Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Infection ; 48(4): 535-542, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32314307

RESUMO

PURPOSE: Chlamydia psittaci infection in humans can lead to serious clinical manifestations, including severe pneumonia, adult respiratory distress syndrome, and, rarely, death. Implementation of metagenomic next-generation sequencing (mNGS) gives a promising new tool for diagnosis. The clinical spectrum of severe psittacosis pneumonia is described to provide physicians with a better understanding and to highlight the rarity and severity of severe psittacosis pneumonia. METHODS: Nine cases of severe psittacosis pneumonia were diagnosed using mNGS. Retrospective analysis of the data on disease progression, new diagnosis tool, treatments, and outcomes, and the findings were summarised. RESULTS: Frequent symptoms included chills and remittent fever (100%), cough and hypodynamia (100%), and headache and myalgia (77.8%). All patients were severe psittacosis pneumonia developed respiratory failure, accompanied by sepsis in 6/9 patients. mNGS takes 48-72 h to provide the results, and help to identify diagnosis of psittacosis. Laboratory data showed normal or slightly increased leucocytes, neutrophils, and procalcitonin but high C-reactive protein levels. Computed tomography revealed air-space consolidation and ground-glass opacity, which began in the upper lobe of one lung, and spread to both lungs, along with miliary, nodular, or consolidated shadows. One patient died because of secondary infection with Klebsiella pneumoniae, while the other eight patients experienced complete recoveries. CONCLUSIONS: The use of mNGS can improve accuracy and reduce the delay in diagnosis of psittacosis. Severe psittacosis pneumonia responds well to the timely use of appropriate antibiotics.


Assuntos
Chlamydophila psittaci/fisiologia , Pneumonia/diagnóstico , Psitacose/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Metagenômica , Pessoa de Meia-Idade , Pneumonia/microbiologia , Psitacose/complicações , Psitacose/microbiologia , Estudos Retrospectivos
2.
Epidemiol Infect ; 146(3): 303-305, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29361998

RESUMO

Psittacosis (infection with Chlamydia psittaci) can have diverse presentations in humans, ranging from asymptomatic infection to severe systemic disease. Awareness of psittacosis and its presentations are low among clinicians and the general public. Therefore, underdiagnosis and thereby underestimation of the incidence and public health importance of psittacosis is very likely. We used the methodology developed for the Burden of communicable diseases in Europe toolkit of the European Centre for Disease Prevention and Control, to construct a model to estimate disease burden in disability-adjusted life years (DALYs) attributable to psittacosis. Using this model, we estimated the disease burden caused by psittacosis in the Netherlands to have been 222 DALY per year (95% CI 172-280) over the period 2012-2014. This is comparable with the amount of DALYs estimated to be due to rubella or shigellosis in the same period in the Netherlands. Our results highlight the public health importance of psittacosis and identify evidence gaps pertaining to the clinical presentations and prognosis of this disease.


Assuntos
Chlamydophila psittaci/fisiologia , Efeitos Psicossociais da Doença , Psitacose/epidemiologia , Anos de Vida Ajustados por Qualidade de Vida , Humanos , Incidência , Modelos Teóricos , Países Baixos/epidemiologia , Psitacose/microbiologia
3.
Int J Med Microbiol ; 305(3): 310-21, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25595025

RESUMO

Chlamydia (C.) psittaci, the causative agent of ornithosis, is an obligate intracellular pathogen with a unique developmental cycle and a high potential for zoonotic transmission. Various mammalian hosts, such as cattle, horse, sheep and man that are in close contact with contaminated birds can get infected (referred to as psittacosis). Since little is known about long-term sequelae of chronic disease and the molecular mechanisms of chlamydial pathogenesis, a key step in understanding the in vivo situation is the identification of C. psittaci infection-associated proteins. For this, we investigated sera of infected calves. Using the immunoscreening approach In Vivo Induced Antigen Technology (IVIAT) including all relevant controls, we focused on C. psittaci proteins, which are induced in vivo during infection. Sera were pooled, extensively adsorbed against in vitro antigens to eliminate false positive results, and used to screen an inducible C. psittaci 02DC15 genomic expression library. Screening and control experiments revealed 19 immunogenic proteins, which are expressed during infection. They are involved in transport and oxidative stress response, heme and folate biosynthesis, DNA replication, recombination and repair, cell envelope, bacterial secretion systems and hypothetical proteins of so far unknown functions. Some of the proteins found may be considered as diagnostic markers or as candidates for the development of vaccines.


Assuntos
Antígenos de Bactérias/biossíntese , Proteínas de Bactérias/biossíntese , Infecções por Chlamydia/veterinária , Chlamydophila psittaci/fisiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Ativação Transcricional , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Bovinos , Infecções por Chlamydia/microbiologia , Chlamydophila psittaci/genética , Pulmão/microbiologia
4.
Int J Med Microbiol ; 304(5-6): 542-53, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24751478

RESUMO

Chlamydia (C.) psittaci, the causative agent of psittacosis in birds and humans, is the most important zoonotic pathogen of the family Chlamydiaceae. During a unique developmental cycle of this obligate intracellular pathogen, the infectious elementary body gains access to the susceptible host cell, where it transforms into the replicative reticulate body. C. psittaci uses dynein motor proteins for optimal early development. Chlamydial proteins that mediate this process are unknown. Two-hybrid screening with the C. psittaci inclusion protein IncB as bait against a HeLa Yeast Two-hybrid (YTH) library revealed that the host protein Snapin interacts with IncB. Snapin is a cytoplasmic protein that plays a multivalent role in intracellular trafficking. Confocal fluorescence microscopy using an IncB-specific antibody demonstrated that IncB, Snapin, and dynein were co-localized near the inclusion of C. psittaci-infected HEp-2 cells. This co-localization was lost when Snapin was depleted by RNAi. The interaction of Snapin with both IncB and dynein has been shown in vitro and in vivo. We propose that Snapin connects chlamydial inclusions with the microtubule network by interacting with both IncB and dynein.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydophila psittaci/fisiologia , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Linhagem Celular , Dineínas/metabolismo , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
5.
Mol Vis ; 20: 1037-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25053874

RESUMO

PURPOSE: To compare genome-wide DNA methylation profiles according to Chlamydophila psittaci (Cp) infection status and the response to doxycycline treatment in Korean patients with ocular adnexal extranodal marginal zone B-cell lymphoma (EMZL). METHODS: Twelve ocular adnexal EMZL cases were classified into two groups (six Cp-positive cases and six Cp-negative cases). Among the 12 cases, eight were treated with doxycycline as first-line therapy, and they were divided into two groups according to their response to the treatment (four doxy-responders and four doxy-nonresponders). The differences in the DNA methylation states of 27,578 methylation sites in 14,000 genes were evaluated using Illumina bead assay technology. We also validated the top-ranking differentially methylated genes (DMGs) with bisulfite direct sequencing or pyrosequencing. RESULTS: The Infinium methylation chip assay revealed 180 DMGs in the Cp-positive group (74 hypermethylated genes and 106 hypomethylated genes) compared to the Cp-negative group. Among the 180 DMGs, DUSP22, which had two significantly hypomethylated loci, was validated, and the correlation was significant for one CpG site (Spearman coefficient=0.6478, p=0.0262). Regarding the response to doxycycline treatment, a total of 778 DMGs were revealed (389 hypermethylated genes and 336 hypomethylated genes in the doxy-responder group). In a subsequent replication study for representative hypomethylated (IRAK1) and hypermethylated (CXCL6) genes, the correlation between the bead chip analysis and pyrosequencing was significant (Spearman coefficient=0.8961 and 0.7619, respectively, p<0.05). CONCLUSIONS: Ocular adnexal EMZL showed distinct methylation patterns according to Cp infection and the response to doxycycline treatment in this genome-wide methylation study. Among the candidate genes, DUSP22 has a methylation status that was likely attributable to Cp infection. Our data also suggest that the methylation statuses of IRAK1 and CXCL6 may reflect the response to doxycycline treatment.


Assuntos
Chlamydophila psittaci/fisiologia , Metilação de DNA/efeitos dos fármacos , Doxiciclina/uso terapêutico , Neoplasias Oculares/genética , Genoma Humano/genética , Linfoma de Zona Marginal Tipo Células B/genética , Psitacose/genética , Adulto , Idoso , Chlamydophila psittaci/efeitos dos fármacos , Análise por Conglomerados , Ilhas de CpG/genética , Metilação de DNA/genética , DNA Bacteriano/genética , Doxiciclina/farmacologia , Neoplasias Oculares/complicações , Neoplasias Oculares/tratamento farmacológico , Neoplasias Oculares/microbiologia , Feminino , Humanos , Linfoma de Zona Marginal Tipo Células B/complicações , Linfoma de Zona Marginal Tipo Células B/tratamento farmacológico , Linfoma de Zona Marginal Tipo Células B/microbiologia , Masculino , Pessoa de Meia-Idade , Psitacose/complicações , Psitacose/tratamento farmacológico , Psitacose/microbiologia , Reprodutibilidade dos Testes , Análise de Sequência de DNA
6.
mBio ; 15(8): e0128824, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39041785

RESUMO

The egress of intracellular bacteria from host cells and cellular tissues is a critical process during the infection cycle. This process is essential for bacteria to spread inside the host and can influence the outcome of an infection. For the obligate intracellular Gram-negative zoonotic bacterium Chlamydia psittaci, little is known about the mechanisms resulting in bacterial egress from the infected epithelium. Here, we describe and characterize Chlamydia-containing spheres (CCSs), a novel and predominant type of non-lytic egress utilized by Chlamydia spp. CCSs are spherical, low-phase contrast structures surrounded by a phosphatidylserine-exposing membrane with specific barrier functions. They contain infectious progeny and morphologically impaired cellular organelles. CCS formation is a sequential process starting with the proteolytic cleavage of a DEVD tetrapeptide-containing substrate that can be detected inside the chlamydial inclusions, followed by an increase in the intracellular calcium concentration of the infected cell. Subsequently, blebbing of the plasma membrane begins, the inclusion membrane destabilizes, and the proteolytic cleavage of a DEVD-containing substrate increases rapidly within the whole infected cell. Finally, infected, blebbing cells detach and leave the monolayer, thereby forming CCS. This sequence of events is unique for chlamydial CCS formation and fundamentally different from previously described Chlamydia egress pathways. Thus, CCS formation represents a major, previously uncharacterized egress pathway for intracellular pathogens that could be linked to Chlamydia biology in general and might influence the infection outcome in vivo.IMPORTANCEHost cell egress is essential for intracellular pathogens to spread within an organism and for host-to-host transmission. Here, we characterize Chlamydia-containing sphere (CCS) formation as a novel and predominant non-lytic egress pathway of the intracellular pathogens Chlamydia psittaci and Chlamydia trachomatis. CCS formation is fundamentally different from extrusion formation, the previously described non-lytic egress pathway of C. trachomatis. CCS formation is a unique sequential process, including proteolytic activity, followed by an increase in intracellular calcium concentration, inclusion membrane destabilization, plasma membrane blebbing, and the final detachment of a whole phosphatidylserine-exposing former host cell. Thus, CCS formation represents an important and previously uncharacterized egress pathway for intracellular pathogens that could possibly be linked to Chlamydia biology, including host tropism, protection from host cell defense mechanisms, or bacterial pathogenicity.


Assuntos
Chlamydophila psittaci , Chlamydophila psittaci/genética , Chlamydophila psittaci/fisiologia , Humanos , Células HeLa , Corpos de Inclusão/microbiologia , Corpos de Inclusão/metabolismo , Membrana Celular/metabolismo , Interações Hospedeiro-Patógeno , Células Epiteliais/microbiologia , Infecções por Chlamydia/microbiologia
7.
Vet Microbiol ; 279: 109664, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36716634

RESUMO

Physcion, a natural anthraquinone derivative, has been reported to exert remarkable antibacterial activities against Staphylococcus aureus,Staphylococcus epidermidis and Pseudomonas aeruginosa. However, it is not fully illustrated as anti-Chlamydia substance. In the present study, minimum inhibitory concentration(MIC)values for physcion against Chlamydia psittaci(C.psittaci) 6BC, C.psittaci SBL and C.psittaci HJ were 128 µg/mL,256 µg/mL and 128 µg/mL while minimum bactericidal concentration (MBC) values were 256 µg/mL,512 µg/mL and 256 µg/mL,respectively. Moreover, Chlamydial adhesion to Hela 229 cells was blocked in a dose-dependent manner and RB-to-EB differentiation was inhibited by physcion from 28 to 48 hpi.Post treatment,upregulation of LC3-II was in a dose-dependent manner, indicating physcion activated autophagy and bacterial clearance.To validate clinical efficacy,49 SPF chickens aged 21days were divided into 5 groups and infected intra-laryngeally with 0.2 mL of 1 × 107 IFU/mL C.psittaci 6 BCE.Three days later, birds received orally with serial doses of physcion (4 mg/kg to 9 mg/kg), or 3 mg/kg of doxycycline for 6 days.Chickens with difficulty in breathing were alleviated significantly with increasing concentrations of physicon.Postmortem,lesions of air sacs were reduced significantly in a dose-dependent manner.More importantly,birds with 9 mg/kg of physcion could alleviate lesions of air sacs and lungs, and reduce bacterial loads in spleens, which was comparable to doxycycline treatment. Based on above evidences, physcion is a promising cost-effective natural drug by blocking Chlamydial adhesions to host cells, RB-to-EB differentiation and activating bacterial autophagy and it will be a good alternative to doxycycline combating virulent C.psittaci infection, contributing to eradication of Chlamydial transmission from animals to human beings.


Assuntos
Chlamydia , Chlamydophila psittaci , Psitacose , Humanos , Animais , Chlamydophila psittaci/fisiologia , Antraquinonas , Doxiciclina , Galinhas , Psitacose/microbiologia , Psitacose/veterinária
8.
Int J Biochem Cell Biol ; 157: 106376, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36716815

RESUMO

Chlamydia psittaci is a multi-host zoonotic pathogen, which mainly infects poultry and inflicts an appreciable economic burden on the livestock farming industry. C. psittaci inclusion membrane proteins are uniquely positioned at the host-pathogen interface and are important virulence proteins. We have previously confirmed that Incs regulate host cell survival to help Chlamydia sp. evade host-cell-mediated defense mechanisms. However, the role of the Inc, CPSIT_0842, in the regulation of cell death following the establishment of persistent C. psittaci infection remains unknown. This study explored the effect of CPSIT_0842 on the crosstalk between the autophagic and apoptotic pathways in macrophages. Results showed that CPSIT_0842 initiated autophagy and blocked autophagic flux in human macrophages, as indicated by autophagy-related protein LC3-II, Beclin-1, and p62 upregulation, autophagosome accumulation, and lysosomal protein LAMP1 diminution. We also showed that the disruption of autophagic flux had a regulatory effect on CPSIT_0842-induced apoptosis. Moreover, the suppression of autophagy initiation by 3-methyladenine attenuated CPSIT_0842-induced apoptosis. By contrast, the induction of autophagic flux by rapamycin did not significantly affect CPSIT_0842-induced apoptosis. Taken together, these findings demonstrate that CPSIT_0842 induced macrophage apoptosis by initiating incomplete autophagy through the MAPK/ERK/mTOR signaling pathway, which may be instrumental to the ability of C. psittaci to evade the host innate immune response and establish persistent infection. The improved understanding of the autophagic and cell death pathways triggered upon bacterial inclusion will likely help in the development of novel treatment strategies for chlamydia infection.


Assuntos
Chlamydophila psittaci , Psitacose , Humanos , Chlamydophila psittaci/fisiologia , Proteínas de Membrana , Psitacose/metabolismo , Psitacose/microbiologia , Autofagia , Apoptose
9.
Int J Infect Dis ; 106: 262-264, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33823280

RESUMO

Presented is a patient with dyspnea and painful ulcers finally resulting in multi-organ failure. A detailed history resulted in positive PCR testing for Chlamydia psittaci. We emphasize the importance of a definitive history in establishing the correct diagnosis. When clinicians observe dyspnea with multi-organ failure, they should be aware of psittacosis.


Assuntos
Chlamydophila psittaci/fisiologia , Insuficiência de Múltiplos Órgãos/complicações , Psitacose/complicações , Chlamydophila psittaci/genética , Humanos , Necrose/complicações , Reação em Cadeia da Polimerase , Psitacose/diagnóstico , Psitacose/patologia
10.
Front Immunol ; 12: 818487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173712

RESUMO

Chlamydia psittaci (C. psittaci) is an obligate intracellular, gram-negative bacterium, and mainly causes systemic disease in psittacine birds, domestic poultry, and wild fowl. The pathogen is threating to human beings due to closely contacted to employees in poultry industry. The polymorphic membrane proteins (Pmps) enriched in C. psittaci includes six subtypes (A, B/C, D, E/F, G/I and H). Compared to that of the 1 pmpG gene in Chlamydia trachomatis (C. trachomatis), the diverse pmpG gene-coding proteins of C. psittaci remain elusive. In the present study, polymorphic membrane protein 17G (Pmp17G) of C. psittaci mediated adhesion to different host cells. More importantly, expression of Pmp17G in C. trachomatis upregulated infections to host cells. Afterwards, crosstalk between Pmp17G and EGFR was screened and identified by MALDI-MS and Co-IP. Subsequently, EGFR overexpression in CHO-K1 cells and EGFR knockout in HeLa 229 cells were assessed to determine whether Pmp17G directly correlated with EGFR during Chlamydial adhesion. Finally, the EGFR phosphorylation was recognized by Grb2, triggering chlamydial invasion. Based on above evidence, Pmp17G possesses adhesive property that serves as an adhesin and activate intracellular bacterial internalization by recognizing EGFR during C. psittaci infection.


Assuntos
Chlamydophila psittaci/fisiologia , Receptores ErbB/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Psitacose/metabolismo , Psitacose/microbiologia , Adesão Celular , Linhagem Celular , Receptores ErbB/agonistas , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Fosforilação , Ligação Proteica
11.
Vet Microbiol ; 255: 108960, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33667981

RESUMO

Chlamydia psittaci is an obligate intracellular zoonotic pathogen that can enter a persistence state in host cells. While the exact pathogenesis is not well understood, this persistence state may play an important role in chronic Chlamydia disease. Here, we assess the effects of chlamydial persistence state in vitro and in vivo by transmission electron microscopy (TEM) and cDNA microarray assays. First, IFN-γ-induced C. psittaci persistence in HeLa cells resulted in the upregulation of 68 genes. These genes are involved in protein translation, carbohydrate metabolism, nucleotide metabolism, lipid metabolism and general stress. However, 109 genes were downregulated following persistent C. psittaci infection, many of which are involved in the TCA cycle, expression regulation and transcription, protein secretion, proteolysis and transport, membrane protein, presumed virulence factor, cell division and late expression. To further study differential gene expression of C. psittaci persistence in vivo, we established an experimentally tractable mouse model of C. psittaci persistence. The C. psittaci-infected mice were gavaged with either water or amoxicillin (amox), and the results indicated that the 20 mg/kg amox-exposed C. psittaci were viable but not infectious. Differentially expressed genes (DEGs) screened by cDNA microarray were detected, and interestingly, the results showed upregulation of three genes (euo, ahpC, prmC) and downregulation of five genes (pbp3, sucB_1, oppA_4, pmpH, ligA) in 20 mg/kg amox-exposed C. psittaci, which suggests that antibiotic treatment in vivo can induce chlamydial persistence state and lead to differential gene expression. However, the discrepancy on inducers between the two models requires more research to supplement. The results may help researchers better understand survival advantages during persistent infection and mechanisms influencing C. psittaci pathogenesis or evasion of the adaptive immune response.


Assuntos
Chlamydophila psittaci/fisiologia , Psitacose/metabolismo , Amoxicilina/administração & dosagem , Amoxicilina/uso terapêutico , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Citocinas/genética , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Feminino , Regulação da Expressão Gênica/fisiologia , Vida Livre de Germes , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Psitacose/tratamento farmacológico , Psitacose/imunologia , Psitacose/microbiologia , Transcriptoma , Regulação para Cima
12.
Front Immunol ; 12: 580594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767691

RESUMO

The zoonotic intracellular bacterium Chlamydia psittaci causes life-threatening pneumonia in humans. During mouse lung infection, complement factor C3 and the anaphylatoxin C3a augment protection against C. psittaci by a so far unknown mechanism. To clarify how complement contributes to the early, innate and the late, specific immune response and resulting protection, this study addresses the amount of C3, the timing when its presence is required as well as the anaphylatoxin receptor(s) mediating its effects and the complement-dependent migration of dendritic cells. Challenge experiments with C. psittaci on various complement KO mice were combined with transient decomplementation by pharmacological treatment, as well as the analysis of in vivo dendritic cells migration. Our findings reveal that a plasma concentration of C3 close to wildtype levels was required to achieve full protection. The diminished levels of C3 of heterozygote C3+/- mice permitted already relative effective protection and improved survival as compared to C3-/- mice, but overall recovery of these animals was delayed. Complement was in particular required during the first days of infection. However, additionally, it seems to support protection at later stages. Migration of CD103+ dendritic cells from the infected lung to the draining lymph node-as prerequisite of antigen presentation-depended on C3 and C3aR and/or C5aR. Our results provide unique mechanistic insight in various aspects of complement-dependent immune responses under almost identical, rather physiological experimental conditions. Our study contributes to an improved understanding of the role of complement, and C3a in particular, in infections by intracellular bacteria.


Assuntos
Movimento Celular/imunologia , Infecções por Chlamydiaceae/imunologia , Chlamydophila psittaci/imunologia , Complemento C3a/imunologia , Células Dendríticas/imunologia , Pulmão/imunologia , Anafilatoxinas/imunologia , Anafilatoxinas/metabolismo , Animais , Linhagem Celular , Infecções por Chlamydiaceae/metabolismo , Infecções por Chlamydiaceae/microbiologia , Chlamydophila psittaci/fisiologia , Ativação do Complemento/imunologia , Complemento C3a/genética , Complemento C3a/metabolismo , Células Dendríticas/citologia , Células Dendríticas/microbiologia , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Complemento/genética , Receptores de Complemento/imunologia , Receptores de Complemento/metabolismo , Transdução de Sinais/imunologia , Análise de Sobrevida
13.
J Exp Med ; 158(1): 234-9, 1983 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-6864162

RESUMO

To determine if mechanisms other than the generation of toxic oxygen intermediates are active against intracellular pathogens, oxidatively deficient mouse L cells and monocyte-derived macrophages from patients with chronic granulomatous disease were stimulated with soluble lymphocyte products. Despite no enhancement in oxidative activity, these cells displayed effective microbistatic activity against both T. gondii and C. psittaci. These results suggest a potential role for nonoxidative mechanisms in the mononuclear phagocyte's activity against intracellular pathogens, and indicate that lymphokines can regulate both oxygen-dependent and oxygen-independent antimicrobial responses.


Assuntos
Linfocinas/farmacologia , Oxigênio/farmacologia , Fagócitos/fisiologia , Animais , Líquido Ascítico/citologia , Chlamydophila psittaci/fisiologia , Doença Granulomatosa Crônica/sangue , Humanos , Células L/fisiologia , Lisossomos/fisiologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/fisiologia , Oxirredução , Toxoplasma/fisiologia
14.
Sci Rep ; 10(1): 20478, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235241

RESUMO

Chlamydia psittaci (order: Chlamydiales) is a globally distributed zoonotic bacterium that can cause potentially fatal disease in birds and humans. Parrots are a major host, yet prevalence and risk factors for infection in wild parrots are largely unknown. Additionally, recent research suggests there is a diverse range of novel Chlamydiales circulating in wildlife. We therefore sampled seven abundant parrot species in south-eastern Australia, taking cloacal swabs and serum from n = 132 wild adults. We determined C. psittaci and Chlamydiales prevalence and seroprevalence, and tested for host species, sex, geographical and seasonal differences, and temporal changes in individual infection status. Across all species, Chlamydiales prevalence was 39.8% (95% CI 31.6, 48.7), C. psittaci prevalence was 9.8% (95% CI 5.7, 16.3) and C. gallinacea prevalence was 0.8% (95% CI 0.1, 4.5). Other Chlamydiales species were not identified to species level. We identified two C. psittaci strains within the 6BC clade, which is highly virulent in humans. Seroprevalence was 37.0% (95% CI 28.5, 46.4). Host species (including crimson rosellas, galahs, sulphur-crested cockatoos and blue-winged parrots) differed in seroprevalence and Chlamydiales prevalence. Galahs had both highest Chlamydiales prevalence (54.8%) and seroprevalence (74.1%). Seroprevalence differed between sites, with a larger difference in males (range 20-63%) than females (29-44%). We reveal a higher chlamydial prevalence than previously reported in many wild parrots, with implications for potential reservoirs, and transmission risks to humans and other avian hosts.


Assuntos
Doenças das Aves/epidemiologia , Doenças das Aves/microbiologia , Chlamydophila psittaci/fisiologia , Geografia , Papagaios/microbiologia , Psitacose/epidemiologia , Psitacose/veterinária , Caracteres Sexuais , Animais , Feminino , Interações Hospedeiro-Patógeno , Masculino , Prevalência , Estações do Ano , Estudos Soroepidemiológicos , Especificidade da Espécie , Fatores de Tempo
15.
Transbound Emerg Dis ; 66(5): 2002-2010, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31127977

RESUMO

Chlamydophila psittaci (C. psittaci) is an avian pathogen associated with systemic wasting disease in birds, as well as a public health risk. Although duck-related cases of psittacosis have been reported, the pathogenicity and shedding status of C. psittaci in ducks are unclear. In this study, we reported that C. psittaci (genotype A) is responsible for a disease outbreak characterized by poor laying performance and severe lesions in multiple organs of ducks. Oral administration of antibiotic, doxycycline, was found to effectively control the C. psittaci infection in laying ducks. Collectively, our new findings provide evidence that C. psittaci was the major pathogen responsible for the outbreak of this disease in ducks. In order to reduce economic losses incurred by this disease, effective control measures must be taken to prevent infection in laying duck farms.


Assuntos
Chlamydophila psittaci/fisiologia , Patos , Doenças das Aves Domésticas/patologia , Psitacose/patologia , Animais , Antibacterianos/administração & dosagem , China , Chlamydophila psittaci/classificação , Chlamydophila psittaci/efeitos dos fármacos , Doxiciclina/administração & dosagem , Feminino , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/fisiopatologia , Psitacose/tratamento farmacológico , Psitacose/microbiologia , Psitacose/fisiopatologia , Reprodução
16.
Surv Ophthalmol ; 53(4): 312-31, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18572051

RESUMO

Given the fact that infectious agents contribute to around 18% of human cancers worldwide, it would seem prudent to explore their role in neoplasms of the ocular adnexa: primary malignancies of the conjunctiva, lacrimal glands, eyelids, and orbit. By elucidating the mechanisms by which infectious agents contribute to oncogenesis, the management, treatment, and prevention of these neoplasms may one day parallel what is already in place for cancers such as cervical cancer, hepatocellular carcinoma, gastric mucosa-associated lymphoid tissue lymphoma and gastric adenocarcinoma. Antibiotic treatment and vaccines against infectious agents may herald a future with a curtailed role for traditional therapies of surgery, radiation, and chemotherapy. Unlike other malignancies for which large epidemiological studies are available, analyzing ocular adnexal neoplasms is challenging as they are relatively rare. Additionally, putative infectious agents seemingly display an immense geographic variation that has led to much debate regarding the relative importance of one organism versus another. This review discusses the pathogenetic role of several microorganisms in different ocular adnexal malignancies, including human papilloma virus in conjunctival papilloma and squamous cell carcinoma, human immunodeficiency virus in conjunctival squamous carcinoma, Kaposi sarcoma-associated herpes virus or human herpes simplex virus-8 (KSHV/HHV-8) in conjunctival Kaposi sarcoma, Helicobacter pylori (H. pylori,), Chlamydia, and hepatitis C virus in ocular adnexal mucosa-associated lymphoid tissue lymphomas. Unlike cervical cancer where a single infectious agent, human papilloma virus, is found in greater than 99% of lesions, multiple organisms may play a role in the etiology of certain ocular adnexal neoplasms by acting through similar mechanisms of oncogenesis, including chronic antigenic stimulation and the action of infectious oncogenes. However, similar to other human malignancies, ultimately the role of infectious agents in ocular adnexal neoplasms is most likely as a cofactor to genetic and environmental risk factors.


Assuntos
Infecções Oculares Bacterianas/microbiologia , Infecções Oculares Virais/virologia , Neoplasias Oculares/microbiologia , Neoplasias Oculares/virologia , Alphapapillomavirus/isolamento & purificação , Alphapapillomavirus/fisiologia , Carcinoma de Células Escamosas/virologia , Chlamydophila psittaci/isolamento & purificação , Chlamydophila psittaci/fisiologia , Neoplasias da Túnica Conjuntiva/microbiologia , Neoplasias da Túnica Conjuntiva/virologia , Infecções Oculares Bacterianas/patologia , Infecções Oculares Virais/patologia , Neoplasias Palpebrais/microbiologia , Neoplasias Palpebrais/virologia , HIV-1/isolamento & purificação , HIV-1/fisiologia , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/fisiologia , Hepacivirus/isolamento & purificação , Hepacivirus/fisiologia , Herpesvirus Humano 8/isolamento & purificação , Herpesvirus Humano 8/fisiologia , Humanos , Doenças do Aparelho Lacrimal/microbiologia , Doenças do Aparelho Lacrimal/virologia , Linfoma de Zona Marginal Tipo Células B/virologia , Neoplasias Orbitárias/microbiologia , Neoplasias Orbitárias/virologia , Sarcoma de Kaposi/virologia
17.
Immunol Res ; 66(4): 471-479, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30097797

RESUMO

The present study evaluated the immune-protective efficacy of the Chlamydia psittaci (C. psittaci) plasmid protein CPSIT_p7 and analyzed the potential mechanisms of this protection. The current study used recombinant CPSIT_p7 protein with Freund's complete adjuvant and Freund's incomplete adjuvant to vaccinate BALB/c mice. Adjuvants alone or PBS formulated with the same adjuvants was used as negative controls. Mice were intranasally challenged with 105 inclusion-forming units (IFU) of C. psittaci. We found that CPSIT_p7 vaccination significantly decreased the mouse lung chlamydial load, interferon-γ (IFN-γ) level, and pathological injury. This protection correlated well with specific humoral and cellular immune responses against C. psittaci. In vitro or in vivo neutralization of C. psittaci with sera harvested from immunized mice did not reduce the number of recoverable C. psittaci in the infected lungs, but CD4+ spleen cells collected from CPSIT_p7-immunized mice significantly decreased the chlamydial load via adoptive transfer to native mice. These results reveal that the protection conferred by CPSIT_p7 is dependent on CD4+ T cells.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Linfócitos T CD4-Positivos/imunologia , Chlamydophila psittaci/fisiologia , Pulmão/patologia , Psitacose/imunologia , Vacinas Sintéticas/imunologia , Animais , Antígenos de Bactérias/genética , Carga Bacteriana , Feminino , Imunidade Celular , Imunização , Interferon gama/sangue , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/genética , Vacinação
18.
Transbound Emerg Dis ; 64(1): 167-170, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25882831

RESUMO

Eggshell penetration by pathogens is considered a potential route for their transmission in poultry flocks. Additionally, in case of zoonotic pathogens, contact with infected eggs or their consumption can result in human infection. Chlamydia psittaci is a zoonotic bacterium that causes a respiratory disease in poultry and humans. In this study, we provide an experimental evidence for eggshell penetration by C. psittaci. Additionally, we show that after eggshell penetration, C. psittaci could eventually infect the growing embryo. Our findings portend the potential of horizontal trans-shell transmission as a possible route for the spread of C. psittaci infection in poultry flocks. Considering that horizontal transmission of pathogens via eggs mainly occurs in hatcheries and hatching cabinets, we suggest the latter as critical control points in the transmission of C. psittaci to hatching chicks and broilers, as well as to the hatchery workers and consumers of table eggs.


Assuntos
Galinhas , Chlamydophila psittaci/fisiologia , Doenças das Aves Domésticas/transmissão , Psitacose/veterinária , Animais , Casca de Ovo/microbiologia , Doenças das Aves Domésticas/microbiologia , Psitacose/microbiologia , Psitacose/transmissão
19.
Avian Dis ; 61(1): 40-45, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28301242

RESUMO

Chlamydia psittaci, an obligate intracellular gram-negative bacteria, causes an important zoonotic disease in humans, namely, psittacosis. The objective of this study was to determine the persistent viability of C. psittaci at various temperature conditions. The cloacal swab samples were collected from feral and racing pigeons to find a C. psittaci field strain. The bacterial isolation showed that 1.3% of feral pigeons were PCR positive, while all samples of racing pigeons were PCR negative. Also, bacterial characterization suggested that it belonged to genotype B, which had bacterial titers 3.2 and 3.89 log 50% lethal dose/ml, respectively. A bacterial persistence test was performed, and the results showed that C. psittaci could survive at 56 C for up to 72 hr. In conclusion, C. psittaci could be found in feral pigeons in central Thailand. The bacteria can survive in equatorial temperature areas. This study was the first to report that C. psittaci could survive and has infectivity at 56 C for 72 hr. Therefore, awareness of C. psittaci infection in humans is necessary and should be a public health concern.


Assuntos
Doenças das Aves/microbiologia , Chlamydophila psittaci/fisiologia , Psitacose/veterinária , Animais , Aves , Chlamydophila psittaci/classificação , Chlamydophila psittaci/genética , Chlamydophila psittaci/isolamento & purificação , Columbidae/microbiologia , Genótipo , Filogenia , Reação em Cadeia da Polimerase , Psitacose/microbiologia , Temperatura , Tailândia
20.
Pathog Dis ; 75(7)2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28981630

RESUMO

The JAK-STAT3 signaling pathway is a key regulator of cell growth, motility, migration, invasion and apoptosis in mammalian cells. Infection with intracellular pathogens of the genus Chlamydia can inhibit host cell apoptosis, and here we asked whether the JAK-STAT3 pathway participates in chlamydial anti-apoptotic activity. We found that, compared with uninfected cells, levels of JAK1 and STAT3 mRNA as well as total and phosphorylated JAK1 and STAT3 protein, were significantly increased in C. psittaci-infected HeLa cells. Moreover, the apoptosis rate of infected cells was higher after treatment with the tyrosine kinase inhibitor AG-490 (2-cyano-3-(3, 4-dihydroxyphenyl)-N-(phenylmethyl)-2-propenamide). Immunoblotting of apoptosis-related proteins showed that C. psittaci infection reduces Bax, but increases Bcl-2, protein levels, resulting in reduced activation of caspase-3, caspase-7, caspase-9 and PARP; AG490 attenuates these effects. Together, our data suggest that the JAK/STAT3 signaling pathway facilitates the anti-apoptotic effect of C. psittaci infection by reducing the Bax/Bcl-2 apoptotic switch ratio, and by inhibiting the intracellular activation of key pro-apoptotic enzymes.


Assuntos
Apoptose , Chlamydophila psittaci/fisiologia , Janus Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Apoptose/genética , Caspases/metabolismo , Células Cultivadas , Expressão Gênica , Células HeLa , Interações Hospedeiro-Patógeno/genética , Humanos , Janus Quinases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Psitacose/genética , Psitacose/metabolismo , Psitacose/microbiologia , Fator de Transcrição STAT3/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA