Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Virol ; 169(7): 153, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913164

RESUMO

A novel virus infecting Stellaria aquatica plants, tentatively named "Stellaria aquatica virus C" (StAVC), was identified in Gangwon-do Province, South Korea. Its monopartite genome consists of a single-stranded RNA of 15,024 nucleotides, and it shares 38.24 to 56.2% nucleotide sequence identity with known closterovirus genome sequences. Its genome contains nine hypothetical open reading frames. These encode the multifunctional protein RNA-dependent RNA polymerase (RdRp), hydrophobic protein (P7), heat shock protein 70 homolog (HSP70h), coat protein homolog (CPh), minor coat protein (CPm), and major coat protein (CP), along with proteins involved in suppressing RNA silencing. Phylogenetic analysis reveals that, based on its HSP70h amino acid sequence, StAVC is closely related to members of the genus Closterovirus within the family Closteroviridae. This is the first record of the full genome sequence of StAVC in South Korea.


Assuntos
Closterovirus , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , RNA Viral , Proteínas Virais , Genoma Viral/genética , República da Coreia , RNA Viral/genética , Doenças das Plantas/virologia , Closterovirus/genética , Closterovirus/isolamento & purificação , Closterovirus/classificação , Proteínas Virais/genética , Sequência de Aminoácidos , Sequência de Bases
2.
Plant Physiol ; 189(3): 1848-1865, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35485966

RESUMO

Grapevine leafroll-associated virus 2 (GLRaV-2) is a prevalent virus associated with grapevine leafroll disease, but the molecular mechanism underlying GLRaV-2 infection is largely unclear. Here, we report that 24-kDa protein (p24), an RNA-silencing suppressor (RSS) encoded by GLRaV-2, promotes GLRaV-2 accumulation via interaction with the B3 DNA-binding domain of grapevine (Vitis vinifera) RELATED TO ABSCISIC ACID INSENSITIVE3/VIVIPAROUS1 (VvRAV1), a transcription factor belonging to the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) superfamily. Salicylic acid-inducible VvRAV1 positively regulates the grapevine pathogenesis-related protein 1 (VvPR1) gene by directly binding its promoter, indicating that VvRAV1 may function in the regulation of host basal defense responses. p24 hijacks VvRAV1 to the cytoplasm and employs the protein to sequester 21-nt double-stranded siRNA together, thereby enhancing its own RSS activity. Moreover, p24 enters the nucleus via interaction with VvRAV1 and weakens the latter's binding affinity to the VvPR1 promoter, leading to decreased expression of VvPR1. Our results provide a mechanism by which a viral RSS interferes with both the antiviral RNA silencing and the AP2/ERF-mediated defense responses via the targeting of one specific host factor.


Assuntos
Closterovirus , Proteínas Virais/metabolismo , Vitis , Closterovirus/genética , Closterovirus/metabolismo , Doenças das Plantas/genética , Interferência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vitis/genética , Vitis/metabolismo
3.
Virol J ; 20(1): 223, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789347

RESUMO

BACKGROUND: Citrus tristeza virus (CTV) is one of the most serious threats to the citrus industry, and is present in both wild and cultivated citrus. The origin and dispersal patterns of CTV is still poorly understood in China. METHODS: In this study, 524 CTV suspected citrus samples from China were collected, including 354 cultivated citrus samples and 174 wild citrus samples. Finally, 126 CTV coat protein sequences were obtained with time-stamped from 10 citrus origins in China. Bayesian phylodynamic inference were performed for CTV origin and dispersal patterns study in China. RESULT: We found that CTV was mainly distributed in southern and coastal areas of China. The substitution rate of CTV was 4.70 × 10- 4 subs/site/year (95% credibility interval: 1.10 × 10- 4 subs/site/year ~ 9.10 × 10- 4 subs/site/year), with a slight increasing trend in CTV populations between 1990 and 2006. The CTV isolates in China shared a most common recent ancestor around 1875 (95% credibility interval: 1676.57 ~ 1961.02). The CTV in China was originated from wild citrus in Hunan and Jiangxi, and then spread from the wild citrus to cultivated citrus in the growing regions of Sichuan, Chongqing, Hubei, Fujian, Zhejiang, Guangxi and Guangdong provinces. CONCLUSIONS: This study has proved that CTV in China was originated from wild citrus in Hunan and Jiangxi. The spatial-temporal distribution and dispersal patterns has uncovered the population and pandemic history of CTV, providing hints toward a better understanding of the spread and origin of CTV in China.


Assuntos
Citrus , Closterovirus , Teorema de Bayes , China , Doenças das Plantas , Closterovirus/genética
4.
Arch Virol ; 168(4): 123, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36988730

RESUMO

Resistance-breaking (RB) isolates of citrus tristeza virus (CTV) can replicate and move systemically in Poncirus trifoliata, a rootstock widely used for management of decline caused by CTV and other purposes. In Uruguay, severe CTV isolates are prevalent, and an RB isolate (designated as RB-UY1) was identified. In order to predict the implications of this genotype circulating in citrus crops grafted on trifoliate rootstocks, the aim of this work was to determine the biological and molecular characteristics of this isolate, the efficiency of its transmission by Toxoptera citricida, and its effects on plant growth performance of P. trifoliata. Our results show that RB-UY1 can be classified as a mild isolate, that it is phylogenetically associated with the RB1 group, and that it is efficiently transmitted by T. citrida. They also suggest that the RB-UY1 isolate should not affect the performance of citrus crops grafted on trifoliate rootstocks, although some growth parameters of P. trifoliata seedlings were affected four years after inoculation.


Assuntos
Citrus , Closterovirus , Poncirus , Poncirus/genética , Uruguai , Closterovirus/genética
5.
Arch Virol ; 168(5): 154, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37145182

RESUMO

The complete genome sequence of a putative novel closterovirus, tentatively named "Dregea volubilis closterovirus 1" (DvCV1, GenBank accession no. MZ779122), infecting Dregea volubilis in China was determined using high-throughput sequencing (HTS). The complete genome sequence of DvCV1 consists of 16,165 nucleotides (nt) and contains nine ORFs. The genome structure of DvCV1 is typical of members of the genus Closterovirus. Complete genome sequence analysis showed that DvCV1 shares 41.4-48.4% nucleotide sequence identity with other known closteroviruses. The putative RNA-dependent RNA polymerase (RdRp), heat shock protein 70-like protein (HSP70h), and coat protein (CP) of DvCV1 share 46.80-62.65%, 31.06-51.80%, and 28.34-37.37% amino acid sequence identity, respectively, with the RdRp, HSP70h and CP of other closteroviruses. Phylogenetic analysis based on HSP70h aa sequences placed DvCV1 alongside other members of the genus Closterovirus in the family Closteroviridae. These results suggest that DvCV1 is a new member of the genus Closterovirus. This is the first report of a closterovirus infecting D. volubilis.


Assuntos
Closteroviridae , Closterovirus , Closterovirus/genética , Filogenia , Genoma Viral , RNA Viral/genética , Closteroviridae/genética , Fases de Leitura Aberta , Doenças das Plantas
6.
PLoS Comput Biol ; 17(6): e1009166, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34181647

RESUMO

As genomic architectures become more complex, they begin to accumulate degenerate and redundant elements. However, analyses of the molecular mechanisms underlying these genetic architecture features remain scarce, especially in compact but sufficiently complex genomes. In the present study, we followed a proteomic approach together with a computational network analysis to reveal molecular signatures of protein function degeneracy from a plant virus (as virus-host protein-protein interactions). We employed affinity purification coupled to mass spectrometry to detect several host factors interacting with two proteins of Citrus tristeza virus (p20 and p25) that are known to function as RNA silencing suppressors, using an experimental system of transient expression in a model plant. The study was expanded by considering two different isolates of the virus, and some key interactions were confirmed by bimolecular fluorescence complementation assays. We found that p20 and p25 target a common set of plant proteins including chloroplastic proteins and translation factors. Moreover, we noted that even specific targets of each viral protein overlap in function. Notably, we identified argonaute proteins (key players in RNA silencing) as reliable targets of p20. Furthermore, we found that these viral proteins preferentially do not target hubs in the host protein interactome, but elements that can transfer information by bridging different parts of the interactome. Overall, our results demonstrate that two distinct proteins encoded in the same viral genome that overlap in function also overlap in their interactions with the cell proteome, thereby highlighting an overlooked connection from a degenerate viral system.


Assuntos
Closterovirus/genética , Interferência de RNA , RNA Viral/genética , Proteínas Argonautas/metabolismo , Citrus/metabolismo , Citrus/virologia , Closterovirus/metabolismo , Biologia Computacional , Genoma Viral , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Modelos Biológicos , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Proteômica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Arch Virol ; 167(6): 1491-1494, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35474497

RESUMO

The genome of a novel virus identified in Cnidium officinale is composed of a monopartite ssRNA of 16,755 nucleotides that shares 68.73% (query coverage, 20%) sequence identity with carrot yellow leaf virus (CYLV, accession no. FJ869862.1). It contains 11 putative open reading frames and has an organization typical of closteroviruses. It shares 30-50% nucleotide sequence identity with other closteroviruses. The heat shock protein 70-like protein (HSP70), putative RNA-dependent RNA polymerase (RdRp), and coat protein (CP) show 39-66%, 16-60%, and 24-41% amino acid sequence identity, respectively, to the homologous proteins of previously identified closteroviruses. Molecular and HSP70-based phylogenetic analysis of the genome and encoded protein sequences suggested that this virus is a novel member of the genus Closterovirus in the family Closteroviridae, which we have tentatively named "cnidium closterovirus 1" (CnClV1).


Assuntos
Closterovirus , Closterovirus/genética , Cnidium , Genoma Viral , Fases de Leitura Aberta , Filogenia , RNA Viral/genética
8.
Acta Virol ; 69(2): 182-185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35766475

RESUMO

losteroviruses are positive sense single-stranded RNA genome-containing plant viruses with narrow natural host range and wide distribution. In the present study, a putative novel closterovirus, Triticum polonicum closterovirus (TriPCV) was identified in the transcriptome assembled contigs of dwarf polish wheat available in public domain. The genome of TriPCV (15.36 kb; TPA Acc. No.: BK059767) contained nine open reading frames (ORFs) that encode for proteins involved in viral replication, cell-to-cell movement, encapsidation and suppression of host RNA silencing. Phylogenetic analysis revealed that TriPCV was distantly related to other members of the genus Closterovirus. Based on genome organization, sequence similarities in BLAST analysis, predicted motifs and phylogeny, TriPCV can be regarded as a putative novel member of the genus Closterovirus Keywords: Closterovirus; Triticum polonicum; transcriptome; public domain.


Assuntos
Closterovirus , Closterovirus/genética , Mineração de Dados , Genoma Viral , Fases de Leitura Aberta , Filogenia , Polônia , RNA Viral/genética , Transcriptoma , Triticum/genética
9.
Acta Virol ; 66(3): 206-215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36029083

RESUMO

The genome sequence of a closterovirus (genus Closterovirus, family Closteroviridae), tentatively named Thesium chinense closterovirus 1 (TcCV1), was identified by performing high-throughput RNA-sequencing of the haustoria and root tissues of Thesium chinense, a parasitic plant. The TcCV1 genome was predicted to encode nine proteins, eight of which have orthologs in previously identified closteroviruses. The TcCV1 RNA-dependent RNA polymerase (RdRp) and heat shock protein 70 homolog (Hsp70h) showed 27.8-68.2% and 23.8-55.1% amino acid identity, respectively, to orthologous proteins of known closteroviruses. The putative +1 ribosomal frameshifting site required for producing RdRp was identified as GUUUAGC with UAG stop codon and the skipped nucleotide U. Phylogenetic trees based on RdRp and Hsp70h show that TcCV1 is a novel member of the genus Closterovirus, forming a subclade with a group of known closteroviruses, including mint virus 1 and carnation necrotic fleck virus. The genome sequence of TcCV1 may be useful for studying the genome evolution of closteroviruses. Keywords: Thesium chinense closterovirus 1; Closterovirus; Closteroviridae; Thesium chinense.


Assuntos
Closteroviridae , Closterovirus , Aminoácidos/genética , Closteroviridae/genética , Closterovirus/genética , Códon de Terminação , Genoma Viral , Proteínas de Choque Térmico HSP70/genética , Nucleotídeos , Filogenia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética
10.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269578

RESUMO

Citrus tristeza virus (CTV) is an important threat to the global citrus industry, causing severe economic losses worldwide. The disease management strategies are focused on vector control, tree culling, and the use of resistant varieties and rootstocks. Sweet orange (Citrus sinensis) trees showing either severe or mild CTV symptoms have been observed in orchards in Veracruz, Mexico, and were probably caused by different virus strains. To understand these symptomatic differences, transcriptomic analyses were conducted using asymptomatic trees. CTV was confirmed to be associated with infected plants, and mild and severe strains were successfully identified by a polymorphism in the coat protein (CP) encoding gene. RNA-Seq analysis revealed more than 900 significantly differentially expressed genes in response to mild and severe strains, with some overlapping genes. Importantly, multiple sequence reads corresponding to Citrus exocortis viroid and Hop stunt viroid were found in severe symptomatic and asymptomatic trees, but not in plants with mild symptoms. The differential gene expression profiling obtained in this work provides an overview of molecular behavior in naturally CTV-infected trees. This work may contribute to our understanding of citrus-virus interaction in more natural settings, which can help develop strategies for integrated crop management.


Assuntos
Citrus sinensis/virologia , Closterovirus/patogenicidade , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Vírus de Plantas/patogenicidade , Proteínas Virais/genética , Citrus sinensis/genética , Closterovirus/genética , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Regulação Viral da Expressão Gênica , México , Doenças das Plantas/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , RNA-Seq , Virulência
11.
Virol J ; 18(1): 62, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33757535

RESUMO

BACKGROUND: Citrus industry is worldwide dramatically affected by outbreaks of Citrus tristeza virus (CTV). Controls should be applied to nurseries, which could act as diversity hotspots for CTV. Early detection and characterization of dangerous or emerging strains of this virus greatly help to prevent outbreaks of disease. This is particularly relevant in those growing regions where no dedicated certification programs are currently in use. METHODS: Double-stranded RNA extracted from Citrus spp. samples, collected in two locations in Angola, were pooled and submitted to a random-primed RNA-seq. This technique was performed to acquire a higher amount of data in the survey, before the amplification and sequencing of genes from single plants. To confirm the CTV infection in individual plants, as suggested by RNA-seq information from the pooled samples, the analysis was integrated with multiple molecular marker amplification (MMM) for the main known CTV strains (T30, T36, VT and T3). RESULTS: From the analysis of HTS data, several assembled contigs were identified as CTV and classified according to their similarity to the established strains. By the MMM amplification, only five individual accessions out of the eleven pooled samples, resulted to be infected by CTV. Amplified coat protein genes from the five positive sources were cloned and sequenced and submitted to phylogenetic analysis, while a near-complete CTV genome was also reconstructed by the fusion of three overlapping contigs. CONCLUSION: Phylogenetic analysis of the ORF1b and CP genes, retrieved by de novo assembly and RT-PCR, respectively, revealed the presence of a wide array of CTV strains in the surveyed citrus-growing spots in Angola. Importantly, molecular variants among those identified from HTS showed high similarity with known severe strains as well as to recently described and emerging strains in other citrus-growing regions, such as S1 (California) or New Clade (Uruguay).


Assuntos
Citrus , Closterovirus , Sequenciamento de Nucleotídeos em Larga Escala , Angola , Citrus/virologia , Closterovirus/genética , Closterovirus/isolamento & purificação , Genoma Viral , Filogenia , Doenças das Plantas/virologia , RNA Viral/genética
12.
Arch Virol ; 166(7): 2051-2054, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33950290

RESUMO

A new member of the genus Closterovirus was detected in Platycodon grandiflorus using high-throughput RNA sequencing analysis. The complete genome sequence of this new virus isolate, tentatively named "platycodon closterovirus 1" (PlaCV1), comprises 16,771 nucleotides with nine predicted open reading frames (ORFs) having the typical closterovirus genome organization. PlaCV1 shares 37%-50% nucleotide sequence identity with other known closterovirus genome sequences. The putative RNA-dependent RNA polymerase (RdRp), heat shock protein 70-like protein (HSP70h), viral heat shock protein 90-like protein (HSP90h), minor coat protein (CPm), and coat protein (CP) show 47-68%, 39-66%, 24-52%, 21-57%, and 16-35% amino acid sequence identity, respectively, to homologous proteins in previously identified closteroviruses, suggesting that it represents a distinct, new species in the genus. Phylogenetic analysis of HSP70h sequences places PlaCV1 alongside other members of the genus Closterovirus in the family Closteroviridae. To our knowledge, this study is the first report of the complete genome sequence of PlaCV1 infecting P. grandiflorus in the Republic of Korea.


Assuntos
Closterovirus/genética , Genoma Viral/genética , Doenças das Plantas/virologia , Platycodon/virologia , Sequência de Aminoácidos , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fases de Leitura Aberta/genética , Filogenia , RNA Viral/genética , República da Coreia , Proteínas Virais/genética , Sequenciamento Completo do Genoma/métodos
13.
Acta Virol ; 65(1): 42-48, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33151734

RESUMO

Closteroviruses (the genus Closterovirus, the family Closteroviridae) are RNA viruses that infect and cause viral diseases in many economically important plants. Genome sequences of two novel closteroviruses named fig virus A (FiVA) and fig virus B (FiVB) were identified in high-throughput sequencing data obtained from a fig latex sample. FiVA and FiVB genomes, whose lengths are 19,333 bp and 18,741 bp, respectively, were predicted to have 14 shared open reading frames, nine of which had homologs in other closteroviruses. Phylogenetic analysis confirmed that FiVA and FiVB are novel closteroviruses forming a strong subclade with fig mild mottle-associated virus within the genus Closterovirus. FiVA and FiVB genome sequences identified in this study are useful resources for investigating the evolution of closterovirus genome organization. Keywords: fig virus A; fig virus B; Closterovirus; common fig; Ficus carica.


Assuntos
Closterovirus , Ficus , Closterovirus/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Látex , Filogenia , RNA Viral/genética
14.
Mol Plant Microbe Interact ; 33(6): 859-870, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32141354

RESUMO

The RNA genome of citrus tristeza virus (CTV), one of the most damaging viral pathogens of citrus, contains 12 open reading frames resulting in production of at least 19 proteins. Previous studies on the intraviral interactome of CTV revealed self-interaction of the viral RNA-dependent RNA polymerase, the major coat protein (CP), p20, p23, and p33 proteins, while heterologous interactions between the CTV proteins have not been characterized. In this work, we examined interactions between the p33 protein, a nonconserved protein of CTV, which performs multiple functions in the virus infection cycle and is needed for virus ability to infect the extended host range, with other CTV proteins shown to mediate virus interactions with its plant hosts. Using yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays, we demonstrated that p33 interacts with three viral proteins, i.e., CP, p20, and p23, in vivo and in planta. Coexpression of p33, which is an integral membrane protein, resulted in a shift in the localization of the p20 and p23 proteins toward the subcellular crude-membrane fraction. Upon CTV infection, the four proteins colocalized in the CTV replication factories. In addition, three of them, CP, p20, and p23, were found in the p33-formed membranous structures. Using bioinformatic analyses and mutagenesis, we found that the N-terminus of p33 is involved in the interactions with all three protein partners. A potential role of these interactions in virus ability to infect the extended host range is discussed.


Assuntos
Closterovirus/genética , Proteínas Virais/genética , Proteínas do Capsídeo/genética , Citrus/virologia , Fases de Leitura Aberta , Doenças das Plantas/virologia , Mapeamento de Interação de Proteínas
15.
Mol Cell Probes ; 54: 101654, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866661

RESUMO

Citrus tristeza virus (CTV) is the etiologic agent of the destructive Tristeza disease, a massive impediment for the healthy citrus industry worldwide. Routine indexing of CTV is an essential component for disease surveys and citrus budwood certification for production of disease-free planting material. Therefore, the present study was carried out to develop an efficient serological assay for CTV detection based on the RNA binding protein (CTV-p23), which is translated from a subgenomic RNA (sgRNA) that accumulates at higher levels in CTV-infected plants. CTV-p23 gene was amplified, cloned and polyclonal antibodies were raised against recombinant CTV-p23 protein. The efficacy of the produced polyclonal antibodies was tested by Western blots and ELISA to develop a quick, sensitive and economically affordable CTV detection tool and was used for indexing of large number of plant samples. The evaluation results indicated that the developed CTV-p23 antibodies had an excellent diagnostic agreement with RT-PCR and would be effective for the detection of CTV in field samples. Furthermore, CTV-p23 gene specific primers designed in the present study were found 1000 times more sensitive than the reported coat protein (CTV-p25) gene specific primers for routine CTV diagnosis. In silico characterizations of CTV-p23 protein revealed the presence of key conserved amino acid residues that involved in the regulation of protein stability, suppressor activity and protein expression levels. This would provide precious ground information towards understanding the viral pathogenecity and protein level accumulation for early diagnosis of virus.


Assuntos
Anticorpos/metabolismo , Closterovirus/isolamento & purificação , Simulação por Computador , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Citrus/virologia , Closterovirus/genética , Modelos Moleculares , Doenças das Plantas/virologia , Estrutura Secundária de Proteína , Proteínas de Ligação a RNA/química , Reprodutibilidade dos Testes , Proteínas Virais/química , Proteínas Virais/metabolismo
16.
Anal Chem ; 91(7): 4790-4796, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30843387

RESUMO

Solid-phase isothermal recombinase polymerase amplification (RPA) offers many benefits over the standard RPA in homogeneous phase in terms of sensitivity, portability, and versatility. However, RPA devices reported to date are limited by the need for heating sources to reach sensitive detection. With the aim of overcoming such limitation, we propose here a label-free highly integrated in situ RPA amplification/detection approach at room temperature that takes advantage of the high sensitivity offered by gold nanoparticle (AuNP)-modified sensing substrates and electrochemical impedance spectroscopic (EIS) detection. Plant disease ( Citrus tristeza virus (CTV)) diagnostics was selected as a relevant target for demonstration of the proof-of-concept. RPA assay for amplification of the P20 gene (387-bp) characteristic of CTV was first designed/optimized and tested by standard gel electrophoresis analysis. The optimized RPA conditions were then transferred to the AuNP-modified electrode surface, previously modified with a thiolated forward primer. The in situ-amplified CTV target was investigated by EIS in a Fe(CN6)4-/Fe(CN6)3- red-ox system, being able to quantitatively detect 1000 fg µL-1 of nucleic acid. High selectivity against nonspecific gene sequences characteristic of potential interfering species such as Citrus psorosis virus (CPsV) and Citrus caxicia viroid (CCaV) was demonstrated. Good reproducibility (RSD of 8%) and long-term stability (up to 3 weeks) of the system were also obtained. Overall, with regard to sensitivity, cost, and portability, our approach exhibits better performance than RPA in homogeneous phase, also without the need of heating sources required in other solid-phase approaches.


Assuntos
Closterovirus/genética , DNA Bacteriano/genética , Técnicas de Amplificação de Ácido Nucleico , Vírus de Plantas/genética , Reação em Cadeia da Polimerase , Viroides/genética , Ouro/química , Nanopartículas Metálicas/química , Técnicas de Síntese em Fase Sólida , Temperatura
17.
Plant Mol Biol ; 98(4-5): 363-373, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30392159

RESUMO

KEY MESSAGE: Citrus tristeza virus encodes a unique protein, p23, with multiple functional roles that include co-option of the cytoplasmic glyceraldehyde 3-phosphate dehydrogenase to facilitate the viral infectious cycle. The genome of citrus tristeza virus (CTV), genus Closterovirus family Closteroviridae, is a single-stranded (+) RNA potentially encoding at least 17 proteins. One (p23), an RNA-binding protein of 209 amino acids with a putative Zn-finger and some basic motifs, displays singular features: (i) it has no homologues in other closteroviruses, (ii) it accumulates mainly in the nucleolus and Cajal bodies, and in plasmodesmata, and (iii) it mediates asymmetric accumulation of CTV RNA strands, intracellular suppression of RNA silencing, induction of some CTV syndromes and enhancement of systemic infection when expressed as a transgene ectopically or in phloem-associated cells in several Citrus spp. Here, a yeast two-hybrid screening of an expression library of Nicotiana benthamiana (a symptomatic experimental host for CTV), identified a transducin/WD40 domain protein and the cytosolic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as potential host interactors with p23. Bimolecular fluorescence complementation corroborated the p23-GAPDH interaction in planta and showed that p23 interacts with itself in the nucleolus, Cajal bodies and plasmodesmata, and with GAPDH in the cytoplasm (forming aggregates) and in plasmodesmata. The latter interaction was preserved in a p23 deletion mutant affecting the C-terminal domain, but not in two others affecting the Zn-finger and one internal basic motif. Virus-induced gene silencing of GAPDH mRNA resulted in a decrease of CTV titer as revealed by real-time RT-quantitative PCR and RNA gel-blot hybridization. Thus, like other viruses, CTV seems to co-opt GAPDH, via interaction with p23, to facilitate its infectious cycle.


Assuntos
Citrus/virologia , Closterovirus/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo , Citrus/genética , Closterovirus/genética , Closterovirus/fisiologia , Gliceraldeído-3-Fosfato Desidrogenases/genética , Interações Hospedeiro-Patógeno , Microscopia Confocal , Plantas Geneticamente Modificadas , Plasmodesmos/virologia , Mapeamento de Interação de Proteínas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Nicotiana/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , Proteínas Virais/fisiologia
18.
Virol J ; 15(1): 141, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30219073

RESUMO

BACKGROUND: The non-translated regions at the genome ends of RNA viruses serve diverse functions and can exhibit various levels of nucleotide (nt) heterogeneity. However, the extent of nt heterogeneity at the extreme termini of Citrus tristeza virus (CTV) genomes has not been comprehensively documented. This study aimed to characterize two widely prevalent CTV genotypes, T36-CA and T30-CA, from California that have not been sequenced or analyzed substantially. The information obtained will be used in our ongoing effort to construct the infectious complementary (c) DNA clones of these viruses. METHODS: The terminal nts of the viral genomes were identified by sequencing cDNA clones of the plus- and/or minus-strand of the viral double-stranded (ds) RNAs generated using 5' and 3' rapid amplification of cDNA ends. Cloned cDNAs corresponding to the complete genome sequences of both viruses were generated using reverse transcription-polymerase chain reactions, sequenced, and subjected to phylogenetic analysis. RESULTS: Among the predominant terminal nts identified, some were identical to the consensus sequences in GenBank, while others were different or unique. Remarkably, one of the predominant 5' nt variants of T36-CA contained the consensus nts "AATTTCAAA" in which a highly conserved cytidylate, seen in all other full-length T36 sequences, was absent. As expected, but never systematically verified before, unique variants with additional nt (s) incorporated upstream of the 5' terminal consensus nts of T36-CA and T30-CA were also identified. In contrast to the extreme 5' terminal nts, those at the extreme 3' termini of T36-CA and T30-CA were more conserved compared to the reference sequences, although nt variants were also found. Notably, an additional thymidylate at the extreme 3' end was identified in many T36-CA sequences. Finally, based on pairwise comparisons and phylogenetic analysis with multiple reference sequences, the complete sequences of both viruses were found to be highly conserved with those of the respective genotypes. CONCLUSIONS: The extreme terminal nts in the T36-CA and T30-CA genomes were identified, revealing new insights on the heterogeneity of these CTV genomic regions. T36-CA and T30-CA were the first and the second genotypes, respectively, of CTV originating from California to be completely sequenced and analyzed.


Assuntos
Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Closterovirus/genética , Variação Genética , Genoma Viral , RNA Viral/genética , California , Closterovirus/classificação , Closterovirus/isolamento & purificação , Genótipo , Análise de Sequência de DNA
19.
Arch Virol ; 163(12): 3383-3388, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30191375

RESUMO

Transcriptome sequencing analysis of a symptomatic Rehmannia glutinosa plant revealed a virome containing two known RNA viruses and one novel virus. In this study, we examined the molecular and biological characteristics of the novel virus. The complete genome of the novel virus is composed of monopartite single-stranded RNA of 15,322 nucleotides with 69% nucleotide sequence identity (with 68% coverage) to tobacco virus 1. Its genome organization is typical of the members of the genus Closterovirus, containing nine putative open reading frames. Molecular and phylogenetic analyses of the genome and encoded protein sequences strongly support that the identified virus is a new species of the genus Closterovirus in the family Closteroviridae. The name rehmannia virus 1 (ReV1) is proposed for this novel virus.


Assuntos
Closterovirus/isolamento & purificação , Doenças das Plantas/virologia , Rehmannia/virologia , Closterovirus/classificação , Closterovirus/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , Proteínas Virais/genética
20.
Arch Virol ; 163(9): 2547-2550, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29736672

RESUMO

High-throughput sequencing analysis detected a clostero-like virus from arracacha plants (Arracacia xanthorrhiza) in Brazil. The complete genome sequence, confirmed by RACE and Sanger sequencing, consists of 15,763 nucleotides with nine predicted open reading frames (ORFs) in a typical closterovirus genome organisation. The putative RNA-dependent RNA polymerase (RdRp), heat shock protein 70 homologue (Hsp70h), and coat protein showed 55-65, 38-44, and 20-36% amino acid sequence identity, respectively, to the homologous proteins of known closteroviruses. Phylogenetic analysis of Hsp70h showed that this putative novel arracacha plant virus was related to members of the genus Closterovirus in the family Closteroviridae. These results suggest that this virus, tentatively named "arracacha virus 1" (AV-1), is a novel member of the genus Closterovirus. This is the first closterovirus identified in arracacha plants.


Assuntos
Apiaceae/virologia , Closterovirus/isolamento & purificação , Doenças das Plantas/virologia , Brasil , Closterovirus/classificação , Closterovirus/genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA