Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 147: 107410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688197

RESUMO

A new series of benzene-sulfonamide derivatives 3a-i was designed and synthesized via the reaction of N-(pyrimidin-2-yl)cyanamides 1a-i with sulfamethazine sodium salt 2 as dual Src/Abl inhibitors. Spectral data IR, 1H-, 13C- NMR and elemental analyses were used to confirm the structures of all the newly synthesized compounds 3a-i and 4a-i. Crucially, we screened all the synthesized compounds 3a-i against NCI 60 cancer cell lines. Among all, compound 3b was the most potent, with IC50 of 0.018 µM for normoxia, and 0.001 µM for hypoxia, compared to staurosporine against HL-60 leukemia cell line. To verify the selectivity of this derivative, it was assessed against a panel of tyrosine kinase EGFR, VEGFR-2, B-raf, ERK, CK1, p38-MAPK, Src and Abl enzymes. Results revealed that compound 3b can effectively and selectively inhibit Src/Abl with IC500.25 µM and Abl inhibitory activity with IC500.08 µM, respectively, and was found to be more potent on these enzymes than other kinases that showed the following results: EGFR IC500.31 µM, VEGFR-2 IC500.68 µM, B-raf IC500.33 µM, ERK IC501.41 µM, CK1 IC500.29 µM and p38-MAPK IC500.38 µM. Moreover, cell cycle analysis and apoptosis performed to compound 3b against HL-60 suggesting its antiproliferative activity through Src/Abl inhibition. Finally, molecular docking studies and physicochemical properties prediction for compounds 3b, 3c, and 3 h were carried out to investigate their biological activities and clarify their bioavailability.


Assuntos
Antineoplásicos , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-abl , Quinases da Família src , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Guanidina/farmacologia , Guanidina/química , Guanidina/síntese química , Guanidina/análogos & derivados , Células HL-60 , Leucemia/tratamento farmacológico , Leucemia/patologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo , Relação Estrutura-Atividade , Cianamida/síntese química , Cianamida/química , Cianamida/farmacologia
2.
Proc Natl Acad Sci U S A ; 117(24): 13267-13274, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32487725

RESUMO

Continuous reaction networks, which do not rely on purification or timely additions of reagents, serve as models for chemical evolution and have been demonstrated for compounds thought to have played important roles for the origins of life such as amino acids, hydroxy acids, and sugars. Step-by-step chemical protocols for ribonucleotide synthesis are known, but demonstrating their synthesis in the context of continuous reaction networks remains a major challenge. Herein, compounds proposed to be important for prebiotic RNA synthesis, including glycolaldehyde, cyanamide, 2-aminooxazole, and 2-aminoimidazole, are generated from a continuous reaction network, starting from an aqueous mixture of NaCl, NH4Cl, phosphate, and HCN as the only carbon source. No well-timed addition of any other reagents is required. The reaction network is driven by a combination of γ radiolysis and dry-down. γ Radiolysis results in a complex mixture of organics, including the glycolaldehyde-derived glyceronitrile and cyanamide. This mixture is then dried down, generating free glycolaldehyde that then reacts with cyanamide/NH3 to furnish a combination of 2-aminooxazole and 2-aminoimidazole. This continuous reaction network models how precursors for generating RNA and other classes of compounds may arise spontaneously from a complex mixture that originates from simple reagents.


Assuntos
Evolução Química , Modelos Químicos , RNA/química , RNA/síntese química , Acetaldeído/análogos & derivados , Acetaldeído/síntese química , Acetaldeído/química , Cianamida/síntese química , Cianamida/química , Raios gama , Imidazóis/síntese química , Imidazóis/química , Origem da Vida , Oxazóis/síntese química , Oxazóis/química , Fotoquímica , Água/química
3.
J Biol Chem ; 294(27): 10674-10685, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31152065

RESUMO

Cyanamide (H2N-CN) is used to break bud dormancy in woody plants and to deter alcohol use in humans. The biological effects of cyanamide in both these cases require the enzyme catalase. We previously demonstrated that Saccharomyces cerevisiae exposed to cyanamide resulted in strong induction of DDI2 gene expression. Ddi2 enzymatically hydrates cyanamide to urea and belongs to the family of HD-domain metalloenzymes (named after conserved active-site metal-binding His and Asp residues). Here, we report the X-ray structure of yeast Ddi2 to 2.6 Å resolution, revealing that Ddi2 is a dimeric zinc metalloenzyme. We also confirm that Ddi2 shares structural similarity with other known HD-domain proteins. HD residues His-55, His-88, and Asp-89 coordinate the active-site zinc, and the fourth zinc ligand is a water/hydroxide molecule. Other HD domain enzymes have a second aspartate metal ligand, but in Ddi2 this residue (Thr-157) does not interact with the zinc ion. Several Ddi2 active-site point mutations exhibited reduced catalytic activity. We kinetically and structurally characterized H137N and T157V mutants of Ddi2. A cyanamide soak of the Ddi2-T157V enzyme revealed cyanamide bound directly to the Zn2+ ion, having displaced the zinc-bound water molecule. The mode of cyanamide binding to Ddi2 resembles cyanamide binding to the active-site zinc of carbonic anhydrase, a known cyanamide hydratase. Finally, we observed that the sensitivity of ddi2Δ ddi3Δ to cyanamide was not rescued by plasmids harboring ddi2-H137N or ddi2-TI57V variants, demonstrating that yeast cells require a functioning cyanamide hydratase to overcome cyanamide-induced growth defects.


Assuntos
Hidroliases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cianamida/química , Cianamida/metabolismo , Dimerização , Hidroliases/genética , Hidroliases/metabolismo , Inativação Metabólica , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Zinco/química , Zinco/metabolismo
4.
Bioorg Med Chem ; 28(1): 115195, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31761726

RESUMO

N-acylethanolamine acid amidase (NAAA) inhibition represents an exciting novel approach to treat inflammation and pain. NAAA is a cysteine amidase which preferentially hydrolyzes the endogenous biolipids palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). PEA is an endogenous agonist of the nuclear peroxisome proliferator-activated receptor-α (PPAR-α), which is a key regulator of inflammation and pain. Thus, blocking the degradation of PEA with NAAA inhibitors results in augmentation of the PEA/PPAR-α signaling pathway and regulation of inflammatory and pain processes. We have prepared a new series of NAAA inhibitors exploring the azetidine-nitrile (cyanamide) pharmacophore that led to the discovery of highly potent and selective compounds. Key analogs demonstrated single-digit nanomolar potency for hNAAA and showed >100-fold selectivity against serine hydrolases FAAH, MGL and ABHD6, and cysteine protease cathepsin K. Additionally, we have identified potent and selective dual NAAA-FAAH inhibitors to investigate a potential synergism between two distinct anti-inflammatory molecular pathways, the PEA/PPAR-α anti-inflammatory signaling pathway,1-4 and the cannabinoid receptors CB1 and CB2 pathways which are known for their antiinflammatory and antinociceptive properties.5-8 Our ligand design strategy followed a traditional structure-activity relationship (SAR) approach and was supported by molecular modeling studies of reported X-ray structures of hNAAA. Several inhibitors were evaluated in stability assays and demonstrated very good plasma stability (t1/2 > 2 h; human and rodents). The disclosed cyanamides represent promising new pharmacological tools to investigate the potential role of NAAA inhibitors and dual NAAA-FAAH inhibitors as therapeutic agents for the treatment of inflammation and pain.


Assuntos
Amidoidrolases/antagonistas & inibidores , Cianamida/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Amidoidrolases/metabolismo , Animais , Cianamida/síntese química , Cianamida/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
5.
J Chem Phys ; 152(7): 074201, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087671

RESUMO

Cyanamides (NCN) have been shown to have a larger transition dipole strength than cyano-probes. In addition, they have similar structural characteristics and vibrational lifetimes to the azido-group, suggesting their utility as infrared (IR) spectroscopic reporters for structural dynamics in biomolecules. To access the efficacy of NCN as an IR probe to capture the changes in the local environment, several model systems were evaluated via 2D IR spectroscopy. Previous work by Cho [G. Lee, D. Kossowska, J. Lim, S. Kim, H. Han, K. Kwak, and M. Cho, J. Phys. Chem. B 122(14), 4035-4044 (2018)] showed that phenylalanine analogues containing NCN show strong anharmonic coupling that can complicate the interpretation of structural dynamics. However, when NCN is embedded in 5-membered ring scaffolds, as in N-cyanomaleimide and N-cyanosuccinimide, a unique band structure is observed in the 2D IR spectrum that is not predicted by simple anharmonic frequency calculations. Further investigation indicated that electron delocalization plays a role in the origins of the band structure. In particular, the origin of the lower frequency transitions is likely a result of direct interaction with the solvent.


Assuntos
Cianamida/química , Simulação de Dinâmica Molecular , Teoria da Densidade Funcional , Estrutura Molecular , Espectrofotometria Infravermelho
6.
J Enzyme Inhib Med Chem ; 35(1): 1736-1742, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32928007

RESUMO

Gut microbial ß-glucuronidases have the ability to deconjugate glucuronides of some drugs, thus have been considered as an important drug target to alleviate the drug metabolites-induced gastrointestinal toxicity. In this study, thiazolidin-2-cyanamide derivatives containing 5-phenyl-2-furan moiety (1-13) were evaluated for inhibitory activity against Escherichia coli ß-glucuronidase (EcGUS). All of them showed more potent inhibition than a commonly used positive control, d-saccharic acid 1,4-lactone, with the IC50 values ranging from 1.2 µM to 23.1 µM. Inhibition kinetics studies indicated that compound 1-3 were competitive type inhibitors for EcGUS. Molecular docking studies were performed and predicted the potential molecular determinants for their potent inhibitory effects towards EcGUS. Structure-inhibitory activity relationship study revealed that chloro substitution on the phenyl moiety was essential for EcGUS inhibition, which would help researchers to design and develop more effective thiazolidin-2-cyanamide type inhibitors against EcGUS.


Assuntos
Cianamida/farmacologia , Escherichia coli/enzimologia , Glucuronidase/antagonistas & inibidores , Glicoproteínas/farmacologia , Tiazolidinas/farmacologia , Cianamida/química , Relação Dose-Resposta a Droga , Glucuronidase/metabolismo , Glicoproteínas/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiazolidinas/química
7.
Angew Chem Int Ed Engl ; 58(37): 13087-13092, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31276284

RESUMO

Organisms use enzymes to ensure a flow of substrates through biosynthetic pathways. How the earliest form of life established biosynthetic networks and prevented hydrolysis of intermediates without enzymes is unclear. Organocatalysts may have played the role of enzymes. Quantitative analysis of reactions of adenosine 5'-monophosphate and glycine that produce peptides, pyrophosphates, and RNA chains reveals that organocapture by heterocycles gives hydrolytically stabilized intermediates with balanced reactivity. We determined rate constants for 20 reactions in aqueous solutions containing a carbodiimide and measured product formation with cyanamide as a condensing agent. Organocapture favors reactions that are kinetically slow but productive, and networks, over single transformations. Heterocycles can increase the metabolic efficiency more than two-fold, with up to 0.6 useful bonds per fuel molecule spent, boosting the efficiency of life-like reaction systems in the absence of enzymes.


Assuntos
Aminoácidos/química , Carbodi-Imidas/química , Compostos Heterocíclicos/química , Nucleotídeos/química , Água/química , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Catálise , Cianamida/química , Cinética
8.
J Org Chem ; 82(1): 234-242, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27957836

RESUMO

Iron complexes bound by redox-active pyridine dialdimine (PDAI) ligands catalyze the cycloaddition of two terminal alkynes and one cyanamide. The reaction is both chemo- and regioselective, as only 4,6-disubstituted 2-aminopyridine products are formed in moderate to high yields. Isolation of an iron azametallacycle (4) suggests that catalyst deactivation occurs with a large excess of cyanamide over longer reaction times. Fe-catalyzed cycloaddition allowed for a straightforward synthesis of a variety of aminopyridines, including known estrogen receptor ligands.


Assuntos
Alcinos/química , Aminopiridinas/síntese química , Cianamida/química , Compostos de Ferro/química , Aminopiridinas/química , Catálise , Reação de Cicloadição , Estrutura Molecular , Estereoisomerismo
9.
Org Biomol Chem ; 15(19): 4231-4240, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28466946

RESUMO

Giant lipid vesicles resemble compartments of biological cells, mimicking them in their dimension, membrane structure and partly in their membrane composition. The spontanenous appearance of closed membranes composed of bilayers of self-assembling amphiphiles was likely a prerequisite for Darwinian competitive behavior to set in at the molecular level. Such compartments should be dynamic in their membrane composition (evolvable), and sufficiently stable to harbor macromolecules (leak-free), yet semi-permeable for reactive small molecules to get across the membrane (stay away from chemical equilibrium). Here we describe bottom-up experiments simulating prebiotic environments that support the formation of simple amphiphilic molecules capable of self-assembling into vesicular objects on the micrometer scale. Long-chain alkyl phosphates, together with related amphiphilic compounds, were formed under simulated prebiotic phosphorylation conditions by using cyanamide, a recognized prebiotic chemical activator and a precursor for several compound classes. Crude dry material of the thus obtained prebiotic mixtures formed multilamellar giant vesicles once rehydrated at the appropriate pH and in the presence of plausibly prebiotic co-surfactants, as observed by optical microscopy. The size and the shape of lipid aggregates tentatively suggest that prebiotic lipid assemblies could encapsulate peptides or nucleic acids that could be formed under similar chemical prebiotic conditions. The formation of prebiotic amphiphiles was monitored by using TLC, IR, NMR and ESI-MS and UPLC-HRMS. In addition we provide a spectroscopic analysis of cyanamide under simulated prebiotic conditions in the presence of phosphate sources and spectroscopic analysis of O-phosphorylethanolamine as a plausible precursor for phosphoethanolamine lipids.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Prebióticos , Lipossomas Unilamelares/química , Cianamida/química , Ureia/química
10.
Org Biomol Chem ; 15(22): 4875-4881, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28537303

RESUMO

A robust and high-yielding radiochemical synthesis of 11C-N-cyanobenzamides using a palladium-mediated aminocarbonylation with 11C-CO, aryl halides and cyanamide is described. The bidentate ligand 1,1'-bis(diphenylphosphino)ferrocene provided 11C-N-cyanobenzamides from aryl-iodides, bromides, triflates and even chlorides in 28-79% radiochemical yield after semi-preparative HPLC. To further highlight the utility of this method, novel 11C-N-cyanobenzamide analogs of flufenamic acid, meflanamic acid, dazoxiben and tamibarotene were synthesized in 34-71% radiochemical yields.


Assuntos
Benzamidas/síntese química , Cianamida/química , Hidrocarbonetos Halogenados/química , Paládio/química , Benzamidas/química , Estrutura Molecular
11.
Biometals ; 30(1): 59-70, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27995355

RESUMO

Three new platinum(II) complexes of lidocaine and phenylcyanamide derivative ligands of formula K[Pt(3,5-(NO2)2pcyd)2(LC)], 1, K[Pt(3,5-(CF3)2pcyd)2(LC)], 2, K[Pt(3,5-Cl2pcyd)2(LC)], 3 (LC: lidocaine, 3,5-(NO2)2pcyd: 3,5-dinitro phenylcyanamide, 3,5-(CF3)2pcyd: 3,5-bis(trifluoromethyl) phenylcyanamide, 3,5-Cl2pcyd: 3,5-dichloro phenylcyanamide) have been synthesized and fully characterized. Cellular uptake, DNA platination and cytotoxicity against a panel of human tumor cell lines were evaluated. The complexes 1-3 revealed a significant in vitro antiproliferative activity against human ovarian carcinoma (A2780), colorectal adenocarcinoma (HT29), breast (MCF-7), liver hepatocellular carcinoma (HepG-2) and lung adenocarcinoma (A549) cancer cell lines. All the complexes are more active than cisplatin and follow the trend 1 > 2 > 3. Mechanistic studies showed that the trend in cytotoxicity of the Pt(II) complexes is mainly consistent with their ability to accumulate into cancer cells and to increase intracellular basal reactive oxygen species levels, which consequently results in the loss of mitochondrial membrane potential and apoptosis induction. The complex 1 caused to approximately 80-fold higher DNA platination level with respect to cisplatin. The complexes 1-3 can considerably stimulate the production of hydrogen peroxide in a time-dependent manner. Also, the complexes 1-3 induced an increase in reactive oxygen species (ROS) production that was superior to that induced by antimycin. The complex 1 had the most effect on ROS production in comparison with other complexes.


Assuntos
Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Compostos Organoplatínicos/química , Platina/química , Células A549 , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Cisplatino/administração & dosagem , Cisplatino/química , Cianamida/síntese química , Cianamida/química , DNA/efeitos dos fármacos , Células Hep G2 , Humanos , Lidocaína/administração & dosagem , Lidocaína/síntese química , Lidocaína/química , Neoplasias/tratamento farmacológico , Compostos Organoplatínicos/administração & dosagem , Compostos Organoplatínicos/síntese química , Platina/administração & dosagem , Solubilidade , Água/química
12.
Mol Divers ; 21(4): 925-932, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28766257

RESUMO

A multicomponent domino synthesis has been developed for the preparation of 2-aminopyrimidines from ß-dicarbonyl compounds, N,N-dimethylformamide dimethyl acetal, and cyanamide. The protocol was used for the regioselective preparation of 4-amide/ester/ketone substituted 2-aminopyrimidines. Twelve 2-aminopyrimidines were isolated in good yields (56-93%).


Assuntos
Cianamida/química , Dimetilformamida/análogos & derivados , Pirimidinas/química , Pirimidinas/síntese química , Catálise , Técnicas de Química Sintética , Ciclização , Dimetilformamida/química , Estereoisomerismo
13.
J Enzyme Inhib Med Chem ; 32(1): 805-820, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28587532

RESUMO

Nineteen new compounds containing tetrazole and/or cyanamide moiety have been designed and synthesised. Their structures were confirmed using spectroscopic methods and elemental analyses. Anti-inflammatory activity for all the synthesised compounds was evaluated in vivo. The most active compounds 4c, 5a, 5d-f, 8a and b and 9a and b were further investigated for their ulcerogenic liability and analgesic activity. Pyrazoline derivatives 9b and 8b bearing trimethoxyphenyl part and SO2NH2 or SO2Me pharmacophore showed equal or nearly the same ulcerogenic liability (UI: 0.5, 0.75, respectively), to celecoxib (UI: 0.50). Most of tested compounds showed potent central and/or peripheral analgesic activities. Histopathological investigations were done to evaluate test compounds effect on rat's gastric tissue. The obtained results were in consistent with the in vitro data on COX evaluation. Docking study was also done for all the target compounds inside COX-2-active site.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Cianamida/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Úlcera Gástrica/tratamento farmacológico , Tetrazóis/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Cianamida/síntese química , Cianamida/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Edema/tratamento farmacológico , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Ovinos , Úlcera Gástrica/induzido quimicamente , Relação Estrutura-Atividade , Tetrazóis/síntese química , Tetrazóis/química
14.
Molecules ; 22(4)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28417938

RESUMO

The application of alkyl and aryl substituted cyanamides in synthetic chemistry has diversified multi-fold in recent years. In this review, we discuss recent advances (since 2012) in the chemistry of cyanamides and detail their application in cycloaddition chemistry, aminocyanation reactions, as well as electrophilic cyanide-transfer agents and their unique radical and coordination chemistry.


Assuntos
Química , Cianamida/química , Catálise , Técnicas de Química Sintética , Cianamida/síntese química , Ciclização , Metais/química
15.
Invest New Drugs ; 34(6): 723-732, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27644694

RESUMO

Three new palladium(II) complexes of lidocaine and phenylcyanamide derivative ligands of formula K[Pd(2,6-Me2pcyd)2(LC)], 1, K[Pd(2,6-Et2pcyd)2(LC)], 2, K[Pd(2,6-Cl2pcyd)2(LC)], 3 (LC: lidocaine, 2,6-Me2pcyd: 2,6-dimethyl phenylcyanamide, 2,6-Et2pcyd: 2,6-diethyl phenylcyanamide, 2,6-Cl2pcyd: 2,6-dichloro phenylcyanamide) have been synthesized and fully characterized. The complexes 1-3 revealed a significant in vitro antiproliferative activity against human ovarian carcinoma (A2780), colorectal adenocarcinoma (HT29), breast (MCF-7), liver hepatocellular carcinoma (HepG-2) and lung adenocarcinoma (A549) cancer cell lines. All the complexes are more active than cisplatin and follow the trend 2 > 1 > 3. Mechanistic studies showed that the trend in cytotoxicity of the Pd(II) complexes is mainly consistent with their ability to accumulate into cancer cells and to increase intracellular basal reactive oxygen species levels, which consequently results in the loss of mitochondrial membrane potential and apoptosis induction.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Cianamida/química , Lidocaína/química , Neoplasias/patologia , Paládio/química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Humanos , Neoplasias/tratamento farmacológico , Células Tumorais Cultivadas
16.
Molecules ; 21(3): 311, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26959003

RESUMO

cis- and trans-Isomers of the platinum(II) nitrile complexes [PtCl2(NCR)2] (R = NMe2, N(C5H10), Ph, CH2Ph) were examined as catalysts for hydrosilylation cross-linking of vinyl-terminated polydimethylsiloxane and trimethylsilyl-terminated poly(dimethylsiloxane-co-ethylhydrosiloxane) producing high quality silicone rubbers. Among the tested platinum species the cis-complexes are much more active catalysts than their trans-congeners and for all studied platinum complexes cis-[PtCl2(NCCH2Ph)2] exhibits the best catalytic activity (room temperature, c = 1.0 × 10(-4) mol/L, τpot-life 60 min, τcuring 6 h). Although cis-[PtCl2(NCCH2Ph)2] is less active than the widely used Karstedt's catalyst, its application for the cross-linking can be performed not only at room temperature (c = 1.0 × 10(-4) mol/L), but also, more efficiently, at 80 °C (c = 1.0 × 10(-4)-1.0 × 10(-5) mol/L) and it prevents adherence of the formed silicone rubbers to equipment. The usage of the cis- and trans-[PtCl2(NCR)2] complexes as the hydrosilylation catalysts do not require any inhibitors and, moreover, the complexes and their mixtures with vinyl- and trimethylsilyl terminated polysiloxanes are shelf-stable in air. Tested catalysts do not form colloid platinum particles after the cross-linking.


Assuntos
Compostos Organoplatínicos/química , Siloxanas/síntese química , Varredura Diferencial de Calorimetria , Catálise , Reagentes de Ligações Cruzadas/química , Cianamida/química , Estrutura Molecular , Nitrilas/química , Siloxanas/química , Espectrofotometria Infravermelho
17.
J Phys Chem A ; 119(2): 334-43, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25559322

RESUMO

A central focus of astrobiology is the determination of abiotic formation routes to important biomolecules. The dissociation mechanisms of these molecules lend valuable insights into their synthesis pathways. Because of the detection of organic anions in the interstellar medium (ISM), it is imperative to study their role in these syntheses. This work aims to experimentally and computationally examine deprotonated adenine and guanine dissociation in an effort to illuminate potential anionic precursors to purine formation. Collision-induced dissociation (CID) products and their branching fractions are experimentally measured using an ion trap mass spectrometer. Deprotonated guanine dissociates primarily by deammoniation (97%) with minor losses of carbodiimide (HNCNH) and/or cyanamide (NH2CN), and isocyanic acid (HNCO). Deprotonated adenine fragments by loss of hydrogen cyanide and/or isocyanide (HCN/HNC; 90%) and carbodiimide (HNCNH) and/or cyanamide (NH2CN; 10%). Tandem mass spectrometry (MS(n)) experiments reveal that deprotonated guanine fragments lose additional HCN and CO, while deprotonated adenine fragments successively lose HNC and HCN. Every neutral fragment observed in this study has been detected in the ISM, highlighting the potential for nucleobases such as these to form in such environments. Lastly, the acidity of abundant fragment ions is experimentally bracketed. Theoretical calculations at the B3LYP/6-311++G(d,p) level of theory are performed to delineate the mechanisms of dissociation and analyze the energies of reactants, intermediates, transition states, and products of these CID processes.


Assuntos
Prótons , Purinas/química , Adenina/química , Ânions/química , Carbodi-Imidas/química , Simulação por Computador , Cianamida/química , Cianatos/química , Cianetos/química , Exobiologia , Guanina/química , Cianeto de Hidrogênio/química , Modelos Químicos , Estrutura Molecular , Espectrometria de Massas em Tandem
18.
Nature ; 459(7244): 239-42, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19444213

RESUMO

At some stage in the origin of life, an informational polymer must have arisen by purely chemical means. According to one version of the 'RNA world' hypothesis this polymer was RNA, but attempts to provide experimental support for this have failed. In particular, although there has been some success demonstrating that 'activated' ribonucleotides can polymerize to form RNA, it is far from obvious how such ribonucleotides could have formed from their constituent parts (ribose and nucleobases). Ribose is difficult to form selectively, and the addition of nucleobases to ribose is inefficient in the case of purines and does not occur at all in the case of the canonical pyrimidines. Here we show that activated pyrimidine ribonucleotides can be formed in a short sequence that bypasses free ribose and the nucleobases, and instead proceeds through arabinose amino-oxazoline and anhydronucleoside intermediates. The starting materials for the synthesis-cyanamide, cyanoacetylene, glycolaldehyde, glyceraldehyde and inorganic phosphate-are plausible prebiotic feedstock molecules, and the conditions of the synthesis are consistent with potential early-Earth geochemical models. Although inorganic phosphate is only incorporated into the nucleotides at a late stage of the sequence, its presence from the start is essential as it controls three reactions in the earlier stages by acting as a general acid/base catalyst, a nucleophilic catalyst, a pH buffer and a chemical buffer. For prebiotic reaction sequences, our results highlight the importance of working with mixed chemical systems in which reactants for a particular reaction step can also control other steps.


Assuntos
Modelos Químicos , Origem da Vida , Pirimidinas/síntese química , Ribonucleotídeos/síntese química , Acetaldeído/análogos & derivados , Acetaldeído/química , Acetileno/análogos & derivados , Acetileno/química , Arabinose/análogos & derivados , Arabinose/química , Soluções Tampão , Catálise , Cianamida/química , Gliceraldeído/química , Concentração de Íons de Hidrogênio , Nitrilas/química , Oxazóis/síntese química , Oxazóis/química , Fosfatos/química , Fosforilação , Pirimidinas/química , Ribonucleotídeos/química , Ribose
19.
J Org Chem ; 79(17): 8156-62, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25109616

RESUMO

An efficient "one-pot" approach to multiple substituted ureas from N-arylcyanamide and diaryliodonium salts has been presented. The two-step procedure involved the weak base-promoted chemoselective arylation of secondary amines with diaryliodonium and Cu-catalyzed nucleophilic addition of N-arylcyanamide with second diaryliodonium. The diverse unsymmetrical arylureas were obtained in up to 91% yield for 29 examples.


Assuntos
Cobre/química , Cianamida/química , Oniocompostos/química , Ureia/química , Ureia/síntese química , Catálise , Estereoisomerismo , Ureia/análogos & derivados
20.
J Org Chem ; 78(7): 3065-72, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23373593

RESUMO

An iron-catalyzed [2 + 2 + 2] cycloaddition reaction of diynes and cyanamides at room temperature is reported. Highly substituted 2-aminopyridines were obtained in good to excellent yields with high regioselectivity. Insights toward the reaction process were investigated through in situ IR spectra and control experiments. In this iron-catalyzed cycloaddition reaction, the active iron species was generated only in the presence of both alkynes and nitriles. The lower reaction temperature, broad substrates scope, and inversed regioselectivity make it a complementary method to the previously developed iron catalytic system.


Assuntos
Alcinos/química , Aminopiridinas/síntese química , Cianamida/química , Ferro/química , Temperatura , Aminopiridinas/química , Catálise , Ciclização , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA