Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 87(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405957

RESUMO

Many intracellular bacteria, including the obligate intracellular pathogen Chlamydia trachomatis, grow within a membrane-bound bacterium-containing vacuole (BCV). Secreted cytosolic effectors modulate host activity, but an understanding of the host-pathogen interactions that occur at the BCV membrane is limited by the difficulty in purifying membrane fractions from infected host cells. We used the ascorbate peroxidase (APEX2) proximity labeling system, which labels proximal proteins with biotin in vivo, to study the protein-protein interactions that occur at the chlamydial vacuolar, or inclusion, membrane. An in vivo understanding of the secreted chlamydial inclusion membrane protein (Inc) interactions (e.g., Inc-Inc and Inc-eukaryotic protein) and how these contribute to overall host-chlamydia interactions at this unique membrane is lacking. We hypothesize some Incs organize the inclusion membrane, whereas other Incs bind eukaryotic proteins to promote chlamydia-host interactions. To study this, Incs fused to APEX2 were expressed in C. trachomatis L2. Affinity purification-mass spectrometry (AP-MS) identified biotinylated proteins, which were analyzed for statistical significance using significance analysis of the interactome (SAINT). Broadly supporting both Inc-Inc and Inc-host interactions, our Inc-APEX2 constructs labeled Incs as well as known and previously unreported eukaryotic proteins localizing to the inclusion. We demonstrate, using bacterial two-hybrid and coimmunoprecipitation assays, that endogenous LRRFIP1 (LRRF1) is recruited to the inclusion by the Inc CT226. We further demonstrate interactions between CT226 and the Incs used in our study to reveal a model for inclusion membrane organization. Combined, our data highlight the utility of APEX2 to capture the complex in vivo protein-protein interactions at the chlamydial inclusion.


Assuntos
Chlamydia trachomatis/fisiologia , Proteínas de Bactérias , Biotinilação , Chlamydia trachomatis/genética , Chlamydia trachomatis/ultraestrutura , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Espectrometria de Massas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Recombinantes , Estreptavidina
2.
PLoS Pathog ; 12(8): e1005822, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505160

RESUMO

Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments.


Assuntos
Divisão Celular/fisiologia , Chlamydia trachomatis/fisiologia , Chlamydia trachomatis/ultraestrutura , Polaridade Celular , Células HeLa , Humanos , Immunoblotting , Microscopia Confocal , Microscopia Eletrônica de Transmissão
3.
Cell Microbiol ; 19(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27739160

RESUMO

The precise strategies that intracellular pathogens use to exit host cells have a direct impact on their ability to disseminate within a host, transmit to new hosts, and engage or avoid immune responses. The obligate intracellular bacterium Chlamydia trachomatis exits the host cell by two distinct exit strategies, lysis and extrusion. The defining characteristics of extrusions, and advantages gained by Chlamydia within this unique double-membrane structure, are not well understood. Here, we define extrusions as being largely devoid of host organelles, comprised mostly of Chlamydia elementary bodies, and containing phosphatidylserine on the outer surface of the extrusion membrane. Extrusions also served as transient, intracellular-like niches for enhanced Chlamydia survival outside the host cell. In addition to enhanced extracellular survival, we report the key discovery that chlamydial extrusions are phagocytosed by primary bone marrow-derived macrophages, after which they provide a protective microenvironment for Chlamydia. Extrusion-derived Chlamydia staved off macrophage-based killing and culminated in the release of infectious elementary bodies from the macrophage. Based on these findings, we propose a model in which C. trachomatis extrusions serve as "trojan horses" for bacteria, by exploiting macrophages as vehicles for dissemination, immune evasion, and potentially transmission.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/fisiologia , Macrófagos/microbiologia , Animais , Infecções por Chlamydia/imunologia , Chlamydia trachomatis/ultraestrutura , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Viabilidade Microbiana , Fagocitose
4.
Infect Immun ; 83(12): 4710-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26416906

