Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 15(7): e1007960, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31335899

RESUMO

Here, we discovered an endogenous dafachronic acid (DA) in the socioeconomically important parasitic nematode Haemonchus contortus. We demonstrate that DA promotes larval exsheathment and development in this nematode via a relatively conserved nuclear hormone receptor (DAF-12). This stimulatory effect is dose- and time-dependent, and relates to a modulation of dauer-like signalling, and glycerolipid and glycerophospholipid metabolism, likely via a negative feedback loop. Specific chemical inhibition of DAF-9 (cytochrome P450) was shown to significantly reduce the amount of endogenous DA in H. contortus; compromise both larval exsheathment and development in vitro; and modulate lipid metabolism. Taken together, this evidence shows that DA plays a key functional role in the developmental transition from the free-living to the parasitic stage of H. contortus by modulating the dauer-like signalling pathway and lipid metabolism. Understanding the intricacies of the DA-DAF-12 system and associated networks in H. contortus and related parasitic nematodes could pave the way to new, nematode-specific treatments.


Assuntos
Colestenos/metabolismo , Haemonchus/crescimento & desenvolvimento , Haemonchus/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Genes de Helmintos , Hemoncose/parasitologia , Hemoncose/veterinária , Haemonchus/patogenicidade , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Isoxazóis/farmacologia , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Piperidinas/farmacologia , Piridinas/farmacologia , Ovinos , Doenças dos Ovinos/parasitologia , Carneiro Doméstico , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 115(50): 12763-12768, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30446615

RESUMO

The mechanisms that integrate environmental signals into developmental programs remain largely uncharacterized. Nuclear receptors (NRs) are ligand-regulated transcription factors that orchestrate the expression of complex phenotypes. The vitamin D receptor (VDR) is an NR activated by 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], a hormone derived from 7-dehydrocholesterol (7-DHC). VDR signaling is best known for regulating calcium homeostasis in mammals, but recent evidence suggests a diversity of uncharacterized roles. In response to incubation temperature, embryos of the annual killifish Austrofundulus limnaeus can develop along two alternative trajectories: active development and diapause. These trajectories diverge early in development, from a biochemical, morphological, and physiological perspective. We manipulated incubation temperature to induce the two trajectories and profiled changes in gene expression using RNA sequencing and weighted gene coexpression network analysis. We report that transcripts involved in 1,25(OH)2D3 synthesis and signaling are expressed in a trajectory-specific manner. Furthermore, exposure of embryos to vitamin D3 analogs and Δ4-dafachronic acid directs continuous development under diapause-inducing conditions. Conversely, blocking synthesis of 1,25(OH)2D3 induces diapause in A. limnaeus and a diapause-like state in zebrafish, suggesting vitamin D signaling is critical for normal vertebrate development. These data support vitamin D signaling as a molecular pathway that can regulate developmental trajectory and metabolic dormancy in a vertebrate. Interestingly, the VDR is homologous to the daf-12 and ecdysone NRs that regulate dormancy in Caenorhabditis elegans and Drosophila We suggest that 7-DHC-derived hormones and their associated NRs represent a conserved pathway for the integration of environmental information into developmental programs associated with life history transitions in animals.


Assuntos
Diapausa/fisiologia , Fundulidae/metabolismo , Transdução de Sinais/fisiologia , Vitamina D/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Colestenos/metabolismo , Desidrocolesteróis/metabolismo , Drosophila/metabolismo , Ecdisona/metabolismo , Receptores de Calcitriol/metabolismo , Temperatura , Vitamina D/análogos & derivados
3.
Proc Natl Acad Sci U S A ; 114(33): 8841-8846, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760992

RESUMO

Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12-dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans This finding suggests the existence of a conserved CYP4V2-POR-nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Colestenos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Temperatura Alta , Gotículas Lipídicas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Sistema Enzimático do Citocromo P-450/genética , Humanos , Receptores Citoplasmáticos e Nucleares/genética
4.
Int J Mol Sci ; 21(7)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235409

RESUMO

Under stressful conditions, the early larvae of C. elegans enter dauer diapause, a non-aging period, driven by the seemingly opposite influence of ascaroside pheromones (ASCRs) and steroid hormone dafachronic acids (DAs). However, the molecular basis of how these small molecules engage in competitive crosstalk in coordination with insulin/IGF-1 signaling (IIS) remains elusive. Here we report a novel transcriptional regulatory pathway that seems to operate between the ASCR and DA biosynthesis under ad libitum (AL) feeding conditions or bacterial deprivation (BD). Although expression of the ASCR and DA biosynthetic genes reciprocally inhibit each other, ironically and interestingly, such dietary cue-mediated modulation requires the presence of the competitors. Under BD, induction of ASCR biosynthetic gene expression required DA, while ASCR suppresses the expression of the DA biosynthetic gene daf-36. The negative regulation of DA by ASCR was IIS-dependent, whereas daf-36 regulation appeared to be independent of IIS. These observations suggest that the presence of ASCR determines the IIS-dependency of DA gene expression regardless of dietary conditions. Thus, our work defines a molecular basis for a novel reciprocal gene regulation of pheromones and hormones to cope with stressful conditions during development and aging.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Caenorhabditis elegans/fisiologia , Sinais (Psicologia) , Hormônios/genética , Hormônios/metabolismo , Feromônios/genética , Feromônios/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colestenos/metabolismo , Regulação da Expressão Gênica , Modelos Biológicos , Transdução de Sinais
5.
Dev Biol ; 432(2): 215-221, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29066181

RESUMO

Dafachronic acid (DA) is a bile acid-like steroid hormone that regulates dauer formation, heterochrony, and lifespan in C. elegans. Here, we describe that DA is an inhibitor of C. elegans germ stem cell proliferation in adult hermaphrodites. Using a C. elegans germ cell primary culture system, we show that DA inhibits the proliferation of germ cells in vitro. Exogenous DA reduces the frequency of large tumors in adult tumorous germline mutants and decreases the proliferation of wild-type germ stem cells in adult hermaphrodites. In contrast, DA has no appreciable effect on the proliferation of larval-stage germ cells in wild type. The inhibition of adult germ cell proliferation by DA requires its canonical receptor DAF-12. Blocking DA production by inactivating the cytochrome P450 DAF-9 increases germ cell proliferation in wild-type adult hermaphrodites and the frequency of large tumors in germline tumorous mutants, suggesting that DA inhibits the rate of germ cell proliferation under normal growth conditions.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Colestenos/metabolismo , Células-Tronco Germinativas Adultas/citologia , Animais , Ácidos e Sais Biliares , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proliferação de Células/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas/citologia , Células Germinativas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais
6.
PLoS Pathog ; 12(1): e1005358, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26727267

RESUMO

The complex life cycle of the parasitic nematode Strongyloides stercoralis leads to either developmental arrest of infectious third-stage larvae (iL3) or growth to reproductive adults. In the free-living nematode Caenorhabditis elegans, analogous determination between dauer arrest and reproductive growth is governed by dafachronic acids (DAs), a class of steroid hormones that are ligands for the nuclear hormone receptor DAF-12. Biosynthesis of DAs requires the cytochrome P450 (CYP) DAF-9. We tested the hypothesis that DAs also regulate S. stercoralis development via DAF-12 signaling at three points. First, we found that 1 µM Δ7-DA stimulated 100% of post-parasitic first-stage larvae (L1s) to develop to free-living adults instead of iL3 at 37°C, while 69.4±12.0% (SD) of post-parasitic L1s developed to iL3 in controls. Second, we found that 1 µM Δ7-DA prevented post-free-living iL3 arrest and stimulated 85.2±16.9% of larvae to develop to free-living rhabditiform third- and fourth-stages, compared to 0% in the control. This induction required 24-48 hours of Δ7-DA exposure. Third, we found that the CYP inhibitor ketoconazole prevented iL3 feeding in host-like conditions, with only 5.6±2.9% of iL3 feeding in 40 µM ketoconazole, compared to 98.8±0.4% in the positive control. This inhibition was partially rescued by Δ7-DA, with 71.2±16.4% of iL3 feeding in 400 nM Δ7-DA and 35 µM ketoconazole, providing the first evidence of endogenous DA production in S. stercoralis. We then characterized the 26 CYP-encoding genes in S. stercoralis and identified a homolog with sequence and developmental regulation similar to DAF-9. Overall, these data demonstrate that DAF-12 signaling regulates S. stercoralis development, showing that in the post-parasitic generation, loss of DAF-12 signaling favors iL3 arrest, while increased DAF-12 signaling favors reproductive development; that in the post-free-living generation, absence of DAF-12 signaling is crucial for iL3 arrest; and that endogenous DA production regulates iL3 activation.


Assuntos
Colestenos/metabolismo , Proteínas de Helminto/metabolismo , Strongyloides stercoralis/crescimento & desenvolvimento , Strongyloides stercoralis/metabolismo , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Cães , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genes de Helmintos , Gerbillinae , Proteínas de Helminto/genética , Larva/metabolismo , Estágios do Ciclo de Vida , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Strongyloides stercoralis/genética , Estrongiloidíase/metabolismo
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 842-852, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28499814

RESUMO

Sterol intermediates of the cholesterol biosynthetic pathway have drawn attention for novel biological activities. Follicular fluid meiosis activating sterol (FF-MAS) is a LXRα ligand and a potential modulator of physiologic processes regulated by nuclear receptors, such as lipid homeostasis and cell proliferation. In this work, we established a model to selectively accumulate FF-MAS in HepG2 cells, by using a combination of the inhibitors AY9944 and 17-hydroxyprogesterone to block C14-sterol reductases and the downstream C4-demethylase complex. We investigated the effects produced by altered levels of cholesterol biosynthesis intermediates, in order to dissect their influence on LXRα signaling. In particular, endogenously accumulated FF-MAS was able to modulate the expression of key genes in cholesterol metabolism, to activate LXRα nuclear signaling resulting in increased lipogenesis, and to inhibit HepG2 cells proliferation. Moreover, a fluorescent ester derivative of FF-MAS localized in nuclear lipid droplets, suggesting a role for these organelles in the storage of signaling lipids interacting with nuclear partners.


Assuntos
17-alfa-Hidroxiprogesterona/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Colestenos/metabolismo , Colesterol/metabolismo , Receptores X do Fígado/metabolismo , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Lipídeos/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Biochim Biophys Acta Gen Subj ; 1861(10): 2507-2514, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28596107

RESUMO

BACKGROUND: Sterols are major cell membrane lipids, and in many organisms they are modified with glucose to generate sterylglucosides. Glucosylation dramatically changes the functional properties of sterols. The formation of sterylglucosides from sterols in plants, fungi, and bacteria uses UDP-glucose as a glucose donor. By contrast, sterylglucoside biosynthesis in mammals is catalyzed by the transglucosylation activity of glucocerebrosidases, with glucosylceramide acting as the glucose donor. Recent success in isolation and structural determination of sterylglucosides in the vertebrate central nervous system shows that transglucosylation also occurs in vivo. These analyses also revealed that sterylglucoside aglycons are composed of several cholesterol-related metabolites, including a plant-type sitosteryl. SCOPE OF REVIEW: In this review, we discuss the biological functions and metabolism of sterylglucosides. We also summarize new findings from studies on the metabolism of vertebrate sterylglucosides and review the circumstances underlying the recent discovery of sterylglucosides in vertebrate brain. Finally, we discuss the role of sterylglucosides in a variety of neurodegenerative disorders such as Gaucher disease and Parkinson's disease. MAJOR CONCLUSIONS: The biological significance of UDP-glucose-independent sterol glucosylation is still unknown, but it is plausible that glucosylation may provide sterols with novel biological functions. Even though sterol glucosylation is a simple reaction, it can dramatically change the physical properties of sterols. GENERAL SIGNIFICANCE: Sterylglucosides may play roles in various physiological processes and in the pathogenesis of different diseases. Arriving at a better understanding of them at the organ and cellular level may open up new approaches to developing therapeutics for a variety of diseases. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.


Assuntos
Colestenos/metabolismo , Doença de Gaucher/metabolismo , Glucosilceramidase/metabolismo , Glucosilceramidas/metabolismo , Doença de Parkinson/metabolismo , Animais , Bactérias/metabolismo , Colestenos/química , Colesterol/química , Colesterol/metabolismo , Fungos/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/patologia , Expressão Gênica , Glucosilceramidase/genética , Glucosilceramidas/química , Humanos , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fitosteróis/química , Fitosteróis/metabolismo , Plantas/metabolismo , Uridina Difosfato Glucose/metabolismo
9.
Nature ; 466(7305): 494-7, 2010 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-20592728

RESUMO

Morphological novelties are lineage-specific traits that serve new functions. Developmental polyphenisms have been proposed to be facilitators of phenotypic evolution, but little is known about the interplay between the associated genetic and environmental factors. Here, we study two alternative morphologies in the mouth of the nematode Pristionchus pacificus and the formation of teeth-like structures that are associated with bacteriovorous feeding and predatory behaviour on fungi and other worms. These teeth-like denticles represent an evolutionary novelty, which is restricted to some members of the nematode family Diplogastridae but is absent from Caenorhabditis elegans and related nematodes. We show that the mouth dimorphism is a polyphenism that is controlled by starvation and the co-option of an endocrine switch mechanism. Mutations in the nuclear hormone receptor DAF-12 and application of its ligand, the sterol hormone dafachronic acid, strongly influence this switch mechanism. The dafachronic acid-DAF-12 module has been shown to control the formation of arrested dauer larvae in both C. elegans and P. pacificus, as well as related life-history decisions in distantly related nematodes. The comparison of dauer formation and mouth morphology switch reveals that different thresholds of dafachronic acid signalling provide specificity. This study shows how hormonal signalling acts by coupling environmental change and genetic regulation and identifies dafachronic acid as a key hormone in nematode evolution.


Assuntos
Evolução Biológica , Colestenos/metabolismo , Nematoides/anatomia & histologia , Nematoides/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Animais , Colestenos/farmacologia , Meio Ambiente , Privação de Alimentos , Boca/anatomia & histologia , Boca/efeitos dos fármacos , Boca/metabolismo , Nematoides/classificação , Nematoides/efeitos dos fármacos , Nematoides/genética , Fenótipo , Feromônios/metabolismo , Feromônios/farmacologia , Comportamento Predatório , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/efeitos dos fármacos , Dente/anatomia & histologia , Dente/efeitos dos fármacos , Dente/metabolismo
10.
PLoS Biol ; 10(4): e1001307, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22505849

RESUMO

Larvae of the nematode Caenorhabditis elegans must choose between reproductive development and dauer diapause. This decision is based on sensing of environmental inputs and dauer pheromone, a small molecule signal that serves to monitor population density. These signals are integrated via conserved neuroendocrine pathways that converge on steroidal ligands of the nuclear receptor DAF-12, a homolog of the mammalian vitamin D receptor and liver X receptor. DAF-12 acts as the main switch between gene expression programs that drive either reproductive development or dauer entry. Extensive studies in the past two decades demonstrated that biosynthesis of two bile acid-like DAF-12 ligands, named dafachronic acids (DA), controls developmental fate. In this issue of PLoS Biology, Wollam et al. showed that a conserved steroid-modifying enzyme, DHS-16, introduces a key feature in the structures of the DAF-12 ligands, closing a major gap in the DA biosynthesis pathway. The emerging picture of DA biosynthesis in C. elegans enables us to address a key question in the field: how are complex environmental signals integrated to enforce binary, organism-wide decisions on developmental fate? Schaedel et al. demonstrated that pheromone and DA serve as competing signals, and that a positive feedback loop based on regulation of DA biosynthesis ensures organism-wide commitment to reproductive development. Considering that many components of DA signaling are highly conserved, ongoing studies in C. elegans may reveal new aspects of bile acid function and lifespan regulation in mammals.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Esteroides/fisiologia , Adaptação Fisiológica , Animais , Vias Biossintéticas , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Colestenos/metabolismo , Meio Ambiente , Expectativa de Vida , Ligantes , Feromônios/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Esteroides/metabolismo
11.
PLoS Biol ; 10(4): e1001306, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22505848

RESUMO

Many animals can choose between different developmental fates to maximize fitness. Despite the complexity of environmental cues and life history, different developmental fates are executed in a robust fashion. The nematode Caenorhabditis elegans serves as a powerful model to examine this phenomenon because it can adopt one of two developmental fates (adulthood or diapause) depending on environmental conditions. The steroid hormone dafachronic acid (DA) directs development to adulthood by regulating the transcriptional activity of the nuclear hormone receptor DAF-12. The known role of DA suggests that it may be the molecular mediator of environmental condition effects on the developmental fate decision, although the mechanism is yet unknown. We used a combination of physiological and molecular biology techniques to demonstrate that commitment to reproductive adult development occurs when DA levels, produced in the neuroendocrine XXX cells, exceed a threshold. Furthermore, imaging and cell ablation experiments demonstrate that the XXX cells act as a source of DA, which, upon commitment to adult development, is amplified and propagated in the epidermis in a DAF-12 dependent manner. This positive feedback loop increases DA levels and drives adult programs in the gonad and epidermis, thus conferring the irreversibility of the decision. We show that the positive feedback loop canalizes development by ensuring that sufficient amounts of DA are dispersed throughout the body and serves as a robust fate-locking mechanism to enforce an organism-wide binary decision, despite noisy and complex environmental cues. These mechanisms are not only relevant to C. elegans but may be extended to other hormonal-based decision-making mechanisms in insects and mammals.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Colestenos/metabolismo , Hormônios/metabolismo , Adaptação Fisiológica , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Meio Ambiente , Retroalimentação Fisiológica , Hormônios/fisiologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Estágios do Ciclo de Vida , Fenótipo , Feromônios/metabolismo , Feromônios/fisiologia , Reprodução , Tela Subcutânea/metabolismo
12.
PLoS Biol ; 10(4): e1001305, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22505847

RESUMO

Endogenous small molecule metabolites that regulate animal longevity are emerging as a novel means to influence health and life span. In C. elegans, bile acid-like steroids called the dafachronic acids (DAs) regulate developmental timing and longevity through the conserved nuclear hormone receptor DAF-12, a homolog of mammalian sterol-regulated receptors LXR and FXR. Using metabolic genetics, mass spectrometry, and biochemical approaches, we identify new activities in DA biosynthesis and characterize an evolutionarily conserved short chain dehydrogenase, DHS-16, as a novel 3-hydroxysteroid dehydrogenase. Through regulation of DA production, DHS-16 controls DAF-12 activity governing longevity in response to signals from the gonad. Our elucidation of C. elegans bile acid biosynthetic pathways reveals the possibility of novel ligands as well as striking biochemical conservation to other animals, which could illuminate new targets for manipulating longevity in metazoans.


Assuntos
3-Hidroxiesteroide Desidrogenases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/crescimento & desenvolvimento , Longevidade , 3-Hidroxiesteroide Desidrogenases/genética , Animais , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/fisiologia , Vias Biossintéticas , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Colestenos/metabolismo , Colesterol/metabolismo , Colesterol/fisiologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Epistasia Genética , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Homeostase , Insulina/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Cetosteroides/metabolismo , Especificidade de Órgãos , Fenótipo , Receptores Citoplasmáticos e Nucleares/metabolismo , Reprodução , Transdução de Sinais
13.
Mol Biol Evol ; 30(7): 1630-43, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23603937

RESUMO

The ciliate Tetrahymena thermophila incorporates sterols from its environment that desaturates at positions C5(6), C7(8), and C22(23). Phytosterols are additionally modified by removal of the ethyl group at carbon 24 (C24). The enzymes involved are oxygen-, NAD(P)H-, and cytochrome b5 dependent, reason why they were classified as members of the hydroxylases/desaturases superfamily. The ciliate's genome revealed the presence of seven putative sterol desaturases belonging to this family, two of which we have previously characterized as the C24-de-ethylase and C5(6)-desaturase. A Rieske oxygenase was also identified; this type of enzyme, with sterol C7(8)-desaturase activity, was observed only in animals, called Neverland in insects and DAF-36 in nematodes. They perform the conversion of cholesterol into 7-dehydrocholesterol, first step in the synthesis of the essential hormones ecdysteroids and dafachronic acids. By adapting an RNA interference-by-feeding protocol, we easily screened six of the eight genes described earlier, allowing the characterization of the Rieske-like oxygenase as the ciliate's C7(8)-desaturase (Des7p). This characterization was confirmed by obtaining the corresponding knockout mutant, making Des7p the first nonanimal Rieske-sterol desaturase described. To our knowledge, this is the first time that the feeding-RNAi technique was successfully applied in T. thermophila, enabling to consider such methodology for future reverse genetics high-throughput screenings in this ciliate. Bioinformatics analyses revealed the presence of Des7p orthologs in other Oligohymenophorean ciliates and in nonanimal Opisthokonts, like the protists Salpingoeca rosetta and Capsaspora owczarzaki. A horizontal gene transfer event from a unicellular Opisthokont to an ancient phagotrophic Oligohymenophorean could explain the acquisition of the Rieske oxygenase by Tetrahymena.


Assuntos
Colesterol/metabolismo , Sequência Conservada , Ácidos Graxos Dessaturases/metabolismo , Oxirredução , Tetrahymena thermophila/enzimologia , Animais , Colestenos/metabolismo , Colesterol/química , Citocromos b5/metabolismo , Ecdisteroides/biossíntese , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/classificação , Fitosteróis/metabolismo , Esteróis/metabolismo
14.
Appl Microbiol Biotechnol ; 98(9): 4033-40, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24265025

RESUMO

Biodiesels are mostly produced from lipid transesterification of vegetable oils, including those from soybean, jatropha, palm, rapeseed, sunflower, and others. Unfortunately, transesterification of oil produces various unwanted side products, including steryl glucosides (SG), which precipitate and need to be removed to avoid clogging of filters and engine failures. So far, efficient and cost-effective methods to remove SGs from biodiesel are not available. Here we describe for the first time the identification, characterization and heterologous production of an enzyme capable of hydrolyzing SGs. A synthetic codon-optimized version of the lacS gene from Sulfolobus solfataricus was efficiently expressed and purified from Escherichia coli, and used to treat soybean derived biodiesel containing 100 ppm of SGs. After optimizing different variables, we found that at pH 5.5 and 87 °C, and in the presence of 0.9 % of the emulsifier polyglycerol polyricinoleate, 81 % of the total amount of SGs present in biodiesel were hydrolyzed by the enzyme. This remarkable reduction in SGs suggests a path for the removal of these contaminants from biodiesel on industrial scale using an environmentally friendly enzymatic process.


Assuntos
Biocombustíveis , Colestenos/metabolismo , Hidrolases/metabolismo , Sulfolobus solfataricus/enzimologia , DNA Arqueal/química , DNA Arqueal/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Hidrolases/genética , Hidrolases/isolamento & purificação , Hidrólise , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Óleo de Soja , Temperatura
15.
J Biol Chem ; 287(7): 4894-903, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22170062

RESUMO

Bile acid-like molecules named dafachronic acids (DAs) control the dauer formation program in Caenorhabditis elegans through the nuclear receptor DAF-12. This mechanism is conserved in parasitic nematodes to regulate their dauer-like infective larval stage, and as such, the DAF-12 ligand binding domain has been identified as an important therapeutic target in human parasitic hookworm species that infect more than 600 million people worldwide. Here, we report two x-ray crystal structures of the hookworm Ancylostoma ceylanicum DAF-12 ligand binding domain in complex with DA and cholestenoic acid (a bile acid-like metabolite), respectively. Structure analysis and functional studies reveal key residues responsible for species-specific ligand responses of DAF-12. Furthermore, DA binds to DAF-12 mechanistically and is structurally similar to bile acids binding to the mammalian bile acid receptor farnesoid X receptor. Activation of DAF-12 by cholestenoic acid and the cholestenoic acid complex structure suggest that bile acid-like signaling pathways have been conserved in nematodes and mammals. Together, these results reveal the molecular mechanism for the interplay between parasite and host, provide a structural framework for DAF-12 as a promising target in treating nematode parasitism, and provide insight into the evolution of gut parasite hormone-signaling pathways.


Assuntos
Ancylostoma/química , Ácidos e Sais Biliares/química , Colestenos/química , Proteínas de Helminto/química , Receptores Citoplasmáticos e Nucleares/química , Ancylostoma/genética , Ancylostoma/metabolismo , Ancilostomíase/metabolismo , Ancilostomíase/terapia , Animais , Ácidos e Sais Biliares/genética , Ácidos e Sais Biliares/metabolismo , Colestenos/metabolismo , Cristalografia por Raios X , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Mamíferos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Homologia Estrutural de Proteína
16.
Anal Chem ; 85(19): 9281-7, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24010904

RESUMO

Under favorable conditions, Caenorhabditis elegans larvae grow into reproductive adults after a series of molting cycles. When environmental conditions are harsh, they arrest as dauer larvae. Dafachronic acid (DA), a C. elegans steroid hormone, is required for reproductive development. Here, we report a mass spectrometry (MS) method for absolute quantitation of DA in C. elegans. The extraction of DA from C. elegans was optimized to achieve a recovery rate of greater than 83%. The MS sensitivity to DA increased 100-fold after carboxyl group derivatization with 2-picolylamine. High-resolution selected ion monitoring (HR-SIM) on a Q-Orbitrap mass spectrometer Q Exactive outperformed targeted-MS2 on the same instrument and selected reaction monitoring (SRM) on a triple-quadrupole mass spectrometer TSQ Quantum Discovery. With a limit of quantification as low as 1 pg of DA, the HR-SIM method enables absolute quantification of endogenous DA during the reproductive development of C. elegans. We found that in wild-type (WT) worms, DA increases from 0.04 ± 0.02 ng/mg protein in the L1 larval stage to 1.21 ± 0.67 ng/mg protein in the L2 larval stage and decreases again after the L3 stage. In comparison, four genetic mutants that have a constitutive dauer-formation phenotype due to disrupted insulin, TGF-ß, or cGMP signaling all have a very low DA level in the L2 stage (below 15% of the WT). These mutants are able to escape the dauer fate and most of them grow into fertile adults when supplied with exogenous DA. Therefore, a DA spike in the L2 stage is critical for the reproductive development of C. elegans.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Colestenos/análise , Animais , Colestenos/metabolismo , Espectrometria de Massas , Estrutura Molecular
17.
Proteins ; 80(7): 1798-809, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22489014

RESUMO

A structure for the ligand binding domain (LBD) of the DAF-12 receptor from Caenorhabditis elegans was obtained from the X-ray crystal structure of the receptor LBD from Strongyloides stercoralis bound to (25R)-Δ(7)-dafachronic acid (DA) (pdb:3GYU). The model was constructed in the presence of the ligand using a combination of Modeller, Autodock, and molecular dynamics (MD) programs, and then its dynamical behavior was studied by MD. A strong ligand binding mode (LBM) was found, with the three arginines in the ligand binding pocket (LBP) contacting the C-26 carboxylate group of the DA. The quality of the ceDAF-12 model was then evaluated by constructing several ligand systems for which the experimental activity is known. Thus, the dynamical behavior of the ceDAF-12 complex with the more active (25S)-Δ(7)-DA showed two distinct binding modes, one of them being energetically more favorable compared with the 25R isomer. Then the effect of the Arg564Cys and Arg598Met mutations on the (25R)-Δ(7)-DA binding was analyzed. The MD simulations showed that in the first case the complex was unstable, consistent with the lack of transactivation activity of (25R)-Δ(7)-DA in this mutant. Instead, in the case of the Arg598Met mutant, known to produce a partial loss of activity, our model predicted smaller effects on the LBM with a more stable MD trajectory. The model also showed that removal of the C-25 methyl does not impede the simultaneous strong interaction of the carboxylate with the three arginines, predicting that 27-nor-DAs are putative ceDAF-12 ligands.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Arginina/química , Arginina/metabolismo , Sítios de Ligação , Colestenos/química , Colestenos/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência
18.
Proc Natl Acad Sci U S A ; 106(23): 9138-43, 2009 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-19497877

RESUMO

Nematode parasitism is a worldwide health problem resulting in malnutrition and morbidity in over 1 billion people. The molecular mechanisms governing infection are poorly understood. Here, we report that an evolutionarily conserved nuclear hormone receptor signaling pathway governs development of the stage 3 infective larvae (iL3) in several nematode parasites, including Strongyloides stercoralis, Ancylostoma spp., and Necator americanus. As in the free-living Caenorhabditis elegans, steroid hormone-like dafachronic acids induced recovery of the dauer-like iL3 in parasitic nematodes by activating orthologs of the nuclear receptor DAF-12. Moreover, administration of dafachronic acid markedly reduced the pathogenic iL3 population in S. stercoralis, indicating the potential use of DAF-12 ligands to treat disseminated strongyloidiasis. To understand the pharmacology of targeting DAF-12, we solved the 3-dimensional structure of the S. stercoralis DAF-12 ligand-binding domain cocrystallized with dafachronic acids. These results reveal the molecular basis for DAF-12 ligand binding and identify nuclear receptors as unique therapeutic targets in parasitic nematodes.


Assuntos
Ancylostoma/metabolismo , Necator americanus/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Infecções por Strongylida/parasitologia , Strongyloides stercoralis/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Colestenos/metabolismo , Cristalografia por Raios X , Humanos , Larva , Modelos Moleculares , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Esteroides/metabolismo , Infecções por Strongylida/tratamento farmacológico
19.
Biophys J ; 100(11): 2633-41, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21641308

RESUMO

The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by (2)H-NMR on bilayers made from either 14:0/14:0((d27))-PC, or 14:0((d27))-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (K(x)) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the K(x) did increase with acyl-chain order, the higher K(x) for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the K(x) was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in K(x). We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes.


Assuntos
Colestenos/metabolismo , Bicamadas Lipídicas/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Esfingomielinas/química , Esfingomielinas/metabolismo , Anisotropia , Membrana Celular/química , Membrana Celular/metabolismo , Difenilexatrieno/metabolismo , Bicamadas Lipídicas/química , Fluidez de Membrana , Miristatos/metabolismo , Especificidade por Substrato , Temperatura
20.
J Proteome Res ; 10(1): 241-8, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21049985

RESUMO

Cytochrome P450 enzymes (CYP or P450) 46A1 and 27A1 play important roles in cholesterol elimination from the brain and retina, respectively, yet they have not been quantified in human organs because of their low abundance and association with membrane. On the basis of our previous development of a multiple reaction monitoring (MRM) workflow for measurements of low-abundance membrane proteins, we quantified CYP46A1 and CYP27A1 in human brain and retina samples from four donors. These enzymes were quantified in the total membrane pellet, a fraction of the whole tissue homogenate, using ¹5N-labled recombinant P450s as internal standards. The average P450 concentrations/mg of total tissue protein were 345 fmol of CYP46A1 and 110 fmol of CYP27A1 in the temporal lobe, and 60 fmol of CYP46A1 and 490 fmol of CYP27A1 in the retina. The corresponding P450 metabolites were then measured in the same tissue samples and compared to the P450 enzyme concentrations. Investigation of the enzyme-product relationships and analysis of the P450 measurements based on different signature peptides revealed a possibility of retina-specific post-translational modification of CYP27A1. The data obtained provide important insights into the mechanisms of cholesterol elimination from different neural tissues.


Assuntos
Colestanotriol 26-Mono-Oxigenase/análise , Espectrometria de Massas/métodos , Retina/química , Esteroide Hidroxilases/análise , Lobo Temporal/química , Membrana Celular/química , Colestanotriol 26-Mono-Oxigenase/metabolismo , Colestenos/análise , Colestenos/metabolismo , Colesterol/metabolismo , Colesterol 24-Hidroxilase , Humanos , Hidroxicolesteróis/análise , Hidroxicolesteróis/metabolismo , Marcação por Isótopo , Isótopos de Nitrogênio , Reprodutibilidade dos Testes , Esteroide Hidroxilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA