is beneficial in COVID-19, as CGRP-mediated inhibition of SARS-CoV-2 infection could contribute to viral clearance in critical COVID-19 patients. Accordingly, CGRP-based formulations could be useful for COVID-19 management.
Assuntos
COVID-19 , Peptídeo Relacionado com Gene de Calcitonina , Células Epiteliais , Pulmão , SARS-CoV-2 , Humanos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Células Epiteliais/virologia , Células Epiteliais/metabolismo , Pulmão/virologia , Pulmão/metabolismo , Brônquios/virologia , Brônquios/metabolismo , Masculino , Linhagem Celular , Feminino , Pessoa de Meia-Idade , Tratamento Farmacológico da COVID-19 , Idoso , Antivirais/uso terapêuticoRESUMO
Certain oncogenes, including mutant RAS and BRAF, induce a type of senescence known as oncogene-induced senescence (OIS) in normal cells in a cell-type-specific manner. OIS serves as a barrier to transformation by activated oncogenes. Our previous studies showed that mutant KRASV12 did not efficiently induce OIS in an hTERT/Cdk4-immortalized normal human bronchial epithelial cell line (HBEC3), but it did enhance both anchorage-dependent and anchorage-independent growth. In this study, we investigated whether mutant BRAF, a well-known inducer of OIS, could trigger OIS in HBEC3 cells. We also assessed the impact of mutant BRAF on the growth of HBEC3 cells, as no previous studies have examined this using a normal bronchial epithelial cell line model. We established an HBEC3 cell line, designated as HBEC3-BIN, that expresses mutant BRAFV600E in a doxycycline-regulated manner. Unlike our previous finding that KRASV12 upregulated both pERK and pAKT, mutant BRAFV600E upregulated pERK but not pAKT in HBEC3-BIN cells. Similar to KRASV12, BRAFV600E did not efficiently induce OIS. Interestingly, while BRAFV600E inhibited colony formation in anchorage-dependent conditions, it dramatically enhanced colony formation in anchorage-independent conditions in HBEC3-BIN. In HBEC3 cells without BRAFV600E or KRASV12 expression, p21 was only detected in the cytoplasm, and its localization was not altered by the expression of BRAFV600E or KRASV12. Next-generation sequencing analysis revealed an enrichment of gene sets known to be involved in carcinogenesis, including IL3/JAK/STAT3, IL2, STAT5, and the EMT pathway. Our results indicate that, unlike KRASV12, which promoted both, BRAFV600E enhances anchorage-independent growth but inhibits anchorage-dependent growth of HBEC3. This contrast may result from differences in activation signaling in the downstream pathways. Furthermore, HBEC3 cells appear to be inherently resistant to OIS, which may be partly due to the fact that p21 remains localized in the cytoplasm upon expression of BRAFV600E or KRASV12.
Assuntos
Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Senescência Celular/genética , Mutação , Proliferação de Células/genética , Linhagem Celular , Células Epiteliais/metabolismo , Brônquios/metabolismo , Brônquios/citologia , Oncogenes/genética , Transdução de SinaisRESUMO
Lung cancer remains the leading cause of cancer-related deaths, with cigarette smoking being the most critical factor, linked to nearly 90% of lung cancer cases. NNK, a highly carcinogenic nitrosamine found in tobacco, is implicated in the lung cancer-causing effects of cigarette smoke. Although NNK is known to mutate or activate certain oncogenes, its potential interaction with p27 in modulating these carcinogenic effects is currently unexplored. Recent studies have identified specific downregulation of p27 in human squamous cell carcinoma, in contrast to adenocarcinoma. Additionally, exposure to NNK significantly suppresses p27 expression in human bronchial epithelial cells. Subsequent studies indicates that the downregulation of p27 is pivotal in NNK-induced cell transformation. Mechanistic investigations have shown that reduced p27 expression leads to increased level of ITCH, which facilitates the degradation of Jun B protein. This degradation in turn, augments miR-494 expression and its direct regulation of JAK1 mRNA stability and protein expression, ultimately activating STAT3 and driving cell transformation. In summary, our findings reveal that: (1) the downregulation of p27 increases Jun B expression by upregulating Jun B E3 ligase ITCH, which then boosts miR-494 transcription; (2) Elevated miR-494 directly binds to 3'-UTR of JAK1 mRNA, enhancing its stability and protein expression; and (3) The JAK1/STAT3 pathway is a downstream effector of p27, mediating the oncogenic effect of NNK in lung cancer. These findings provide significant insight into understanding the participation of mechanisms underlying p27 inhibition of NNK induced lung squamous cell carcinogenic effect.
Assuntos
Brônquios , Carcinoma de Células Escamosas , Transformação Celular Neoplásica , Inibidor de Quinase Dependente de Ciclina p27 , Células Epiteliais , Neoplasias Pulmonares , Nitrosaminas , Humanos , Nitrosaminas/toxicidade , Brônquios/metabolismo , Brônquios/patologia , Brônquios/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação para Baixo/efeitos dos fármacos , Carcinógenos/toxicidadeRESUMO
IL-33 and IL-1RL1 are well-replicated asthma genes that act in a single pathway toward type-2 immune responses. IL-33 is expressed by basal epithelial cells, and the release of IL-33 upon epithelial damage can activate innate lymphoid cells, T helper-2 cells, basophilic granulocytes, and mast cells through a receptor complex containing IL-1RL1. However, it is unknown how bronchial epithelial cells respond to IL-33, and whether this response is increased in the disease. We aimed to characterize the IL-33-driven transcriptomic changes in cultured primary bronchial epithelial cells from patients with asthma and healthy controls. Primary bronchial epithelial cells (PBECs) were obtained by bronchial brushing from six healthy control for air-liquid interface (ALI) cultures, whereas we selected eight healthy controls and seven patients with asthma for epithelial organoid cultures. We then stimulated the cultures for 24 h with recombinant IL-33 (rhIL33) at various concentrations with 1, 10, and 50 ng/mL for the ALI cultures and 20 ng/mL and 100 ng/mL for the organoid cultures, followed by RNA-sequencing and differential gene expression analysis. We did not detect any genome-wide significant differentially expressed genes after stimulation of PBECs with IL-33, irrespective of growth in three-dimensional (3-D) epithelial organoids or after differentiation in ALI cultures. These results were identical between PBECs obtained from patients with asthma or from healthy control subjects. We detected very low levels of IL-1RL1 gene expression in these airway epithelial cell cultures. We conclude that bronchial epithelial cells do not have a transcriptional response to IL-33, independent of their differentiation state. Hence, the airway epithelium acts as a source of IL-33 but does not seem to contribute to the response upon release of the alarmin after epithelial damage.NEW & NOTEWORTHY The IL-33/IL-1RL1 pathway stands as a formidable genetic predisposition for asthma, with ongoing clinical developments of various drugs designed to mitigate its influence in patients with asthma. The absence of a transcriptomic reaction to IL-33 within the bronchial epithelium holds significance in the pursuit of identifying biomarkers that can aid in pinpointing those individuals who would derive the greatest benefit from therapies targeting the IL-33 pathway.
Assuntos
Asma , Imunidade Inata , Humanos , Interleucina-33/genética , Linfócitos , Asma/metabolismo , Brônquios/metabolismo , Células Epiteliais/metabolismo , Células CultivadasRESUMO
The 18-kDa isoform of basic fibroblast growth factor (bFGF/FGF2) lacks a conventional signal peptide sequence and is exported by a novel membrane-associated transport pathway. Extracellular vesicles (EVs) are increasingly recognized as mediators of intercellular communication in the lung, and our prior work demonstrates that EVs carry cargo that contributes to hyperoxic lung injury and are biomarkers for bronchopulmonary dysplasia. We used primary human bronchial epithelial (HBE), pulmonary artery endothelial (HPAE), and fibroblast (HNF) cells to determine whether FGF2 was secreted in EVs. EVs were isolated by ultracentrifugation from HBE, HPAE, and HNF exposed to either normoxia or hyperoxia, followed by nanoparticle tracking analysis and electron microscopy. Hyperoxia exposure increased the total EV number. All three cell types released FGF2-18kDa both directly into the extracellular environment (secretome), as well as in EVs. HBE released more FGF2-18kDa in EVs during hyperoxia, and these were internalized and localized to both nuclei and cytoplasm of recipient cells. By co-immunoprecipitation, we identified potential binding partners of FGF2-18kDa in the nuclei, including histone 1.2 (H1.2) binding protein, that may mediate downstream effects that do not involve FGF2 binding to cell surface receptors. FGF2-18kDa interaction with H1.2 binding protein may indicate a mechanism by which FGF2 secreted in EVs modulates cellular processes. FGF2 was also found to increase angiogenesis by Matrigel assay. Further studies are necessary to determine the biological relevance of FGF2 in EVs as modulators of lung injury and disease.NEW & NOTEWORTHY We found that multiple lung cell types release basic fibroblast growth factor (FGF2)-18kDa both directly into the extracellular environment (secretome), as well as in extracellular vesicles (EVs). Bronchial epithelial cells released more FGF2-18kDa in EVs during hyperoxia, which could be internalized rapidly by recipient cells. We also identified potential binding partners of FGF2-18kDa in nuclei that may mediate downstream effects that do not involve FGF2 binding to cell surface receptors. We also confirmed a potential angiogenic role for FGF2-18kDa.
Assuntos
Vesículas Extracelulares , Fator 2 de Crescimento de Fibroblastos , Pulmão , Humanos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Vesículas Extracelulares/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Hiperóxia/metabolismo , Hiperóxia/patologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Brônquios/metabolismo , Brônquios/patologiaRESUMO
The mucociliary transport apparatus is critical for maintaining lung health via the coordinated movement of cilia to clear mucus and particulates. A metachronal wave propagates across the epithelium when cilia on adjacent multiciliated cells beat slightly out of phase along the proximal-distal axis of the airways in alignment with anatomically directed mucociliary clearance. We hypothesized that metachrony optimizes mucociliary transport (MCT) and that disruptions of calcium signaling would abolish metachrony and decrease MCT. We imaged bronchi from human explants and ferret tracheae using micro-optical coherence tomography (µOCT) to evaluate airway surface liquid depth (ASL), periciliary liquid depth (PCL), cilia beat frequency (CBF), MCT, and metachrony in situ. We developed statistical models that included covariates of MCT. Ferret tracheae were treated with BAPTA-AM (chelator of intracellular Ca2+), lanthanum chloride (nonpermeable Ca2+ channel competitive antagonist), and repaglinide (inhibitor of calaxin) to test calcium dependence of metachrony. We demonstrated that metachrony contributes to mucociliary transport of human and ferret airways. MCT was augmented in regions of metachrony compared with nonmetachronous regions by 48.1%, P = 0.0009 or 47.5%, P < 0.0020 in humans and ferrets, respectively. PCL and metachrony were independent contributors to MCT rate in humans; ASL, CBF, and metachrony contribute to ferret MCT rates. Metachrony can be disrupted by interference with calcium signaling including intracellular, mechanosensitive channels, and calaxin. Our results support that the presence of metachrony augments MCT in a calcium-dependent mechanism.NEW & NOTEWORTHY We developed a novel imaging-based analysis to detect coordination of ciliary motion and optimal coordination, a process called metachrony. We found that metachrony is key to the optimization of ciliary-mediated mucus transport in both ferret and human tracheal tissue. This process appears to be regulated through calcium-dependent mechanisms. This study demonstrates the capacity to measure a key feature of ciliary coordination that may be important in genetic and acquired disorders of ciliary function.
Assuntos
Cálcio , Cílios , Furões , Depuração Mucociliar , Depuração Mucociliar/efeitos dos fármacos , Animais , Humanos , Cílios/metabolismo , Cílios/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Traqueia/metabolismo , Traqueia/efeitos dos fármacos , Masculino , Brônquios/metabolismo , Brônquios/efeitos dos fármacosRESUMO
Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pleiotropic cytokine that regulates T-helper 2 (Th2) immune responses in the lung and plays a major role in severe uncontrolled asthma. Emerging evidence suggests a role for endoplasmic reticulum (ER) stress in the pathogenesis of asthma. In this study, we determined if ER stress and the unfolded protein response (UPR) signaling are involved in TSLP induction in the airway epithelium. For this, we treated human bronchial epithelial basal cells and differentiated primary bronchial epithelial cells with ER stress inducers and the TSLP mRNA and protein expression was determined. A series of siRNA gene knockdown experiments were conducted to determine the ER stress-induced TSLP signaling pathways. cDNA collected from asthmatic bronchial biopsies was used to determine the gene correlation between ER stress and TSLP. Our results show that ER stress signaling induces TSLP mRNA expression via the PERK-C/EBP homologous protein (CHOP) signaling pathway. AP-1 transcription factor is important in regulating this ER stress-induced TSLP mRNA induction, though ER stress alone cannot induce TSLP protein production. However, ER stress significantly enhances TLR3-induced TSLP protein secretion in the airway epithelium. TSLP and ER stress (PERK) mRNA expression positively correlates in bronchial biopsies from participants with asthma, particularly in neutrophilic asthma. In conclusion, these results suggest that ER stress primes TSLP that is then enhanced further upon TLR3 activation, which may induce severe asthma exacerbations. Targeting ER stress using pharmacological interventions may provide novel therapeutics for severe uncontrolled asthma.NEW & NOTEWORTHY TSLP is an epithelial-derived cytokine and a key regulator in the pathogenesis of severe uncontrolled asthma. We demonstrate a novel mechanism by which endoplasmic reticulum stress signaling upregulates airway epithelial TSLP mRNA expression via the PERK-CHOP signaling pathway and enhances TLR3-mediated TSLP protein secretion.
Assuntos
Asma , Citocinas , Estresse do Retículo Endoplasmático , Células Epiteliais , Linfopoietina do Estroma do Timo , Receptor 3 Toll-Like , Resposta a Proteínas não Dobradas , Humanos , Citocinas/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Asma/metabolismo , Asma/patologia , Asma/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Transdução de Sinais , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Brônquios/metabolismo , Brônquios/patologia , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Células Cultivadas , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Airway smooth muscle cell (ASM) is renowned for its involvement in airway hyperresponsiveness through impaired ASM relaxation and bronchoconstriction in asthma, which poses a significant challenge in the field. Recent studies have explored different targets in ASM to alleviate airway hyperresponsiveness, however, a sizeable portion of patients with asthma still experience poor control. In our study, we explored protein phosphatase 2 A (PP2A) in ASM as it has been reported to regulate cellular contractility by controlling intracellular calcium ([Ca2+]i), ion channels, and respective regulatory proteins. We obtained human ASM cells and lung tissues from healthy and patients with asthma and evaluated PP2A expression using RNA-Seq data, immunofluorescence, and immunoblotting. We further investigated the functional importance of PP2A by determining its role in bronchoconstriction using mouse bronchus and human ASM cell [Ca2+]i regulation. We found robust expression of PP2A isoforms in human ASM cells with PP2Aα being highly expressed. Interestingly, PP2Aα was significantly downregulated in asthmatic tissue and human ASM cells exposed to proinflammatory cytokines. Functionally, FTY720 (PP2A agonist) inhibited acetylcholine- or methacholine-induced bronchial contraction in mouse bronchus and further potentiated isoproterenol-induced bronchial relaxation. Mechanistically, FTY720 inhibited histamine-evoked [Ca2+]i response and myosin light chain (MLC) phosphorylation in the presence of interleukin-13 (IL-13) in human ASM cells. To conclude, we for the first time established PP2A signaling in ASM, which can be further explored to develop novel therapeutics to alleviate airway hyperresponsiveness in asthma.NEW & NOTEWORTHY This novel study deciphered the expression and function of protein phosphatase 2Aα (PP2Aα) in airway smooth muscle (ASM) during asthma and/or inflammation. We showed robust expression of PP2Aα in human ASM while its downregulation in asthmatic ASM. Similarly, we demonstrated reduced PP2Aα expression in ASM exposed to proinflammatory cytokines. PP2Aα activation inhibited bronchoconstriction of isolated mouse bronchi. In addition, we unveiled that PP2Aα activation inhibits the intracellular calcium release and myosin light chain phosphorylation in human ASM.
Assuntos
Asma , Broncoconstrição , Regulação para Baixo , Miócitos de Músculo Liso , Proteína Fosfatase 2 , Asma/metabolismo , Asma/patologia , Humanos , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Animais , Camundongos , Regulação para Baixo/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Broncoconstrição/efeitos dos fármacos , Músculo Liso/metabolismo , Músculo Liso/patologia , Músculo Liso/efeitos dos fármacos , Masculino , Brônquios/patologia , Brônquios/metabolismo , Brônquios/efeitos dos fármacos , Cálcio/metabolismo , Feminino , Camundongos Endogâmicos C57BLRESUMO
The SARS-CoV-2 pandemic affecting the human respiratory system severely challenges public health and urgently demands for increasing our understanding of COVID-19 pathogenesis, especially host factors facilitating virus infection and replication. SARS-CoV-2 was reported to enter cells via binding to ACE2, followed by its priming by TMPRSS2. Here, we investigate ACE2 and TMPRSS2 expression levels and their distribution across cell types in lung tissue (twelve donors, 39,778 cells) and in cells derived from subsegmental bronchial branches (four donors, 17,521 cells) by single nuclei and single cell RNA sequencing, respectively. While TMPRSS2 is strongly expressed in both tissues, in the subsegmental bronchial branches ACE2 is predominantly expressed in a transient secretory cell type. Interestingly, these transiently differentiating cells show an enrichment for pathways related to RHO GTPase function and viral processes suggesting increased vulnerability for SARS-CoV-2 infection. Our data provide a rich resource for future investigations of COVID-19 infection and pathogenesis.
Assuntos
Brônquios/citologia , Expressão Gênica , Pulmão/citologia , Peptidil Dipeptidase A/genética , Serina Endopeptidases/genética , Análise de Célula Única , Adulto , Envelhecimento , Enzima de Conversão de Angiotensina 2 , Brônquios/metabolismo , COVID-19 , Células Cultivadas , Doença Crônica/epidemiologia , Infecções por Coronavirus/genética , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Alemanha , Células Caliciformes/metabolismo , Humanos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/genética , Padrões de Referência , Análise de Sequência de RNA , Caracteres Sexuais , Fumar , Bancos de TecidosRESUMO
BACKGROUND: The epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBECs) is essential for airway remodeling during asthma. Wnt5a has been implicated in various lung diseases, while its role in the EMT of HBECs during asthma is yet to be determined. This study sought to define whether Wnt5a initiated EMT, leading to airway remodeling through the induction of autophagy in HBECs. METHODS: Microarray analysis was used to investigate the expression change of WNT5A in asthma patients. In parallel, EMT models were induced using 16HBE cells by exposing them to house dust mites (HDM) or interleukin-4 (IL-4), and then the expression of Wnt5a was observed. Using in vitro gain- and loss-of-function approaches via Wnt5a mimic peptide FOXY5 and Wnt5a inhibitor BOX5, the alterations in the expression of the epithelial marker E-cadherin and the mesenchymal marker protein were observed. Mechanistically, the Ca2+/CaMKII signaling pathway and autophagy were evaluated. An autophagy inhibitor 3-MA was used to examine Wnt5a in the regulation of autophagy during EMT. Furthermore, we used a CaMKII inhibitor KN-93 to determine whether Wnt5a induced autophagy overactivation and EMT via the Ca2+/CaMKII signaling pathway. RESULTS: Asthma patients exhibited a significant increase in the gene expression of WNT5A compared to the healthy control. Upon HDM and IL-4 treatments, we observed that Wnt5a gene and protein expression levels were significantly increased in 16HBE cells. Interestingly, Wnt5a mimic peptide FOXY5 significantly inhibited E-cadherin and upregulated α-SMA, Collagen I, and autophagy marker proteins (Beclin1 and LC3-II). Rhodamine-phalloidin staining showed that FOXY5 resulted in a rearrangement of the cytoskeleton and an increase in the quantity of stress fibers in 16HBE cells. Importantly, blocking Wnt5a with BOX5 significantly inhibited autophagy and EMT induced by IL-4 in 16HBE cells. Mechanistically, autophagy inhibitor 3-MA and CaMKII inhibitor KN-93 reduced the EMT of 16HBE cells caused by FOXY5, as well as the increase in stress fibers, cell adhesion, and autophagy. CONCLUSION: This study illustrates a new link in the Wnt5a-Ca2+/CaMKII-autophagy axis to triggering airway remodeling. Our findings may provide novel strategies for the treatment of EMT-related diseases.
Assuntos
Asma , Autofagia , Células Epiteliais , Transição Epitelial-Mesenquimal , Proteína Wnt-5a , Humanos , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Asma/metabolismo , Asma/patologia , Asma/genética , Células Epiteliais/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Brônquios/metabolismo , Brônquios/patologia , Masculino , Linhagem Celular , Feminino , Pessoa de Meia-Idade , Transdução de Sinais , AdultoRESUMO
Compositional changes in the tracheal and bronchial cartilages can affect respiratory ventilation and lung function. We aimed to elucidate element accumulation in the tracheal and bronchial cartilages of monkeys and divided it into four sites: the tracheal, tracheal bifurcation, left bronchial, and right bronchial cartilages. The elemental content was analyzed using inductively coupled plasma atomic emission spectrometry. The average calcium content was two to three times higher in the tracheal cartilage than in the other three cartilages. The trends of phosphorus and zinc were similar to those of calcium. The average calcium, phosphorus, and zinc cartilage contents were the highest in the tracheal cartilage and decreased in the following order: the left bronchial, right bronchial, and tracheal bifurcation cartilages. These findings revealed that differences existed in element accumulation between different sites within the same airway cartilage and that calcium, phosphorus, and zinc accumulation mainly occurred in the tracheal cartilage. A substantial direct correlation was observed between age and calcium content in the tracheal and bronchial cartilages and all such monkeys with high calcium content were > four years of age. These results suggest that calcium accumulation occurs in the tracheal and bronchial cartilages after reaching a certain age. An extremely substantial direct correlation was observed between calcium and phosphorus contents in the tracheal and bronchial cartilages. This finding is similar to the previously published calcium and phosphorus correlations in several other cartilages, suggesting that the calcium and phosphorus contents of cartilage exist in a certain ratio.
Assuntos
Brônquios , Cálcio , Cartilagem , Fósforo , Traqueia , Zinco , Animais , Traqueia/metabolismo , Brônquios/metabolismo , Fósforo/metabolismo , Fósforo/análise , Cartilagem/metabolismo , Zinco/metabolismo , Zinco/análise , Cálcio/metabolismo , Cálcio/análise , Masculino , FemininoRESUMO
RATIONALE: Respiratory virus-induced inflammation is the leading cause of asthma exacerbation, frequently accompanied by induction of interferon-stimulated genes (ISGs). How asthma-susceptibility genes modulate cellular response upon viral infection by fine-tuning ISG induction and subsequent airway inflammation in genetically susceptible asthma patients remains largely unknown. OBJECTIVES: To decipher the functions of gasdermin B (encoded by GSDMB) in respiratory virus-induced lung inflammation. METHODS: In two independent cohorts, we analysed expression correlation between GSDMB and ISG s. In human bronchial epithelial cell line or primary bronchial epithelial cells, we generated GSDMB-overexpressing and GSDMB-deficient cells. A series of quantitative PCR, ELISA and co-immunoprecipitation assays were performed to determine the function and mechanism of GSDMB for ISG induction. We also generated a novel transgenic mouse line with inducible expression of human unique GSDMB gene in airway epithelial cells and infected the mice with respiratory syncytial virus to determine the role of GSDMB in respiratory syncytial virus-induced lung inflammation in vivo. RESULTS: GSDMB is one of the most significant asthma-susceptibility genes at 17q21 and acts as a novel RNA sensor, promoting mitochondrial antiviral-signalling protein (MAVS)-TANK binding kinase 1 (TBK1) signalling and subsequent inflammation. In airway epithelium, GSDMB is induced by respiratory viral infections. Expression of GSDMB and ISGs significantly correlated in respiratory epithelium from two independent asthma cohorts. Notably, inducible expression of human GSDMB in mouse airway epithelium led to enhanced ISGs induction and increased airway inflammation with mucus hypersecretion upon respiratory syncytial virus infection. CONCLUSIONS: GSDMB promotes ISGs expression and airway inflammation upon respiratory virus infection, thereby conferring asthma risk in risk allele carriers.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Asma , Gasderminas , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Asma/metabolismo , Asma/genética , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Predisposição Genética para Doença , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/genética , Células Epiteliais/metabolismo , Linhagem Celular , Brônquios/metabolismo , Brônquios/patologia , Pneumonia/metabolismo , Pneumonia/genética , Pneumonia/virologia , Feminino , Pulmão/metabolismo , Pulmão/patologiaRESUMO
It has been proposed that inhaled E-prostanoid 4 (EP4)-receptor agonists could represent a new class of bronchodilators for the treatment of asthma that are as effective as ß 2-adrenoceptor agonists. However, the genomic impact of such drugs is unknown despite being potentially deleterious to respiratory health. Herein, we used mRNA-seq to compare the transcriptomic responses produced by 2-[3-[(1R,2S,3R)-3-hydroxy-2-[(E,3S)-3-hydroxy-5-[2-(methoxymethyl)phenyl]pent-1-enyl]-5-oxo-cyclopentyl]sulphanylpropylsulphanyl] acetic acid (ONO-AE1-329; an EP4-receptor agonist) and vilanterol (a ß 2-adrenoceptor agonist) in BEAS-2B human airway epithelial cells. We also determined if an increase in cAMP mediated by different G protein-coupled receptors (GPCRs) promoted distinct transcriptional signatures by expanding this inquiry to include the adenosine A2B- and I-prostanoid receptor agonists, 2-[[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]-2-pyridinyl]thio]-acetamide (Bay60-6583) and taprostene, respectively. Maximally-effective concentrations of ONO-AE1-329 and vilanterol significantly regulated (q ≤ 0.05; ≥1.5-/≤0.67-fold) 232 and 320 genes, respectively of which 217 were shared. Spearman analysis showed these gene expression changes to be highly rank order correlated, indicating that the functional overlap between the two interventions should be considerable. Unexpectedly, the genomic effects of ONO-AE1-329, vilanterol, Bay 60-6583, and taprostene were also highly rank order correlated. This finding suggests that cAMP generated by any GPCR would initiate the same transcriptional program. Nevertheless, relative to vilanterol, ONO-AE1-329 typically behaved as a partial agonist that varied across transcripts. These data indicate that each ONO-AE1-329-regulated gene differs in sensitivity to cAMP and is defined by a unique receptor occupancy-response relationship. Moreover, if this relatively modest genomic response in BEAS-2B cells is retained in vivo, then inhaled EP4-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators. SIGNIFICANCE STATEMENT: The genomic consequences of ß 2-adrenoceptor agonists in asthma are often overlooked despite being potentially harmful to lung health. We determined that ONO-AE1-329, an EP4-receptor agonist and effective bronchodilator, produced gene expression changes in BEAS-2B cells that were typically modest relative to the ß 2-adrenoceptor agonist vilanterol. Furthermore, ONO-AE1-329 behaved as a partial agonist that varied across transcripts. If this genomic activity is reproduced in vivo, then EP4-receptor agonists could represent an alternative, and possibly safer, class of bronchodilators.
Assuntos
Agonistas de Receptores Adrenérgicos beta 2 , Brônquios , AMP Cíclico , Células Epiteliais , Receptores de Prostaglandina E Subtipo EP4 , Humanos , AMP Cíclico/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Receptores de Prostaglandina E Subtipo EP4/agonistas , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Linhagem Celular , Clorobenzenos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genômica/métodos , Álcoois BenzílicosRESUMO
IMPORTANCE: The essential steps of successful gene delivery by recombinant adeno-associated viruses (rAAVs) include vector internalization, intracellular trafficking, nuclear import, uncoating, double-stranded (ds)DNA conversion, and transgene expression. rAAV2.5T has a chimeric capsid of AAV2 VP1u and AAV5 VP2 and VP3 with the mutation A581T. Our investigation revealed that KIAA0319L, the multiple AAV serotype receptor, is not essential for vector internalization but remains critical for efficient vector transduction to human airway epithelia. Additionally, we identified that a novel gene WDR63, whose cellular function is not well understood, plays an important role in vector transduction of human airway epithelia but not vector internalization and nuclear entry. Our study also discovered the substantial transduction potential of rAAV2.5T in basal stem cells of human airway epithelia, underscoring its utility in gene editing of human airways. Thus, the knowledge derived from this study holds promise for the advancement of gene therapy in the treatment of pulmonary genetic diseases.
Assuntos
Brônquios , Dependovirus , Epitélio , Técnicas de Transferência de Genes , Vetores Genéticos , Transdução Genética , Humanos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , DNA , Epitélio/metabolismo , Epitélio/virologia , Técnicas de Transferência de Genes/tendências , Terapia Genética/métodos , Vetores Genéticos/genética , Brônquios/metabolismo , Brônquios/virologia , Transporte Ativo do Núcleo Celular , Edição de Genes/tendênciasRESUMO
This study investigated an association between the cytochrome P450 (CYP) 2C8*3 polymorphism with asthma symptom control in children and changes in lipid metabolism and pro-inflammatory signaling by human bronchial epithelial cells (HBECs) treated with cigarette smoke condensate (CSC). CYP genes are inherently variable in sequence, and while such variations are known to produce clinically relevant effects on drug pharmacokinetics and pharmacodynamics, the effects on endogenous substrate metabolism and associated physiologic processes are less understood. In this study, CYP2C8*3 was associated with improved asthma symptom control among children: Mean asthma control scores were 3.68 (n = 207) for patients with one or more copies of the CYP2C8*3 allele versus 4.42 (n = 965) for CYP2C8*1/*1 (P = 0.0133). In vitro, CYP2C8*3 was associated with an increase in montelukast 36-hydroxylation and a decrease in linoleic acid metabolism despite lower mRNA and protein expression. Additionally, CYP2C8*3 was associated with reduced mRNA expression of interleukin-6 (IL-6) and C-X-C motif chemokine ligand 8 (CXCL-8) by HBECs in response to CSC, which was replicated using the soluble epoxide hydrolase inhibitor, 12-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]-dodecanoic acid. Interestingly, 9(10)- and 12(13)- dihydroxyoctadecenoic acid, the hydrolyzed metabolites of 9(10)- and 12(13)- epoxyoctadecenoic acid, increased the expression of IL-6 and CXCL-8 mRNA by HBECs. This study reveals previously undocumented effects of the CYP2C8*3 variant on the response of HBECs to exogenous stimuli. SIGNIFICANCE STATEMENT: These findings suggest a role for CYP2C8 in regulating the epoxyoctadecenoic acid:dihydroxyoctadecenoic acid ratio leading to a change in cellular inflammatory responses elicited by environmental stimuli that exacerbate asthma.
Assuntos
Asma , Brônquios , Citocromo P-450 CYP2C8 , Células Epiteliais , Humanos , Asma/tratamento farmacológico , Asma/genética , Asma/metabolismo , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2C8/metabolismo , Criança , Masculino , Feminino , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Adolescente , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Inflamação/genética , Inflamação/metabolismo , Células Cultivadas , Quinolinas/farmacologia , Polimorfismo de Nucleotídeo Único , Acetatos , Ciclopropanos , SulfetosRESUMO
Exposure to particulate matter (PM10) can induce respiratory diseases that are closely related to bronchial hyperresponsiveness. However, the involved mechanism remains to be fully elucidated. This study aimed to demonstrate the effects of PM10 on the acetylcholine muscarinic 3 receptor (CHRM3) expression and the role of the ERK1/2 pathway in rat bronchial smooth muscle. A whole-body PM10 exposure system was used to stimulate bronchial hyperresponsiveness in rats for 2 and 4 months, accompanied by MEK1/2 inhibitor U0126 injection. The whole-body plethysmography system and myography were used to detect the pulmonary and bronchoconstrictor function, respectively. The mRNA and protein levels were determined by Western blotting, qPCR, and immunofluorescence. Enzyme-linked immunosorbent assay was used to detect the inflammatory cytokines. Compared with the filtered air group, 4 months of PM10 exposure significantly increased CHRM3-mediated pulmonary function and bronchial constriction, elevated CHRM3 mRNA and protein expression levels on bronchial smooth muscle, then induced bronchial hyperreactivity. Additionally, 4 months of PM10 exposure caused an increase in ERK1/2 phosphorylation and increased the secretion of inflammatory factors in bronchoalveolar lavage fluid. Treatment with the MEK1/2 inhibitor, U0126 inhibited the PM10 exposure-induced phosphorylation of the ERK1/2 pathway, thereby reducing the PM10 exposure-induced upregulation of CHRM3 in bronchial smooth muscle and CHRM3-mediated bronchoconstriction. U0126 could rescue PM10 exposure-induced pathological changes in the bronchus. In conclusion, PM10 exposure can induce bronchial hyperresponsiveness in rats by upregulating CHRM3, and the ERK1/2 pathway may be involved in this process. These findings could reveal a potential therapeutic target for air pollution induced respiratory diseases.
Assuntos
Hiper-Reatividade Brônquica , Material Particulado , Receptor Muscarínico M3 , Animais , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/fisiopatologia , Hiper-Reatividade Brônquica/metabolismo , Masculino , Material Particulado/toxicidade , Receptor Muscarínico M3/metabolismo , Receptor Muscarínico M3/genética , Ratos , Regulação para Cima/efeitos dos fármacos , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Ratos Sprague-Dawley , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Broncoconstrição/efeitos dos fármacos , Citocinas/metabolismo , Citocinas/genética , Butadienos , NitrilasRESUMO
Repetitive bouts of coughing expose the large airways to significant cycles of shear stress. This leads to the release of alarmins and the tussive agent adenosine triphosphate (ATP) which may be modulated by the activity of ion channels present in the human airway. This study aimed to investigate the role of the transient receptor potential subfamily vanilloid member 2 (TRPV2) channel in mechanically induced ATP release from primary bronchial epithelial cells (PBECs).PBECs were obtained from individuals undergoing bronchoscopy. They were cultured in vitro and exposed to mechanical stress in the form of compressive and fluid shear stress (CFSS) or fluid shear stress (FSS) alone at various intensities. ATP release was measured using a luciferin-luciferase assay. Functional TRPV2 protein expression in human PBECs was investigated by confocal calcium imaging. The role of TRPV2 inhibition on FSS-induced ATP release was investigated using the TRPV2 inhibitor tranilast or siRNA knockdown of TRPV2. TRPV2 protein expression in human lung tissue was also determined by immunohistochemistry.ATP release was significantly increased in PBECs subjected to CFSS compared with control (unstimulated) PBECs (N = 3, ***P < 0.001). PBECs expressed functional TRPV2 channels. TRPV2 protein was also detected in fixed human lung tissue. ATP release from FFS stimulated PBECs was decreased by the TRPV2 inhibitor tranilast (N = 3, **P < 0.01) (vehicle: 159 ± 17.49 nM, tranilast: 25.08 ± 5.1 nM) or by TRPV2 siRNA knockdown (N = 3, *P < 0.05) (vehicle: 197 ± 24.52 nM, siRNA: 119 ± 26.85 nM).In conclusion, TRPV2 is expressed in the human airway and modulates ATP release from mechanically stimulated PBECs.