RESUMO

Chlamydia trachomatis is an obligate intracellular pathogen that replicates in a membrane-bound vacuole termed the inclusion. Early in the infection cycle, the pathogen extensively modifies the inclusion membrane through incorporation of numerous type III secreted effector proteins, called inclusion membrane proteins (Incs). These proteins are characterized by a bilobed hydrophobic domain of 40 amino acids. The presence of this domain has been used to predict up to 59 putative Incs for C. trachomatis; however, localization to the inclusion membrane with specific antibodies has been demonstrated for only about half of them. Here, we employed recently developed genetic tools to verify the localization of predicted Incs that had not been previously localized to the inclusion membrane. Expression of epitope-tagged putative Incs identified 10 that were previously unverified as inclusion membrane localized and thus authentic Incs. One novel Inc and 3 previously described Incs were localized to inclusion membrane microdomains, as evidenced by colocalization with phosphorylated Src (p-Src). Several predicted Incs did not localize to the inclusion membrane but instead remained associated with the bacteria. Using Yersinia as a surrogate host, we demonstrated that many of these are not secreted via type III secretion, further suggesting they may not be true Incs. Collectively, our results highlight the utility of genetic tools for demonstrating secretion from chlamydia. Further mechanistic studies aimed at elucidating effector function will advance our understanding of how the pathogen maintains its unique intracellular niche and mediates interactions with the host.


Assuntos
Proteínas de Bactérias/genética , Chlamydia trachomatis/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Proteínas Recombinantes de Fusão/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/ultraestrutura , Chlorocebus aethiops , Células HeLa , Humanos , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Anotação de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Vacúolos/química , Vacúolos/metabolismo , Células Vero , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo
5.
PLoS Pathog ; 9(8): e1003553, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950718

RESUMO

The Chlamydiae are a highly successful group of obligate intracellular bacteria, whose members are remarkably diverse, ranging from major pathogens of humans and animals to symbionts of ubiquitous protozoa. While their infective developmental stage, the elementary body (EB), has long been accepted to be completely metabolically inert, it has recently been shown to sustain some activities, including uptake of amino acids and protein biosynthesis. In the current study, we performed an in-depth characterization of the metabolic capabilities of EBs of the amoeba symbiont Protochlamydia amoebophila. A combined metabolomics approach, including fluorescence microscopy-based assays, isotope-ratio mass spectrometry (IRMS), ion cyclotron resonance Fourier transform mass spectrometry (ICR/FT-MS), and ultra-performance liquid chromatography mass spectrometry (UPLC-MS) was conducted, with a particular focus on the central carbon metabolism. In addition, the effect of nutrient deprivation on chlamydial infectivity was analyzed. Our investigations revealed that host-free P. amoebophila EBs maintain respiratory activity and metabolize D-glucose, including substrate uptake as well as host-free synthesis of labeled metabolites and release of labeled CO2 from (13)C-labeled D-glucose. The pentose phosphate pathway was identified as major route of D-glucose catabolism and host-independent activity of the tricarboxylic acid (TCA) cycle was observed. Our data strongly suggest anabolic reactions in P. amoebophila EBs and demonstrate that under the applied conditions D-glucose availability is essential to sustain metabolic activity. Replacement of this substrate by L-glucose, a non-metabolizable sugar, led to a rapid decline in the number of infectious particles. Likewise, infectivity of Chlamydia trachomatis, a major human pathogen, also declined more rapidly in the absence of nutrients. Collectively, these findings demonstrate that D-glucose is utilized by P. amoebophila EBs and provide evidence that metabolic activity in the extracellular stage of chlamydiae is of major biological relevance as it is a critical factor affecting maintenance of infectivity.


Assuntos
Acanthamoeba/microbiologia , Chlamydiales/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Glucose/metabolismo , Consumo de Oxigênio/fisiologia , Via de Pentose Fosfato/fisiologia , Acanthamoeba/metabolismo , Acanthamoeba/ultraestrutura , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/patogenicidade , Chlamydia trachomatis/ultraestrutura , Chlamydiales/ultraestrutura , Células HeLa , Humanos , Simbiose/fisiologia
6.
Proc Natl Acad Sci U S A ; 109(48): 19781-5, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23129646

RESUMO

Chlamydia trachomatis is among the most clinically significant human pathogens, yet their obligate intracellular nature places severe restrictions upon research. Chlamydiae undergo a biphasic developmental cycle characterized by an infectious cell type known as an elementary body (EB) and an intracellular replicative form called a reticulate body (RB). EBs have historically been described as metabolically dormant. A cell-free (axenic) culture system was developed, which showed high levels of metabolic and biosynthetic activity from both EBs and RBs, although the requirements differed for each. EBs preferentially used glucose-6-phosphate as an energy source, whereas RBs required ATP. Both developmental forms showed increased activity when incubated under microaerobic conditions. Incorporation of isotopically labeled amino acids into proteins from both developmental forms indicated unique expression profiles, which were confirmed by genome-wide transcriptional analysis. The described axenic culture system will greatly enhance biochemical and physiological analyses of chlamydiae.


Assuntos
Chlamydia trachomatis/fisiologia , Transcrição Gênica/fisiologia , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/ultraestrutura , Meios de Cultura , Microscopia Eletrônica de Transmissão , Biossíntese de Proteínas
7.
Cell Microbiol ; 14(5): 656-68, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22233276

RESUMO

Chlamydia spp. are obligate intracellular bacteria that replicate inside the host cell in a bacterial modified unique compartment called the inclusion. As other intracellular pathogens, chlamydiae exploit host membrane trafficking pathways to prevent lysosomal fusion and to acquire energy and nutrients essential for their survival and replication. The Conserved Oligomeric Golgi (COG) complex is a ubiquitously expressed membrane-associated protein complex that functions in a retrograde intra-Golgi trafficking through associations with coiled-coil tethers, SNAREs, Rabs and COPI proteins. Several COG complex-interacting proteins, including Rab1, Rab6, Rab14 and Syntaxin 6 are implicated in chlamydial development. In this study, we analysed the recruitment of the COG complex and GS15-positive COG complex-dependent vesicles to Chlamydia trachomatis inclusion and their participation in chlamydial growth. Immunofluorescent analysis revealed that both GFP-tagged and endogenous COG complex subunits associated with inclusions in a serovar-independent manner by 8 h post infection and were maintained throughout the entire developmental cycle. Golgi v-SNARE GS15 was associated with inclusions 24 h post infection, but was absent on the mid-cycle (8 h) inclusions, indicating that this Golgi SNARE is directed to inclusions after COG complex recruitment. Silencing of COG8 and GS15 by siRNA significantly decreased infectious yield of chlamydiae. Further, membranous structures likely derived from lysed bacteria were observed inside inclusions by electron microscopy in cells depleted of COG8 or GS15. Our results showed that C. trachomatis hijacks the COG complex to redirect the population of Golgi-derived retrograde vesicles to inclusions. These vesicles likely deliver nutrients that are required for bacterial development and replication.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Chlamydia trachomatis/patogenicidade , Vesículas Citoplasmáticas/microbiologia , Interações Hospedeiro-Patógeno , Corpos de Inclusão/microbiologia , Proteínas Qc-SNARE/metabolismo , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/ultraestrutura , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Corpos de Inclusão/metabolismo , Corpos de Inclusão/ultraestrutura , Microscopia Eletrônica , Microscopia de Fluorescência
9.
Cell Microbiol ; 12(2): 174-87, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19811502

RESUMO

The hypothesized variable expression of polymorphic membrane proteins (PmpA-PmpI) in Chlamydia trachomatis-infected patients was tested by examination of the expression of each Pmp subtype in in vitro-grown C. trachomatis. A panel of monospecific polyclonal and monoclonal antibodies was used to demonstrate surface exposure of Pmps of each subtype by differential immunofluorescence (IF) with and without prior detergent permeabilization of paraformaldehyde-fixed inclusions and for selected Pmps by immunogold labelling. Although specific transcript was detected for each pmp gene late in development, IF experiments with Pmp subtype-specific antibodies reveal that a number of inclusions in a single infection do not express Pmps of a given subtype. Coexpression experiments suggest that pmp genes are shut off independently from one another in non-expressing inclusions, i.e. different inclusions are switched off for different Pmps. Overall, these studies establish the existence of an efficient shutoff mechanism independently affecting the expression of each member of the pmp gene family in in vitro-grown C. trachomatis. Like other paralogous gene families of bacterial pathogens, the pmp gene family of C. trachomatis may serve the critical dual function of a highly adaptable virulence factor also providing antigenic diversity in the face of the host adaptive immune response.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/genética , Chlamydia trachomatis/genética , Chlamydia trachomatis/ultraestrutura , Células HeLa , Humanos , Proteínas de Membrana/genética , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Proc Natl Acad Sci U S A ; 105(27): 9379-84, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18591669

RESUMO

The acquisition of host-derived lipids is essential for the pathogenesis of the obligate intracellular bacteria Chlamydia trachomatis. Current models of chlamydial lipid acquisition center on the fusion of Golgi-derived exocytic vesicles and endosomal multivesicular bodies with the bacteria-containing parasitophorous vacuole ("inclusion"). In this study, we describe a mechanism of lipid acquisition and organelle subversion by C. trachomatis. We show by live cell fluorescence microscopy and electron microscopy that lipid droplets (LDs), neutral lipid storage organelles, are translocated from the host cytoplasm into the inclusion lumen. LDs dock at the surface of the inclusion, penetrate the inclusion membrane and intimately associate with reticulate Bodies, the replicative form of Chlamydia. The inclusion membrane protein IncA, but not other inclusion membrane proteins, cofractionated with LDs and accumulated in the inclusion lumen. Therefore, we postulate that the translocation of LDs may occur at IncA-enriched subdomains of the inclusion membrane. Finally, the chlamydial protein Lda3 may participate in the cooption of these organelles by linking cytoplasmic LDs to inclusion membranes and promoting the removal of the LD protective coat protein, adipocyte differentiation related protein (ADRP). The wholesale transport of LDs into the lumen of a parasitophorous vacuole represents a unique mechanism of organelle sequestration and subversion by a bacterial pathogen.


Assuntos
Chlamydia trachomatis/metabolismo , Metabolismo dos Lipídeos , Vacúolos/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Chlamydia trachomatis/ultraestrutura , Células HeLa , Humanos , Corpos de Inclusão/ultraestrutura , Proteínas de Membrana/metabolismo , Modelos Biológicos , Ligação Proteica , Vacúolos/ultraestrutura
11.
J Bacteriol ; 192(11): 2852-60, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20348250

RESUMO

The extracellular chlamydial infectious particle, or elementary body (EB), is enveloped by an intra- and intermolecular cysteine cross-linked protein shell called the chlamydial outer membrane complex (COMC). A few abundant proteins, including the major outer membrane protein and cysteine-rich proteins (OmcA and OmcB), constitute the overwhelming majority of COMC proteins. The identification of less-abundant COMC proteins has been complicated by limitations of proteomic methodologies and the contamination of COMC fractions with abundant EB proteins. Here, we used parallel liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analyses of Chlamydia trachomatis serovar L2 434/Bu EB, COMC, and Sarkosyl-soluble EB fractions to identify proteins enriched or depleted from COMC. All well-described COMC proteins were specifically enriched in the COMC fraction. In contrast, multiple COMC-associated proteins found in previous studies were strongly enriched in the Sarkosyl-soluble fraction, suggesting that these proteins are not COMC components or are not stably associated with COMC. Importantly, we also identified novel proteins enriched in COMC. The list of COMC proteins identified in this study has provided reliable information for further understanding chlamydial protein secretion systems and modeling COMC and EB structures.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Chlamydia trachomatis/metabolismo , Complexos Multiproteicos/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Western Blotting , Chlamydia trachomatis/ultraestrutura , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem
12.
Microbiology (Reading) ; 156(Pt 5): 1394-1404, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20093289

RESUMO

Chlamydia trachomatis is a major cause of bacterial sexually transmitted infections worldwide. In 2006, a new variant of C. trachomatis (nvCT), carrying a 377 bp deletion within the plasmid, was reported in Sweden. This deletion included the targets used by the commercial diagnostic systems from Roche and Abbott. The nvCT is clonal (serovar/genovar E) and it spread rapidly in Sweden, undiagnosed by these systems. The degree of spread may also indicate an increased biological fitness of nvCT. The aims of this study were to describe the genome of nvCT, to compare the nvCT genome to all available C. trachomatis genome sequences and to investigate the biological properties of nvCT. An early nvCT isolate (Sweden2) was analysed by genome sequencing, growth kinetics, microscopy, cell tropism assay and antimicrobial susceptibility testing. It was compared with relevant C. trachomatis isolates, including a similar serovar E C. trachomatis wild-type strain that circulated in Sweden prior to the initially undetected expansion of nvCT. The nvCT genome does not contain any major genetic polymorphisms - the genes for central metabolism, development cycle and virulence are conserved - or phenotypic characteristics that indicate any altered biological fitness. This is supported by the observations that the nvCT and wild-type C. trachomatis infections are very similar in terms of epidemiological distribution, and that differences in clinical signs are only described, in one study, in women. In conclusion, the nvCT does not appear to have any altered biological fitness. Therefore, the rapid transmission of nvCT in Sweden was due to the strong diagnostic selective advantage and its introduction into a high-frequency transmitting population.


Assuntos
Chlamydia trachomatis/genética , Genoma Bacteriano , Sequência de Bases , Infecções por Chlamydia/diagnóstico , Infecções por Chlamydia/epidemiologia , Infecções por Chlamydia/transmissão , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/isolamento & purificação , Chlamydia trachomatis/ultraestrutura , Erros de Diagnóstico , Humanos , Corpos de Inclusão , Masculino , Dados de Sequência Molecular , Fenótipo , Plasmídeos , Especificidade da Espécie , Suécia/epidemiologia , Tropismo
13.
PLoS Pathog ; 4(3): e1000022, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18369472

RESUMO

Many intracellular pathogens rely on host cell membrane compartments for their survival. The strategies they have developed to subvert intracellular trafficking are often unknown, and SNARE proteins, which are essential for membrane fusion, are possible targets. The obligate intracellular bacteria Chlamydia replicate within an intracellular vacuole, termed an inclusion. A large family of bacterial proteins is inserted in the inclusion membrane, and the role of these inclusion proteins is mostly unknown. Here we identify SNARE-like motifs in the inclusion protein IncA, which are conserved among most Chlamydia species. We show that IncA can bind directly to several host SNARE proteins. A subset of SNAREs is specifically recruited to the immediate vicinity of the inclusion membrane, and their accumulation is reduced around inclusions that lack IncA, demonstrating that IncA plays a predominant role in SNARE recruitment. However, interaction with the SNARE machinery is probably not restricted to IncA as at least another inclusion protein shows similarities with SNARE motifs and can interact with SNAREs. We modelled IncA's association with host SNAREs. The analysis of intermolecular contacts showed that the IncA SNARE-like motif can make specific interactions with host SNARE motifs similar to those found in a bona fide SNARE complex. Moreover, point mutations in the central layer of IncA SNARE-like motifs resulted in the loss of binding to host SNAREs. Altogether, our data demonstrate for the first time mimicry of the SNARE motif by a bacterium.


Assuntos
Proteínas de Bactérias/genética , Chlamydia trachomatis/fisiologia , Proteínas de Membrana/genética , Mimetismo Molecular , Proteínas SNARE/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Chlamydia trachomatis/patogenicidade , Chlamydia trachomatis/ultraestrutura , Interações Hospedeiro-Patógeno/fisiologia , Corpos de Inclusão/microbiologia , Corpos de Inclusão/ultraestrutura , Proteínas de Membrana/metabolismo , RNA Interferente Pequeno/farmacologia , Proteínas SNARE/metabolismo , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestrutura , Vacúolos
14.
J Med Microbiol ; 69(12): 1351-1366, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33180014

RESUMO

Introduction . Chlamydia trachomatis (Ct) is an obligate intracellular bacterium, causing a range of diseases in humans. Interactions between chlamydiae and antibiotics have been extensively studied in the past.Hypothesis/Gap statement: Chlamydial interactions with non-antibiotic drugs have received less attention and warrant further investigations. We hypothesized that selected cytokine inhibitors would alter Ct growth characteristics in HeLa cells.Aim. To investigate potential interactions between selected cytokine inhibitors and Ct development in vitro.Methodology. The CCR5 receptor antagonist maraviroc (Mara; clinically used as HIV treatment), the triterpenoid celastrol (Cel; used in traditional Chinese medicine) and the histamine H1 receptor antagonist azelastine (Az; clinically used to treat allergic rhinitis and conjunctivitis) were used in a genital in vitro model of Ct serovar E infecting human adenocarcinoma cells (HeLa).Results. Initial analyses revealed no cytotoxicity of Mara up to 20 µM, Cel up to 1 µM and Az up to 20 µM. Mara exposure (1, 5, 10 and 20 µM) elicited a reduction of chlamydial inclusion numbers, while 10 µM reduced chlamydial infectivity. Cel 1 µM, as well as 10 and 20 µM Az, reduced chlamydial inclusion size, number and infectivity. Morphological immunofluorescence and ultrastructural analysis indicated that exposure to 20 µM Az disrupted chlamydial inclusion structure. Immunofluorescence evaluation of Cel-incubated inclusions showed reduced inclusion sizes whilst Mara incubation had no effect on inclusion morphology. Recovery assays demonstrated incomplete recovery of chlamydial infectivity and formation of structures resembling typical chlamydial inclusions upon Az removal.Conclusion. These observations indicate that distinct mechanisms might be involved in potential interactions of the drugs evaluated herein and highlight the need for continued investigation of the interaction of commonly used drugs with Chlamydia and its host.


Assuntos
Chlamydia trachomatis/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Maraviroc/farmacologia , Ftalazinas/farmacologia , Triterpenos/farmacologia , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/ultraestrutura , Células HeLa , Humanos , Indicadores e Reagentes , Testes de Sensibilidade Microbiana , Oxazinas , Triterpenos Pentacíclicos , Xantenos
15.
Nat Commun ; 11(1): 6173, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268771

RESUMO

Expansion microscopy (ExM) enables super-resolution imaging of proteins and nucleic acids on conventional microscopes. However, imaging of details of the organization of lipid bilayers by light microscopy remains challenging. We introduce an unnatural short-chain azide- and amino-modified sphingolipid ceramide, which upon incorporation into membranes can be labeled by click chemistry and linked into hydrogels, followed by 4× to 10× expansion. Confocal and structured illumination microscopy (SIM) enable imaging of sphingolipids and their interactions with proteins in the plasma membrane and membrane of intracellular organelles with a spatial resolution of 10-20 nm. As our functionalized sphingolipids accumulate efficiently in pathogens, we use sphingolipid ExM to investigate bacterial infections of human HeLa229 cells by Neisseria gonorrhoeae, Chlamydia trachomatis and Simkania negevensis with a resolution so far only provided by electron microscopy. In particular, sphingolipid ExM allows us to visualize the inner and outer membrane of intracellular bacteria and determine their distance to 27.6 ± 7.7 nm.


Assuntos
Ceramidas/química , Chlamydia trachomatis/ultraestrutura , Chlamydiales/ultraestrutura , Células Epiteliais/ultraestrutura , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Neisseria gonorrhoeae/ultraestrutura , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Ceramidas/metabolismo , Chlamydia trachomatis/metabolismo , Chlamydiales/metabolismo , Química Click/métodos , Túnica Conjuntiva/citologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células HeLa , Humanos , Hidrogéis/química , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Neisseria gonorrhoeae/metabolismo , Coloração e Rotulagem/métodos
16.
Science ; 256(5055): 377-9, 1992 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-1566085

RESUMO

Chlamydial cell types are adapted for either extracellular survival or intracellular growth. In the transcriptionally inert elementary bodies, the chromosome is densely compacted; in metabolically active reticulate bodies, the chromatin is loosely organized. Condensation of the chlamydial nucleoid occurs concomitant with expression of proteins homologous to eukaryotic histone H1. When the Chlamydia trachomatis 18-kilodalton histone homolog Hc1 is expressed in Escherichia coli, a condensed nucleoid structure similar to that of chlamydiae is observed with both light and electron microscopy. These results support a role for Hc1 in condensation of the chlamydial nucleoid.


Assuntos
Núcleo Celular/ultraestrutura , Chlamydia trachomatis/genética , Escherichia coli/ultraestrutura , Expressão Gênica , Histonas/genética , Western Blotting , Centrifugação com Gradiente de Concentração , Chlamydia trachomatis/ultraestrutura , Cromatina/ultraestrutura , DNA/metabolismo , Desoxirribonuclease I , Escherichia coli/genética , Histonas/metabolismo , Histonas/fisiologia , Microscopia Imunoeletrônica
17.
mBio ; 10(4)2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31311884

RESUMO

Clinical persistence of Chlamydia trachomatis (Ct) sexually transmitted infections (STIs) is a major public health concern. In vitro persistence is known to develop through interferon gamma (IFN-γ) induction of indoleamine 2,3-dioxygenase (IDO), which catabolizes tryptophan, an essential amino acid for Ct replication. The organism can recover from persistence by synthesizing tryptophan from indole, a substrate for the enzyme tryptophan synthase. The majority of Ct strains, except for reference strain B/TW-5/OT, contain an operon comprised of α and ß subunits that encode TrpA and TrpB, respectively, and form a functional αßßα tetramer. However, trpA mutations in ocular Ct strains, which are responsible for the blinding eye disease known as trachoma, abrogate tryptophan synthesis from indole. We examined serial urogenital samples from a woman who had recurrent Ct infections over 4 years despite antibiotic treatment. The Ct isolates from each infection episode were genome sequenced and analyzed for phenotypic, structural, and functional characteristics. All isolates contained identical mutations in trpA and developed aberrant bodies within intracellular inclusions, visualized by transmission electron microscopy, even when supplemented with indole following IFN-γ treatment. Each isolate displayed an altered αßßα structure, could not synthesize tryptophan from indole, and had significantly lower trpBA expression but higher intracellular tryptophan levels compared with those of reference Ct strain F/IC-Cal3. Our data indicate that emergent mutations in the tryptophan operon, which were previously thought to be restricted only to ocular Ct strains, likely resulted in in vivo persistence in the described patient and represents a novel host-pathogen adaptive strategy for survival.IMPORTANCEChlamydia trachomatis (Ct) is the most common sexually transmitted bacterium with more than 131 million cases occurring annually worldwide. Ct infections are often asymptomatic, persisting for many years despite treatment. In vitro recovery from persistence occurs when indole is utilized by the organism's tryptophan synthase to synthesize tryptophan, an essential amino acid for replication. Ocular but not urogenital Ct strains contain mutations in the synthase that abrogate tryptophan synthesis. Here, we discovered that the genomes of serial isolates from a woman with recurrent, treated Ct STIs over many years were identical with a novel synthase mutation. This likely allowed long-term in vivo persistence where active infection resumed only when tryptophan became available. Our findings indicate an emerging adaptive host-pathogen evolutionary strategy for survival in the urogenital tract that will prompt the field to further explore chlamydial persistence, evaluate the genetics of mutant Ct strains and fitness within the host, and their implications for disease pathogenesis.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Mutação , Óperon , Triptofano Sintase/genética , Sequência de Aminoácidos , Sequência de Bases , Infecções por Chlamydia/transmissão , Chlamydia trachomatis/classificação , Chlamydia trachomatis/ultraestrutura , Mutação da Fase de Leitura , Regulação Bacteriana da Expressão Gênica , Humanos , Modelos Moleculares , Filogenia , Conformação Proteica , Deleção de Sequência , Doenças Bacterianas Sexualmente Transmissíveis/microbiologia , Triptofano Sintase/química
18.
J Bacteriol ; 190(5): 1680-90, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18165300

RESUMO

Chlamydia spp. express a functional type III secretion system (T3SS) necessary for pathogenesis and intracellular growth. However, certain essential components of the secretion apparatus have diverged to such a degree as to preclude their identification by standard homology searches of primary protein sequences. One example is the needle subunit protein. Electron micrographs indicate that chlamydiae possess needle filaments, and yet database searches fail to identify a SctF homologue. We used a bioinformatics approach to identify a likely needle subunit protein for Chlamydia. Experimental evidence indicates that this protein, designated CdsF, has properties consistent with it being the major needle subunit protein. CdsF is concentrated in the outer membrane of elementary bodies and is surface exposed as a component of an extracellular needle-like projection. During infection CdsF is detectable by indirect immunofluorescence in the inclusion membrane with a punctuate distribution adjacent to membrane-associated reticulate bodies. Biochemical cross-linking studies revealed that, like other SctF proteins, CdsF is able to polymerize into multisubunit complexes. Furthermore, we identified two chaperones for CdsF, termed CdsE and CdsG, which have many characteristics of the Pseudomonas spp. needle chaperones PscE and PscG, respectively. In aggregate, our data are consistent with CdsF representing at least one component of the extended Chlamydia T3SS injectisome. The identification of this secretion system component is essential for studies involving ectopic reconstitution of the Chlamydia T3SS. Moreover, we anticipate that CdsF could serve as an efficacious target for anti-Chlamydia neutralizing antibodies.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Chlamydia trachomatis/genética , Chlamydia trachomatis/ultraestrutura , Dimerização , Técnica Indireta de Fluorescência para Anticorpo , Immunoblotting , Microscopia Imunoeletrônica , Modelos Genéticos , Dados de Sequência Molecular , Fases de Leitura Aberta , Ligação Proteica , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
19.
Infect Immun ; 76(7): 2872-81, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18426873

RESUMO

Chlamydiae are obligate intracellular bacterial pathogens that replicate solely within a membrane-bound vacuole termed an inclusion. Within the confines of the inclusion, the replicating bacteria acquire amino acids, nucleotides, and other precursors from the host cell. Trafficking from CD63-positive multivesicular bodies to the inclusion was previously identified as a novel interaction that provided essential precursors for the maintenance of a productive intracellular infection. The present study analyzes the direct delivery of resident protein and lipid constituents of multivesicular bodies to the intracellular chlamydiae. The manipulation of this trafficking pathway with an inhibitor of multivesicular body transport and the delivery of exogenous antibodies altered protein and cholesterol acquisition and delayed the maturation of the chlamydial inclusion. Although inhibitor studies and ultrastructural analyses confirmed a novel interaction between CD63-positive multivesicular bodies and the intracellular chlamydiae, neutralization with small interfering RNAs and anti-CD63 Fab fragments revealed that CD63 itself was not required for this association. These studies confirm CD63 as a constituent in multivesicular body-to-inclusion transport; however, other requisite components of these host cell compartments must control the delivery of key nutrients that are essential to intracellular bacterial development.


Assuntos
Antígenos CD/metabolismo , Chlamydia trachomatis/patogenicidade , Vesículas Citoplasmáticas , Endocitose , Corpos de Inclusão , Glicoproteínas da Membrana de Plaquetas/metabolismo , Animais , Linhagem Celular , Chlamydia trachomatis/ultraestrutura , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/microbiologia , Vesículas Citoplasmáticas/ultraestrutura , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/microbiologia , Corpos de Inclusão/ultraestrutura , Lisofosfolipídeos/metabolismo , Camundongos , Microscopia Eletrônica/instrumentação , Microscopia Eletrônica/métodos , Monoglicerídeos/metabolismo , Tetraspanina 30
20.
Microbes Infect ; 10(14-15): 1494-503, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18832043

RESUMO

Confinement of the obligate intracellular bacterium Chlamydia trachomatis to a membrane-bound vacuole, termed an inclusion, within infected epithelial cells neither prevents secretion of chlamydial antigens into the host cytosol nor protects chlamydiae from innate immune detection. However, the details leading to chlamydial antigen presentation are not clear. By immunoelectron microscopy of infected endometrial epithelial cells and in isolated cell secretory compartments, chlamydial major outer membrane protein (MOMP), lipopolysaccharide (LPS) and the inclusion membrane protein A (IncA) were localized to the endoplasmic reticulum (ER) and co-localized with multiple ER markers, but not with markers of the endosomes, lysosomes, Golgi nor mitochondria. Chlamydial LPS was also co-localized with CD1d in the ER. Since the chlamydial antigens, contained in everted inclusion membrane vesicles, were found within the host cell ER, these data raise additional implications for antigen processing by infected uterine epithelial cells for classical and non-classical T cell antigen presentation.


Assuntos
Antígenos de Bactérias/metabolismo , Chlamydia trachomatis/imunologia , Retículo Endoplasmático/química , Células Epiteliais/metabolismo , Apresentação de Antígeno , Linhagem Celular Tumoral , Chlamydia trachomatis/ultraestrutura , Células Epiteliais/ultraestrutura , Humanos , Lipopolissacarídeos/análise , Microscopia Imunoeletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA