Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307.104
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 79-98, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31800327

RESUMO

DNA has been known to be a potent immune stimulus for more than half a century. However, the underlying molecular mechanisms of DNA-triggered immune response have remained elusive until recent years. Cyclic GMP-AMP synthase (cGAS) is a major cytoplasmic DNA sensor in various types of cells that detect either invaded foreign DNA or aberrantly located self-DNA. Upon sensing of DNA, cGAS catalyzes the formation of cyclic GMP-AMP (cGAMP), which in turn activates the ER-localized adaptor protein MITA (also named STING) to elicit the innate immune response. The cGAS-MITA axis not only plays a central role in host defense against pathogen-derived DNA but also acts as a cellular stress response pathway by sensing aberrantly located self-DNA, which is linked to the pathogenesis of various human diseases. In this review, we summarize the spatial and temporal mechanisms of host defense to cytoplasmic DNA mediated by the cGAS-MITA axis and discuss the association of malfunctions of this axis with autoimmune and other diseases.


Assuntos
DNA/imunologia , Imunidade Inata , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Autoimunidade , Biomarcadores , Citoplasma/imunologia , Citoplasma/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo
2.
Annu Rev Biochem ; 93(1): 21-46, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594943

RESUMO

DNA replication and transcription occur in all living cells across all domains of life. Both essential processes occur simultaneously on the same template, leading to conflicts between the macromolecular machines that perform these functions. Numerous studies over the past few decades demonstrate that this is an inevitable problem in both prokaryotic and eukaryotic cells. We have learned that conflicts lead to replication fork reversal, breaks in the DNA, R-loop formation, topological stress, and mutagenesis and can ultimately impact evolution. Recent studies have also provided insight into the various mechanisms that mitigate, resolve, and allow tolerance of conflicts and how conflicts result in pathological consequences across divergent species. In this review, we summarize our current knowledge regarding the outcomes of the encounters between replication and transcription machineries and explore how these clashes are dealt with across species.


Assuntos
Replicação do DNA , Transcrição Gênica , Humanos , Animais , Cromossomos/metabolismo , Cromossomos/genética , Cromossomos/química , Estruturas R-Loop , DNA/metabolismo , DNA/genética , DNA/química
3.
Cell ; 187(19): 5282-5297.e20, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39168125

RESUMO

Biomolecular condensates assemble in living cells through phase separation and related phase transitions. An underappreciated feature of these dynamic molecular assemblies is that they form interfaces with other cellular structures, including membranes, cytoskeleton, DNA and RNA, and other membraneless compartments. These interfaces are expected to give rise to capillary forces, but there are few ways of quantifying and harnessing these forces in living cells. Here, we introduce viscoelastic chromatin tethering and organization (VECTOR), which uses light-inducible biomolecular condensates to generate capillary forces at targeted DNA loci. VECTOR can be utilized to programmably reposition genomic loci on a timescale of seconds to minutes, quantitatively revealing local heterogeneity in the viscoelastic material properties of chromatin. These synthetic condensates are built from components that naturally form liquid-like structures in living cells, highlighting the potential role for native condensates to generate forces and do work to reorganize the genome and impact chromatin architecture.


Assuntos
Cromatina , DNA , Elasticidade , Cromatina/metabolismo , Cromatina/química , DNA/metabolismo , DNA/química , Humanos , Viscosidade , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Loci Gênicos
4.
Cell ; 187(7): 1769-1784.e18, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552613

RESUMO

Mapping the intricate spatial relationships between the many different molecules inside a cell is essential to understanding cellular functions in all their complexity. Super-resolution fluorescence microscopy offers the required spatial resolution but struggles to reveal more than four different targets simultaneously. Exchanging labels in subsequent imaging rounds for multiplexed imaging extends this number but is limited by its low throughput. Here, we present a method for rapid multiplexed super-resolution microscopy that can, in principle, be applied to a nearly unlimited number of molecular targets by leveraging fluorogenic labeling in conjunction with transient adapter-mediated switching for high-throughput DNA-PAINT (FLASH-PAINT). We demonstrate the versatility of FLASH-PAINT with four applications: mapping nine proteins in a single mammalian cell, elucidating the functional organization of primary cilia by nine-target imaging, revealing the changes in proximity of thirteen different targets in unperturbed and dissociated Golgi stacks, and investigating and quantifying inter-organelle contacts at 3D super-resolution.


Assuntos
Microscopia de Fluorescência , Animais , DNA , Complexo de Golgi , Mamíferos , Microscopia de Fluorescência/métodos , Oligonucleotídeos , Proteínas
5.
Cell ; 187(19): 5238-5252.e20, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39208796

RESUMO

Fanzor (Fz) is an ωRNA-guided endonuclease extensively found throughout the eukaryotic domain with unique gene editing potential. Here, we describe the structures of Fzs from three different organisms. We find that Fzs share a common ωRNA interaction interface, regardless of the length of the ωRNA, which varies considerably across species. The analysis also reveals Fz's mode of DNA recognition and unwinding capabilities as well as the presence of a non-canonical catalytic site. The structures demonstrate how protein conformations of Fz shift to allow the binding of double-stranded DNA to the active site within the R-loop. Mechanistically, examination of structures in different states shows that the conformation of the lid loop on the RuvC domain is controlled by the formation of the guide/DNA heteroduplex, regulating the activation of nuclease and DNA double-stranded displacement at the single cleavage site. Our findings clarify the mechanism of Fz, establishing a foundation for engineering efforts.


Assuntos
Clivagem do DNA , DNA , DNA/metabolismo , DNA/química , Domínio Catalítico , Modelos Moleculares , RNA Guia de Sistemas CRISPR-Cas/metabolismo , RNA Guia de Sistemas CRISPR-Cas/química , Humanos , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Edição de Genes , Sistemas CRISPR-Cas
6.
Cell ; 187(19): 5357-5375.e24, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39260374

RESUMO

Genetic medicines show promise for treating various diseases, yet clinical success has been limited by tolerability, scalability, and immunogenicity issues of current delivery platforms. To overcome these, we developed a proteolipid vehicle (PLV) by combining features from viral and non-viral approaches. PLVs incorporate fusion-associated small transmembrane (FAST) proteins isolated from fusogenic orthoreoviruses into a well-tolerated lipid formulation, using scalable microfluidic mixing. Screening a FAST protein library, we identified a chimeric FAST protein with enhanced membrane fusion activity that improved gene expression from an optimized lipid formulation. Systemically administered FAST-PLVs showed broad biodistribution and effective mRNA and DNA delivery in mouse and non-human primate models. FAST-PLVs show low immunogenicity and maintain activity upon repeat dosing. Systemic administration of follistatin DNA gene therapy with FAST-PLVs raised circulating follistatin levels and significantly increased muscle mass and grip strength. These results demonstrate the promising potential of FAST-PLVs for redosable gene therapies and genetic medicines.


Assuntos
DNA , Proteolipídeos , Animais , Camundongos , DNA/metabolismo , DNA/administração & dosagem , Proteolipídeos/metabolismo , Terapia Genética/métodos , Humanos , Folistatina/metabolismo , Folistatina/genética , Técnicas de Transferência de Genes , RNA/metabolismo , RNA/administração & dosagem , Feminino , Camundongos Endogâmicos C57BL
7.
Cell ; 187(7): 1785-1800.e16, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552614

RESUMO

To understand biological processes, it is necessary to reveal the molecular heterogeneity of cells by gaining access to the location and interaction of all biomolecules. Significant advances were achieved by super-resolution microscopy, but such methods are still far from reaching the multiplexing capacity of proteomics. Here, we introduce secondary label-based unlimited multiplexed DNA-PAINT (SUM-PAINT), a high-throughput imaging method that is capable of achieving virtually unlimited multiplexing at better than 15 nm resolution. Using SUM-PAINT, we generated 30-plex single-molecule resolved datasets in neurons and adapted omics-inspired analysis for data exploration. This allowed us to reveal the complexity of synaptic heterogeneity, leading to the discovery of a distinct synapse type. We not only provide a resource for researchers, but also an integrated acquisition and analysis workflow for comprehensive spatial proteomics at single-protein resolution.


Assuntos
Proteômica , Imagem Individual de Molécula , DNA , Microscopia de Fluorescência/métodos , Neurônios , Proteínas
8.
Cell ; 187(13): 3249-3261.e14, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38781968

RESUMO

Thermostable clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas9) enzymes could improve genome-editing efficiency and delivery due to extended protein lifetimes. However, initial experimentation demonstrated Geobacillus stearothermophilus Cas9 (GeoCas9) to be virtually inactive when used in cultured human cells. Laboratory-evolved variants of GeoCas9 overcome this natural limitation by acquiring mutations in the wedge (WED) domain that produce >100-fold-higher genome-editing levels. Cryoelectron microscopy (cryo-EM) structures of the wild-type and improved GeoCas9 (iGeoCas9) enzymes reveal extended contacts between the WED domain of iGeoCas9 and DNA substrates. Biochemical analysis shows that iGeoCas9 accelerates DNA unwinding to capture substrates under the magnesium-restricted conditions typical of mammalian but not bacterial cells. These findings enabled rational engineering of other Cas9 orthologs to enhance genome-editing levels, pointing to a general strategy for editing enzyme improvement. Together, these results uncover a new role for the Cas9 WED domain in DNA unwinding and demonstrate how accelerated target unwinding dramatically improves Cas9-induced genome-editing activity.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , DNA , Edição de Genes , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , DNA/metabolismo , DNA/genética , Edição de Genes/métodos , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/metabolismo , Células HEK293 , Domínios Proteicos , Genoma Humano , Modelos Moleculares , Estrutura Terciária de Proteína , Conformação de Ácido Nucleico , Biocatálise , Magnésio/química , Magnésio/metabolismo
9.
Cell ; 187(13): 3445-3459.e15, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38838668

RESUMO

Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe's robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.


Assuntos
Mecanotransdução Celular , Imagem Individual de Molécula , Animais , Humanos , Camundongos , Fenômenos Biomecânicos , Adesão Celular , DNA/química , DNA/metabolismo , Adesões Focais/metabolismo , Integrinas/metabolismo , Microscopia de Força Atômica/métodos , Imagem Individual de Molécula/métodos , Linhagem Celular , Sobrevivência Celular , Pareamento de Bases , Calibragem
10.
Cell ; 187(19): 5220-5222, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303688

RESUMO

Fanzors are recently characterized RNA-guided DNA endonucleases found in eukaryotic organisms. In this issue of Cell, Xu, Saito et al. reveal the structural diversity of Fanzors and identify key features shared with TnpB and Cas12 proteins, providing a comprehensive perspective on their molecular function and evolution.


Assuntos
Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Eucariotos/genética , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , DNA/genética , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Humanos
11.
Cell ; 187(15): 3936-3952.e19, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936359

RESUMO

Duplication is a foundation of molecular evolution and a driver of genomic and complex diseases. Here, we develop a genome editing tool named Amplification Editing (AE) that enables programmable DNA duplication with precision at chromosomal scale. AE can duplicate human genomes ranging from 20 bp to 100 Mb, a size comparable to human chromosomes. AE exhibits activity across various cell types, encompassing diploid, haploid, and primary cells. AE exhibited up to 73.0% efficiency for 1 Mb and 3.4% for 100 Mb duplications, respectively. Whole-genome sequencing and deep sequencing of the junctions of edited sequences confirm the precision of duplication. AE can create chromosomal microduplications within disease-relevant regions in embryonic stem cells, indicating its potential for generating cellular and animal models. AE is a precise and efficient tool for chromosomal engineering and DNA duplication, broadening the landscape of precision genome editing from an individual genetic locus to the chromosomal scale.


Assuntos
Duplicação Gênica , Edição de Genes , Genoma Humano , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , DNA/genética , Animais , Células-Tronco Embrionárias/metabolismo , Cromossomos Humanos/genética
12.
Cell ; 187(4): 945-961.e18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38320550

RESUMO

DNA double-strand breaks (DSBs) are repaired at DSB sites. How DSB sites assemble and how broken DNA is prevented from separating is not understood. Here we uncover that the synapsis of broken DNA is mediated by the DSB sensor protein poly(ADP-ribose) (PAR) polymerase 1 (PARP1). Using bottom-up biochemistry, we reconstitute functional DSB sites and show that DSB sites form through co-condensation of PARP1 multimers with DNA. The co-condensates exert mechanical forces to keep DNA ends together and become enzymatically active for PAR synthesis. PARylation promotes release of PARP1 from DNA ends and the recruitment of effectors, such as Fused in Sarcoma, which stabilizes broken DNA ends against separation, revealing a finely orchestrated order of events that primes broken DNA for repair. We provide a comprehensive model for the hierarchical assembly of DSB condensates to explain DNA end synapsis and the recruitment of effector proteins for DNA damage repair.


Assuntos
Reparo do DNA , Poli(ADP-Ribose) Polimerase-1 , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Humanos
13.
Cell ; 187(2): 331-344.e17, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38194964

RESUMO

Enhancers are distal DNA elements believed to loop and contact promoters to control gene expression. Recently, we found diffraction-sized transcriptional condensates at genes controlled by clusters of enhancers (super-enhancers). However, a direct function of endogenous condensates in controlling gene expression remains elusive. Here, we develop live-cell super-resolution and multi-color 3D-imaging approaches to investigate putative roles of endogenous condensates in the regulation of super-enhancer controlled gene Sox2. In contrast to enhancer distance, we find instead that the condensate's positional dynamics are a better predictor of gene expression. A basal gene bursting occurs when the condensate is far (>1 µm), but burst size and frequency are enhanced when the condensate moves in proximity (<1 µm). Perturbations of cohesin and local DNA elements do not prevent basal bursting but affect the condensate and its burst enhancement. We propose a three-way kissing model whereby the condensate interacts transiently with gene locus and regulatory DNA elements to control gene bursting.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição SOXB1 , Super Intensificadores , Transcrição Gênica , DNA/genética , Elementos Facilitadores Genéticos , Fatores de Transcrição SOXB1/genética , Animais , Camundongos , Células-Tronco Embrionárias/metabolismo , Microscopia/métodos
14.
Cell ; 187(2): 294-311.e21, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38128537

RESUMO

Lactylation is a lactate-induced post-translational modification best known for its roles in epigenetic regulation. Herein, we demonstrate that MRE11, a crucial homologous recombination (HR) protein, is lactylated at K673 by the CBP acetyltransferase in response to DNA damage and dependent on ATM phosphorylation of the latter. MRE11 lactylation promotes its binding to DNA, facilitating DNA end resection and HR. Inhibition of CBP or LDH downregulated MRE11 lactylation, impaired HR, and enhanced chemosensitivity of tumor cells in patient-derived xenograft and organoid models. A cell-penetrating peptide that specifically blocks MRE11 lactylation inhibited HR and sensitized cancer cells to cisplatin and PARPi. These findings unveil lactylation as a key regulator of HR, providing fresh insights into the ways in which cellular metabolism is linked to DSB repair. They also imply that the Warburg effect can confer chemoresistance through enhancing HR and suggest a potential therapeutic strategy of targeting MRE11 lactylation to mitigate the effects.


Assuntos
Proteínas de Ligação a DNA , Proteína Homóloga a MRE11 , Reparo de DNA por Recombinação , Humanos , DNA , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Recombinação Homóloga , Proteína Homóloga a MRE11/metabolismo , Ácido Láctico/metabolismo
15.
Cell ; 187(3): 692-711.e26, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262408

RESUMO

Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest that it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how "Coordinator," a long DNA motif composed of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines the regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, whereas HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in the shared regulation of genes involved in cell-type and positional identities and ultimately shapes facial morphology and evolution.


Assuntos
Proteínas de Ligação a DNA , Desenvolvimento Embrionário , Fatores de Transcrição , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Mesoderma/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Animais , Camundongos , Extremidades/crescimento & desenvolvimento
16.
Cell ; 187(19): 5253-5266.e16, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39173632

RESUMO

Horizontal gene transfer is a key driver of bacterial evolution, but it also presents severe risks to bacteria by introducing invasive mobile genetic elements. To counter these threats, bacteria have developed various defense systems, including prokaryotic Argonautes (pAgos) and the DNA defense module DdmDE system. Through biochemical analysis, structural determination, and in vivo plasmid clearance assays, we elucidate the assembly and activation mechanisms of DdmDE, which eliminates small, multicopy plasmids. We demonstrate that DdmE, a pAgo-like protein, acts as a catalytically inactive, DNA-guided, DNA-targeting defense module. In the presence of guide DNA, DdmE targets plasmids and recruits a dimeric DdmD, which contains nuclease and helicase domains. Upon binding to DNA substrates, DdmD transitions from an autoinhibited dimer to an active monomer, which then translocates along and cleaves the plasmids. Together, our findings reveal the intricate mechanisms underlying DdmDE-mediated plasmid clearance, offering fundamental insights into bacterial defense systems against plasmid invasions.


Assuntos
Proteínas de Bactérias , Transferência Genética Horizontal , Plasmídeos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , DNA/metabolismo , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , DNA Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Plasmídeos/metabolismo , Plasmídeos/genética
17.
Annu Rev Biochem ; 92: 43-79, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37018843

RESUMO

DNA-editing enzymes perform chemical reactions on DNA nucleobases. These reactions can change the genetic identity of the modified base or modulate gene expression. Interest in DNA-editing enzymes has burgeoned in recent years due to the advent of clustered regularly interspaced short palindromic repeat-associated (CRISPR-Cas) systems, which can be used to direct their DNA-editing activity to specific genomic loci of interest. In this review, we showcase DNA-editing enzymes that have been repurposed or redesigned and developed into programmable base editors. These include deaminases, glycosylases, methyltransferases, and demethylases. We highlight the astounding degree to which these enzymes have been redesigned, evolved, and refined and present these collective engineering efforts as a paragon for future efforts to repurpose and engineer other families of enzymes. Collectively, base editors derived from these DNA-editing enzymes facilitate programmable point mutation introduction and gene expression modulation by targeted chemical modification of nucleobases.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Proteína 9 Associada à CRISPR/genética , Genoma , DNA/genética , DNA/metabolismo
18.
Annu Rev Biochem ; 92: 1-13, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37001139

RESUMO

In this autobiographical article, I reflect on my Swedish background. Then I discuss endogenous DNA alterations and the base excision repair pathway and alternative repair strategies for some unusual DNA lesions. Endogenous DNA damage, such as loss of purine bases and cytosine deamination, is proposed as a major source of cancer-causing mutations.


Assuntos
DNA Glicosilases , Reparo do DNA , Dano ao DNA , DNA/genética , DNA/metabolismo , DNA Glicosilases/metabolismo
19.
Annu Rev Biochem ; 92: 81-113, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37040775

RESUMO

Ultraviolet (UV) irradiation and other genotoxic stresses induce bulky DNA lesions, which threaten genome stability and cell viability. Cells have evolved two main repair pathways to remove such lesions: global genome nucleotide excision repair (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER). The modes by which these subpathways recognize DNA lesions are distinct, but they converge onto the same downstream steps for DNA repair. Here, we first summarize the current understanding of these repair mechanisms, specifically focusing on the roles of stalled RNA polymerase II, Cockayne syndrome protein B (CSB), CSA and UV-stimulated scaffold protein A (UVSSA) in TC-NER. We also discuss the intriguing role of protein ubiquitylation in this process. Additionally, we highlight key aspects of the effect of UV irradiation on transcription and describe the role of signaling cascades in orchestrating this response. Finally, we describe the pathogenic mechanisms underlying xeroderma pigmentosum and Cockayne syndrome, the two main diseases linked to mutations in NER factors.


Assuntos
Síndrome de Cockayne , Humanos , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Transcrição Gênica , Reparo do DNA , Dano ao DNA , DNA/genética , DNA/metabolismo , Proteínas de Transporte/metabolismo
20.
Annu Rev Biochem ; 92: 15-41, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37137166

RESUMO

SMC (structural maintenance of chromosomes) protein complexes are an evolutionarily conserved family of motor proteins that hold sister chromatids together and fold genomes throughout the cell cycle by DNA loop extrusion. These complexes play a key role in a variety of functions in the packaging and regulation of chromosomes, and they have been intensely studied in recent years. Despite their importance, the detailed molecular mechanism for DNA loop extrusion by SMC complexes remains unresolved. Here, we describe the roles of SMCs in chromosome biology and particularly review in vitro single-molecule studies that have recently advanced our understanding of SMC proteins. We describe the mechanistic biophysical aspects of loop extrusion that govern genome organization and its consequences.


Assuntos
Proteínas Cromossômicas não Histona , Complexos Multiproteicos , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Complexos Multiproteicos/química , Cromossomos/genética , Cromossomos/metabolismo , DNA/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA