Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 149(19): 4881-4888, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39143943

RESUMO

Strategies based on nanomaterials for sterilization address the problem of antibiotic resistance faced by conventional antimicrobials, with the contribution of photocatalytic compounds being particularly prominent. Herein, to integrate multiple bactericidal techniques into a system for generating synergistic antibacterial effects, a novel photo-triggered AuAg@g-C3N4 composite nanoplatform was constructed by anchoring AuAg on the surface of a g-C3N4 layer. As the composite nanoplatform had a lower bandgap and superior visible light utilization efficiency, it could facilitate free electron transfer better and exhibit superior photocatalytic activity under light conditions. Moreover, the AuAg@g-C3N4 composite nanoplatform integrated the bactericidal modes of silver ion toxicity, physical disruption of bacterial cell membranes by the multilayer structure, and excellent photocatalytic activity, exhibiting extremely superior bactericidal effects against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus subtilis, with a bactericidal efficiency of up to 100%.


Assuntos
Antibacterianos , Ouro , Prata , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Prata/farmacologia , Ouro/química , Ouro/farmacologia , Luz , Compostos de Nitrogênio/química , Compostos de Nitrogênio/efeitos da radiação , Compostos de Nitrogênio/farmacologia , Compostos de Nitrogênio/toxicidade , Grafite/química , Grafite/efeitos da radiação , Grafite/farmacologia , Testes de Sensibilidade Microbiana , Catálise , Nitrilas/química , Nitrilas/farmacologia , Nanopartículas Metálicas/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Processos Fotoquímicos , Bacillus subtilis/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos
2.
Environ Res ; 252(Pt 2): 118886, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583659

RESUMO

In photo-Fenton technology, the narrower pH range limits its practical application for antibiotic wastewater remediation. Therefore, in this study, a Z-scheme heterojunction photo-Fenton catalyst was constructed by Fe-doped graphite-phase carbon nitride in combination with bismuth molybdate for the degradation of typical antibiotics. Fe doping can shorten the band gap and increase visible-light absorption. Simultaneously, the constructed Z-scheme heterojunction provides a better charge transfer pathway for the photo-Fenton reaction. Within 30 min, Fe3CN/BMO-3 removed 95.54% of tetracycline hydrochloride (TC), and its remarkable performance was the higher Fe3+/Fe2+ conversion efficiency through the decomposition of H2O2. The Fe3CN/BMO-3 catalyst showed remarkable photo-Fenton degradation performance in a wide pH range (3.0-11.0), and it also had good stability in the treatment of TC wastewater. Furthermore, the order of action of the active species was h+ > ·O2- > 1O2 > ·OH, and the toxicity assessment suggested that Fe3CN/BMO-3 was effective in reducing the biotoxicity of TC. The catalyst proved to be an economically feasible and applicable material for antibiotic photo-Fenton degradation, and this study provides another perspective on the application of elemental doping and constructed heterojunction photo-Fenton technology for antibiotic water environmental remediation.


Assuntos
Antibacterianos , Bismuto , Peróxido de Hidrogênio , Ferro , Molibdênio , Poluentes Químicos da Água , Bismuto/química , Antibacterianos/química , Antibacterianos/toxicidade , Concentração de Íons de Hidrogênio , Ferro/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Peróxido de Hidrogênio/química , Molibdênio/química , Catálise , Grafite/química , Grafite/toxicidade , Compostos de Nitrogênio/química , Compostos de Nitrogênio/toxicidade , Nitrilas/química , Nitrilas/toxicidade , Águas Residuárias/química
3.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062877

RESUMO

Metal-free, low-cost, organic photocatalytic graphitic carbon nitride (g-C3N4) has become a promising and impressive material in numerous scientific fields due to its unique physical and chemical properties. As a semiconductor with a suitable band gap of ~2.7 eV, g-C3N4 is an active photocatalytic material even after irradiation with visible light. However, information regarding the toxicity of g-C3N4 is not extensively documented and there is not a comprehensive understanding of its potential adverse effects on human health or the environment. In this context, the term "toxicity" can be perceived in both a positive and a negative light, depending on whether it serves as a benefit or poses a potential risk. This review shows the applications of g-C3N4 in sensorics, electrochemistry, photocatalysis, and biomedical approaches while pointing out the potential risks of its toxicity, especially in human and environmental health. Finally, the future perspective of g-C3N4 research is addressed, highlighting the need for a comprehensive understanding of the toxicity of this material to provide safe and effective applications in various fields.


Assuntos
Grafite , Compostos de Nitrogênio , Grafite/química , Grafite/toxicidade , Humanos , Compostos de Nitrogênio/química , Compostos de Nitrogênio/toxicidade , Catálise , Animais , Nitrilas/química , Nitrilas/toxicidade , Luz
4.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299367

RESUMO

The scope of application of carbon nanomaterials in biomedical, environmental and industrial fields is recently substantially increasing. Since in vitro toxicity testing is the first essential step for any commercial usage, it is crucial to have a reliable method to analyze the potentially harmful effects of carbon nanomaterials. Even though researchers already reported the interference of carbon nanomaterials with common toxicity assays, there is still, unfortunately, a large number of studies that neglect this fact. In this study, we investigated interference of four bio-promising carbon nanomaterials (graphene acid (GA), cyanographene (GCN), graphitic carbon nitride (g-C3N4) and carbon dots (QCDs)) in commonly used LIVE/DEAD assay. When a standard procedure was applied, materials caused various types of interference. While positively charged g-C3N4 and QCDs induced false results through the creation of free agglomerates and intrinsic fluorescence properties, negatively charged GA and GCN led to false signals due to the complex quenching effect of the fluorescent dye of a LIVE/DEAD kit. Thus, we developed a new approach using a specific gating strategy based on additional controls that successfully overcame all types of interference and lead to reliable results in LIVE/DEAD assay. We suggest that the newly developed procedure should be a mandatory tool for all in vitro flow cytometry assays of any class of carbon nanomaterials.


Assuntos
Carbono/toxicidade , Nanoestruturas/toxicidade , Células Cultivadas , Citometria de Fluxo/métodos , Fluorescência , Corantes Fluorescentes/toxicidade , Grafite/toxicidade , Humanos , Compostos de Nitrogênio/toxicidade , Pontos Quânticos/toxicidade
5.
Chemphyschem ; 21(16): 1836-1846, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32497345

RESUMO

Despite a plethora of suggested technological and biomedical applications, the nanotoxicity of two-dimensional (2D) graphitic carbon nitride (g-C3 N4 ) towards biomolecules remains elusive. To address this issue, we employ all-atom classical molecular dynamics simulations and investigate the interactions between nucleic acids and g-C3 N4 . It is revealed that, toxicity is modulated through a subtle balance between electrostatic and van der Waals interactions. When the exposed nucleobases interact through predominantly short-ranged van der Waals and π-π stacking interactions, they get deviated from their native disposition and adsorb on the surface, leading to loss of self-stacking and intra-quartet H-bonding along with partial disruption of the native structure. In contrast, for the interaction with double-stranded structures of both DNA and RNA, long-range electrostatics govern the adsorption phenomena since the constituent nucleobases are relatively concealed and wrapped, thereby resulting in almost complete preservation of the nucleic acid structures. Construction of free energy landscapes for lateral translation of adsorbed nucleic acids suggests decent targeting specificity owing to their restricted movement on g-C3 N4 . The release times of nucleic acids adsorbed through predominant electrostatics are significantly less than those adsorbed through stacking with the surface. It is therefore proposed that g-C3 N4 would induce toxicity towards any biomolecule having bare residues available for strong van der Waals and π-π stacking interactions relative to those predominantly interacting through electrostatics.


Assuntos
Materiais Biocompatíveis/toxicidade , DNA/efeitos dos fármacos , Grafite/toxicidade , Compostos de Nitrogênio/toxicidade , RNA/efeitos dos fármacos , Adsorção , Materiais Biocompatíveis/química , DNA/química , Grafite/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Compostos de Nitrogênio/química , RNA/química , Eletricidade Estática , Termodinâmica
6.
Analyst ; 145(12): 4260-4264, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32494796

RESUMO

Copper (Cu) is a vital metal element for humans and animals. Monitoring and evaluating the concentration level of Cu2+ in a biological body is an effective way to prevent a variety of diseases. In this work, phenyl doped graphitic carbon nitride (PDCN) nanosheets with strong green fluorescence exhibited a sensitive and selective detection for Cu2+ with a linear range from 0.1-2.0 µmol L-1. Furthermore, fluorescent imaging was applied to semiquantitatively detect Cu2+ in HeLa cells using PDCN nanosheets as the probe, which can avoid the interference of background autofluorescence. This work provided a low-cost and biologically friendly fluorescent probe to monitor the concentration level of Cu2+ in living cells.


Assuntos
Cobre/análise , Corantes Fluorescentes/química , Grafite/química , Nanoestruturas/química , Compostos de Nitrogênio/química , Corantes Fluorescentes/toxicidade , Grafite/toxicidade , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Nanoestruturas/toxicidade , Compostos de Nitrogênio/toxicidade
7.
Ecotoxicol Environ Saf ; 187: 109750, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31655412

RESUMO

Drought and nitrogen (N) deposition are important components of global climate and environmental change. In this greenhouse study, we investigated the ecophysiological responses of the seedlings of three subtropical forest plant species (Schima superba, Castanopsis fissa, and Michelia macclurei) to short-term experimental drought stress, N addition, and their interaction. The results showed that drought stress reduced the activities of antioxidant enzymes [superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)] and total antioxidant capacity (T-AOC), but increased the malondialdehyde (MDA), abscisic acid (ABA), and proline (PRO) contents in plants. The PRO content, T-AOC, and antioxidant enzyme activities were increased, and ABA and MDA contents were decreased by N addition alone. Furthermore, N addition under drought stress increased antioxidant enzymes activities, PRO content, and T-AOC. The treatments, however, did not significantly affect the chlorophyll fluorescence parameters of the species. T-AOC was positively correlated with antioxidant enzyme activities in each species, indicating that antioxidant enzymes were important for plant resistance to oxidative stress. MDA content increased with the increase of ABA content, indicating that ABA may help regulate stomatal movement and drought-induced oxidative injury in plants. T-AOC was positively correlated with PRO content, probably because PRO participated in osmotic regulation of cells and increased osmotic stress resistance. These results indicate that N addition can reduce drought stress of subtropical forest plants and will help researchers predict how evergreen broad-leaved forests will respond to global change in the future.


Assuntos
Poluentes Atmosféricos/toxicidade , Antioxidantes/metabolismo , Secas , Compostos de Nitrogênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Árvores/efeitos dos fármacos , China , Monitoramento Ambiental , Fagaceae/efeitos dos fármacos , Fagaceae/metabolismo , Florestas , Osmose/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Árvores/metabolismo , Clima Tropical
8.
Ecotoxicol Environ Saf ; 184: 109626, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31536848

RESUMO

Of late, Pacific white shrimp Penaeus vannamei culture has intensified globally and is a major contributor to the cultured shrimp produced worldwide. Intensification of its culture has led to elevated ammonia concentration during grow-out. Ammonia toxicity is a function of water pH, temperature, salinity and beyond the optimum range, creates stress to cultured aquatic species which can reduce growth, increase susceptibility to diseases and eventually mortality. The present study was aimed at quantifying the toxic effect of total ammonia nitrogen (TAN) (1, 3, 6 & 9 mg/l) and pH levels (6, 8 & 10) individually and in combination on median survival (50% lethal time) of shrimp (8 g) after exposure for 14 days followed by post-stress challenge with white spot syndrome virus (WSSV) for 9 days. Mortality risk factor and the toxicity effect on the immune variables were evaluated. Individual stressors showed a risk factor of 1-13 times, whereas combined treatments considerably increased the risk of dying compared to control. Low survival (15%) was observed in pH6TAN9 and pH10TAN3 treatments and was substantiated by prominent histological obliteration in gills of shrimp. The cumulative mortality in post-stress WSSV challenged trials was 1-5 times and 1-35 times in individual and combination treatments, respectively compared to control. The study revealed that variations in ammonia and pH beyond the optimal range significantly influence the non-specific immune mechanisms in P.vannamei and increases the susceptibility to WSSV especially in combination treatments.


Assuntos
Amônia/toxicidade , Penaeidae/efeitos dos fármacos , Penaeidae/imunologia , Estresse Salino , Poluentes Químicos da Água/toxicidade , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Concentração de Íons de Hidrogênio , Compostos de Nitrogênio/toxicidade , Penaeidae/virologia , Estresse Salino/imunologia , Análise de Sobrevida
9.
Pediatr Allergy Immunol ; 28(5): 452-457, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28452071

RESUMO

We hypothesize that oxidative stress induced by trichloramine exposure during swimming could be related to etiopathogenesis of asthma among elite swimmers. AIM: To investigate the effect of a swimming training session on oxidative stress markers of asthmatic compared to non-asthmatic elite swimmers using exhaled breath (EB) metabolomics. METHODS: Elite swimmers annually screened in our department (n=27) were invited and those who agreed to participate (n=20, of which 9 with asthma) had EB collected (Tedlar® bags) before and after a swimming training session. SPME fiber (DVB/CAR/PDMS) was used to extract EB metabolites followed by a multidimensional gas chromatography analysis (GC×GC-ToFMS). Dataset comprises eight metabolites end products of lipid peroxidation: five aliphatic alkanes (nonane, 2,2,4,6,6-pentamethylheptane, decane, dodecane, and tetradecane) and three aldehydes (nonanal, decanal, and dodecanal). To assess exercise impact on lipid peroxidation markers, data were analyzed using principle component analysis (PCA), which was run on the original data set and on the data set constructed using differences in the metabolite total areas before and after exercise session. RESULTS: Heatmap representation revealed that metabolites content decreased after exercise, both for control and asthma groups; however, the greater decrease was observed for controls. Asthmatics and controls did not form separated clusters; however, control swimmers demonstrated a more varied response to the exercise being dispersed along all score plot. CONCLUSION: In well-trained athletes, swimming is associated with a decrease in oxidative stress markers independently of the presence of asthma, although a more pronounced decrease was seen in controls.


Assuntos
Asma/induzido quimicamente , Cloretos/toxicidade , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Compostos de Nitrogênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Natação , Adolescente , Asma/metabolismo , Biomarcadores/metabolismo , Testes Respiratórios , Estudos de Casos e Controles , Cromatografia Gasosa , Expiração , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Estudos Retrospectivos
10.
ACS Appl Mater Interfaces ; 16(20): 25727-25739, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38742469

RESUMO

The development of engineered nanomaterials has been considered a promising strategy to control oral infections. In this study, silver-embedded carbon nitrides (Ag@g-CN) were synthesized and tested against Candida albicans, investigating their antifungal action and biocompatibility in animal cells. Ag@g-CN was synthesized by a simple one-pot thermal polymerization technique and characterized by various analytical techniques. X-ray diffraction (XRD) analysis revealed slight alterations in the crystal structure of g-CN upon the incorporation of Ag. Fourier transform infrared (FT-IR) spectroscopy confirmed the presence of Ag-N bonds, indicating successful silver incorporation and potential interactions with g-CN's amino groups. UV-vis spectroscopy demonstrated a red shift in the absorption edge of Ag@g-CN compared with g-CN, attributed to the surface plasmon resonance effect of silver nanoparticles. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) confirmed the 2D layered sheet like morphology of both materials. The Ag 3d peaks found in X-ray photoelectron spectroscopy (XPS) confirmed the presence of metallic Ag0 nanoparticles in Ag@g-CN. The Ag@g-CN materials exhibited high antifungal activity against reference and oral clinical strains of C. albicans, with minimal inhibitory concentration (MIC) ranges between 16-256 µg/mL. The mechanism of Ag@g-CN on C. albicans was attributed to the disruption of the membrane integrity and disturbance of the biofilm. In addition, the Ag@g-CN material showed good biocompatibility in the fibroblastic cell line and in Galleria mellonella, with no apparent cytotoxicity observed at a concentration up to 1000 µg/mL. These findings demonstrate the potential of the Ag@g-CN material as an effective and safe antifungal agent for the treatment of oral fungal infections.


Assuntos
Antifúngicos , Candida albicans , Nanopartículas Metálicas , Prata , Candida albicans/efeitos dos fármacos , Prata/química , Prata/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Animais , Testes de Sensibilidade Microbiana , Compostos de Nitrogênio/química , Compostos de Nitrogênio/farmacologia , Compostos de Nitrogênio/toxicidade , Camundongos , Nitrilas
11.
J Hazard Mater ; 476: 135116, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39013323

RESUMO

The Asian clam, Corbicula fluminea, commonly used in engineered wetlands receiving tailwater, affects nitrogen compound transformation in water. This study investigates how a commonly observed antibiotic in tailwater, norfloxacin, impact nitrogen compound transformation in tailwater containing C. fluminea. The clam was exposed to artificial tailwater with norfloxacin (0, 0.2, 20, and 2000 µg/L) for 15 days. Water properties, C. fluminea ecotoxicity responses, microorganism composition and nitrification- or denitrification-related enzyme activities were measured. Results revealed norfloxacin-induced increases and reductions in tailwater NH4+ and NO2- concentrations, respectively, along with antioxidant system inhibition, organ histopathological damage and disruption of water filtering and digestion system. Microorganism composition, especially biodiversity indices, varied with medium (clam organs and exposure water) and norfloxacin concentrations. Norfloxacin reduced NO2- content by lowering the ratio between microbial nitrifying enzyme (decreased hydroxylamine oxidoreductase and nitrite oxidoreductase activity) and denitrifying enzyme (increased nitrate reductase and nitrite reductase activity) in tailwater. Elevated NH4+ content resulted from upregulated ammonification and inhibited nitrification of microorganisms in tailwater, as well as increased ammonia emission from C. fluminea due to organ damage and metabolic disruption of the digestion system. Overall, this study offers insights into using benthic organisms to treat tailwater with antibiotic residues, especially regarding nitrogen treatment.


Assuntos
Antibacterianos , Corbicula , Norfloxacino , Poluentes Químicos da Água , Norfloxacino/farmacologia , Animais , Corbicula/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Nitrificação/efeitos dos fármacos , Compostos de Nitrogênio/toxicidade , Compostos de Nitrogênio/metabolismo , Desnitrificação/efeitos dos fármacos , Nitrogênio/metabolismo
12.
Environ Sci Technol ; 47(4): 2131-8, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23305492

RESUMO

Hydrothermal liquefaction (HTL) is an attractive method for converting wet biomass into petroleum-like biocrude oil that can be refined to make petroleum products. This approach is advantageous for conversion of low-lipid algae, which are promising feedstocks for sustainable large-scale biofuel production. As with natural petroleum formation, the water in contact with the produced oil contains toxic compounds. The objectives of this research were to: (1) identify nitrogenous organic compounds (NOCs) in wastewater from HTL conversion of Spirulina; (2) characterize mammalian cell cytotoxicity of specific NOCs, NOC mixture, and the complete HTL wastewater (HTL-WW) matrix; and (3) investigate mitigation measures to reduce toxicity in HTL-WW. Liquid-liquid extraction and nitrogen-phosphorus detection was used in conjunction with gas chromatography-mass spectrometry (GC-MS), which detected hundreds of NOCs in HTL-WW. Reference materials for nine of the most prevalent NOCs were used to identify and quantify their concentrations in HTL-WW. Mammalian cell cytotoxicity of the nine NOCs was quantified using a Chinese hamster ovary (CHO) cell assay, and the descending rank order for cytotoxicity was 3-dimethylamino-phenol > 2,2,6,6-tetramethyl-4-piperidone > 2,6-dimethyl-3-pyridinol > 2-picoline > pyridine > 1-methyl-2-pyrrolidinone > σ-valerolactam > 2-pyrrolidinone > ε-caprolactam. The organic mixture extracted from HTL-WW expressed potent CHO cell cytotoxic activity, with a LC(50) at 7.5% of HTL-WW. Although the toxicity of HTL-WW was substantial, 30% of the toxicity was removed biologically by recycling HTL-WW back into algal cultivation. The remaining toxicity of HTL-WW was mostly eliminated by subsequent treatment with granular activated carbon.


Assuntos
Biocombustíveis , Compostos de Nitrogênio/análise , Spirulina , Águas Residuárias/análise , Adsorção , Animais , Reatores Biológicos , Células CHO , Carvão Vegetal , Cricetinae , Temperatura Alta , Compostos de Nitrogênio/toxicidade , Testes de Toxicidade , Águas Residuárias/toxicidade
13.
Water Sci Technol ; 68(6): 1242-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24056419

RESUMO

Activated Sludge Models (ASMs) are widely used for biological wastewater treatment plant design, optimisation and operation. In commonly used ASMs, the nitrification process is modelled as a one-step process. However, in some process configurations, it is desirable to model the concentration of nitrite nitrogen through a two-step nitrification process. In this study, the benchmark datasets published by the Water Environment Research Foundation (WERF) were used to develop a two-step nitrification model considering the kinetics of Ammonium Oxidising Bacteria (AOB) and Nitrite Oxidising Bacteria (NOB). The WERF datasets were collected from a chemostat reactor fed about 1,000 mg-NH3-N/L synthetic influent with at different sludge retention times of 20, 10 and 5-d, whereas the pH in the reactor varied in the range of 5.8 and 8.8. Supplemental laboratory batch experiments were conducted to assess the toxicity of nitrite-N on nitrifying bacteria. These tests suggested that 500 mg-N/L of nitrite at pH 7.3 was toxic to NOB and resulted in continuous decrease in bulk oxygen uptake rate. To model this phenomenon, a poisoning model was used instead of the traditional Haldane-type inhibition model. The poisoning model for NOB and AOB with different threshold poisonings for unionised NO2-N and NH3-N concentrations could successfully reproduce the three WERF datasets.


Assuntos
Reatores Biológicos/microbiologia , Modelos Biológicos , Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Nitrificação , Compostos de Nitrogênio/análise , Compostos de Nitrogênio/metabolismo , Compostos de Nitrogênio/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
14.
Water Sci Technol ; 66(4): 903-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22766884

RESUMO

Despite the fact that the marine crustacean Artemia salina is extensively used in ecotoxicology, there is still a lack of information about its sensitivity to commonly used chemicals. In the presented study, acute toxicity of 18 commonly used chemicals - including organic solvents, industrial chemicals, metals and inorganic compounds - to A. salina was evaluated. A. salina showed a range of sensitivities to tested chemicals. Regarding all of the investigated organics, phenolic compounds expressed the highest toxicity to A. salina. Nitrite and mercury were the most toxic inorganic substances applied in the study. On the other hand, dimethyl sulfoxide, nitrate and ammonium were the least toxic. The possibility to use A. salina for interspecies correlation was assessed by comparison of sensitivities of different organisms (bacteria, fish, crustacean) to organic compounds. Correlation between various species was observed, especially between A. salina and fish. Due to the strong relation between toxicity and the logarithm of the octanol/water partition coefficient logP(OW,) lipophilicity was found to be the main factor influencing toxicity of the chosen organic compounds. No significant correlation between toxicity to A. salina and physico-chemical parameters of metals was observed.


Assuntos
Artemia/efeitos dos fármacos , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Aliivibrio fischeri/efeitos dos fármacos , Animais , Artemia/fisiologia , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Metais/toxicidade , Movimento/efeitos dos fármacos , Compostos de Nitrogênio/toxicidade , Solventes/toxicidade , Peixe-Zebra/fisiologia
16.
Inhal Toxicol ; 23 Suppl 1: 84-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21456940

RESUMO

CONTEXT: Three heterocyclic nitrogen compounds, 2,3-diethylpyrazine (DEP), 2,3,5,6-tetramethylpyrazine (TMP), and 2-acetyl pyridine (AP), are naturally present in tobacco and are also added to tobacco as flavor ingredients. OBJECTIVE: A battery of tests was used to compare the toxicity of mainstream smoke from experimental cigarettes containing the three heterocyclic nitrogen compounds added individually at three different levels. The lowest target inclusion level of the ingredient was 10 ppm, and the highest was 10,000 ppm. MATERIAL AND METHODS: Smoke from experimental and control cigarettes was evaluated in analytical smoke chemistry, in vitro cytotoxicity, and mutagenicity assays. RESULTS: The cigarettes with added DEP produced some minor (approximately 10%) changes in smoke chemistry when compared with the cigarettes containing no DEP. Smoke chemistry was effectively unchanged by the addition of either AP or TMP. Cytotoxicity, assessed by the neutral red uptake assay using both gas-vapor and particulate phases of smoke, was unaffected by the addition of any of the test ingredients. Mutagenicity, assessed in five strains of Salmonella treated with mainstream cigarette smoke condensate, also was unaffected by any of the test ingredients. CONCLUSIONS: Despite the exaggerated ingredient levels relative to commercial-use levels, there was a lack of a toxicological response for the three heterocyclic nitrogen compounds in the test systems used.


Assuntos
Compostos Heterocíclicos/toxicidade , Nicotiana/toxicidade , Compostos de Nitrogênio/toxicidade , Fumar/efeitos adversos , Xenobióticos/toxicidade , Administração por Inalação , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Excipientes/análise , Excipientes/toxicidade , Feminino , Aromatizantes/análise , Aromatizantes/toxicidade , Compostos Heterocíclicos/análise , Masculino , Compostos de Nitrogênio/análise , Ratos , Ratos Sprague-Dawley , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Fumaça/efeitos adversos , Fumaça/análise , Nicotiana/química , Testes de Toxicidade
17.
Arch Environ Contam Toxicol ; 60(2): 261-71, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20814671

RESUMO

The toxicity of a nutrient-pesticide mixture in nonvegetated and vegetated sections of a constructed wetland (882 m² each) was assessed using Hyalella azteca 48-h aqueous whole-effluent toxicity bioassays. Both sections were amended with a mixture of sodium nitrate, triple superphosphate, diazinon, and permethrin simulating storm-event agricultural runoff. Aqueous samples were collected at inflow, middle, and outflow points within each section 5 h, 24 h, 72 h, 7 days, 14 days, and 21 days postamendment. Nutrients and pesticides were detected throughout both wetland sections with concentrations longitudinally decreasing more in vegetated than nonvegetated section within 24 h. Survival effluent dilution point estimates-NOECs, LOECs, and LC50s-indicated greatest differences in toxicity between nonvegetated and vegetated sections at 5 h. Associations of nutrient and pesticide concentrations with NOECs indicated that earlier toxicity (5-72 h) was from permethrin and diazinon, whereas later toxicity (7-21 days) was primarily from diazinon. Nutrient-pesticide mixture concentration-response assessment using toxic unit models indicated that H. azteca toxicity was due primarily to the pesticides diazinon and permethrin. Results show that the effects of vegetation versus no vegetation on nutrient-pesticide mixture toxicity are not evident after 5 h and a 21-day retention time is necessary to improve H. azteca survival to ≥90% in constructed wetlands of this size.


Assuntos
Anfípodes/efeitos dos fármacos , Diazinon/toxicidade , Permetrina/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/química , Animais , Biota , Água Doce/química , Compostos de Nitrogênio/química , Compostos de Nitrogênio/toxicidade , Compostos de Fósforo/química , Compostos de Fósforo/toxicidade , Poluentes Químicos da Água/química , Áreas Alagadas
18.
Carbohydr Polym ; 267: 118215, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119169

RESUMO

This paper aims at providing a new strategy for developing konjac glucomannan-based antibacterial films with excellent performances. Here, novel nanocomposite films based on photodynamic and photothermal synergism strategy were developed by incorporating graphite carbon nitride nanosheets/MoS2 nanodots (CNMo) into konjac glucomannan (KGM) matrix. Scanning electron microscope, transmission electron microscope, high resolution transmission, high angle annular dark field and element mapping confirmed the successful fabrication of CNMo. The steady and dynamic rheological behavior as well as the good stability of film-forming solution showed that the intermolecular hydrogen bonding was formed. The influences of CNMo content on the structural, mechanical and thermal properties as well as hydrophobicity of KGM films were investigated. This film has a broad-spectrum antibacterial activity. It could prolong the shelf life of cherry tomatoes. Moreover, hemolysis and cells experiment confirm that this film is safe. This strategy is expected to broaden the application of antibacterial packaging.


Assuntos
Antibacterianos/farmacologia , Embalagem de Alimentos , Mananas/farmacologia , Nanocompostos/química , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Dissulfetos/química , Dissulfetos/farmacologia , Dissulfetos/toxicidade , Escherichia coli/efeitos dos fármacos , Conservação de Alimentos/instrumentação , Grafite/química , Grafite/farmacologia , Grafite/toxicidade , Interações Hidrofóbicas e Hidrofílicas , Solanum lycopersicum , Mananas/química , Mananas/toxicidade , Camundongos , Testes de Sensibilidade Microbiana , Molibdênio/química , Molibdênio/farmacologia , Molibdênio/toxicidade , Células NIH 3T3 , Nanocompostos/toxicidade , Compostos de Nitrogênio/química , Compostos de Nitrogênio/farmacologia , Compostos de Nitrogênio/toxicidade , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/toxicidade , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Staphylococcus aureus/efeitos dos fármacos , Temperatura
19.
Regul Toxicol Pharmacol ; 56(3): 357-64, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19887095

RESUMO

Nitrogen trichloride is a highly volatile chlorination disinfection by-product, very commonly found in the air of indoor swimming pools. The aim of this work is to characterize the hazard associated with it and to determine the concentration at which health effects appear, for application in health risk assessments for users of indoor swimming pools. Hazard identification was based on a literature survey and analysis of animal and human studies, with special attention paid to their methodological quality and to reports of a dose-response relationship. A toxicity reference value was derived for respiratory effects, based on human data from both general and occupational data. We selected a lowest-observed-adverse-effect-level of 0.355mg/m(3) based on objective measurements rather than self-reported effects. Two uncertainty factors were applied to take into account both intra-species variability and the use of a concentration with an effect rather than a no-observed-adverse-effect-level. A toxicity reference value of 4x10(-3)mg/m(3) for nitrogen trichloride is proposed for repeated short exposures. Alternative values based on animal data range from 0.01 to 0.03mg/m(3).


Assuntos
Poluentes Atmosféricos/toxicidade , Cloretos/toxicidade , Desinfetantes/toxicidade , Compostos de Nitrogênio/toxicidade , Poluentes Atmosféricos/normas , Animais , Cloretos/normas , Desinfetantes/normas , Humanos , Exposição por Inalação/análise , Compostos de Nitrogênio/normas , Nível de Efeito Adverso não Observado , Exposição Ocupacional/análise , Valores de Referência , Medição de Risco , Natação , Piscinas
20.
Chemosphere ; 238: 124573, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31454741

RESUMO

This study investigated the nutrient content and reuse potential of wastewater generated during hydrothermal liquefaction of microalgal biomass. The hydrothermal liquefaction reaction was tested at 270, 300, 330, and 345 °C to determine the effect of temperature on the formation of non-biodegradable dissolved organic nitrogen (nbDON). Total nitrogen, ammonium, color, and toxicity were selected as key characteristics for the reuse of hydrothermal liquefaction wastewater. Results indicated that a higher concentration of nbDON5 (nbDON defined with a 5 day growth assay) and more diverse heterocyclic N-containing organic compounds were associated with greater toxicity as measured by a growth rate assay. For the tested temperature ranges, the total nitrogen content of the hydrothermal liquefaction wastewater slightly decreased from 5020 ±â€¯690 mg L-1 to 4160 ±â€¯120 mg L-1, but the % nbDON5 fraction increased from 57 ±â€¯3 %DON to 96 ±â€¯5 %DON. The temperature of hydrothermal liquefaction reactions can be optimized to maximize carbon conversion and nitrogen recovery.


Assuntos
Chlorella/crescimento & desenvolvimento , Microalgas/crescimento & desenvolvimento , Compostos de Nitrogênio/toxicidade , Compostos Orgânicos/toxicidade , Águas Residuárias/toxicidade , Biodegradação Ambiental , Biocombustíveis , Biomassa , Nitrogênio/análise , Compostos de Nitrogênio/metabolismo , Compostos Orgânicos/análise , Temperatura , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA