Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nucleic Acids Res ; 48(22): 12957-12971, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33245772

RESUMO

Left-handed Z-DNA is radically different from the most common right-handed B-DNA and can be stabilized by interactions with the Zα domain, which is found in a group of proteins, such as human ADAR1 and viral E3L proteins. It is well-known that most Zα domains bind to Z-DNA in a conformation-specific manner and induce rapid B-Z transition in physiological conditions. Although many structural and biochemical studies have identified the detailed interactions between the Zα domain and Z-DNA, little is known about the molecular basis of the B-Z transition process. In this study, we successfully converted the B-Z transition-defective Zα domain, vvZαE3L, into a B-Z converter by improving B-DNA binding ability, suggesting that B-DNA binding is involved in the B-Z transition. In addition, we engineered the canonical B-DNA binding protein GH5 into a Zα-like protein having both Z-DNA binding and B-Z transition activities by introducing Z-DNA interacting residues. Crystal structures of these mutants of vvZαE3L and GH5 complexed with Z-DNA confirmed the significance of conserved Z-DNA binding interactions. Altogether, our results provide molecular insight into how Zα domains obtain unusual conformational specificity and induce the B-Z transition.


Assuntos
Adenosina Desaminase/genética , DNA de Forma B/ultraestrutura , DNA Forma Z/ultraestrutura , Conformação de Ácido Nucleico , Proteínas de Ligação a RNA/genética , Adenosina Desaminase/ultraestrutura , Sequência de Aminoácidos/genética , Sítios de Ligação , DNA de Forma B/genética , DNA Forma Z/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/ultraestrutura
2.
Nucleic Acids Res ; 46(16): 8038-8056, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30124962

RESUMO

The i-motif represents a paradigmatic example of the wide structural versatility of nucleic acids. In remarkable contrast to duplex DNA, i-motifs are four-stranded DNA structures held together by hemi- protonated and intercalated cytosine base pairs (C:C+). First observed 25 years ago, and considered by many as a mere structural oddity, interest in and discussion on the biological role of i-motifs have grown dramatically in recent years. In this review we focus on structural aspects of i-motif formation, the factors leading to its stabilization and recent studies describing the possible role of i-motifs in fundamental biological processes.


Assuntos
Citosina/química , DNA/química , Conformação de Ácido Nucleico , Pareamento de Bases , DNA/genética , DNA/ultraestrutura , DNA de Forma B/química , DNA de Forma B/ultraestrutura , Quadruplex G , Humanos , Substâncias Intercalantes , Modelos Moleculares , Motivos de Nucleotídeos/genética
3.
Nano Lett ; 18(4): 2733-2737, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29564895

RESUMO

Hydration interaction shapes biomolecules and is a dominant intermolecular force. Mapping the hydration patterns of biomolecules is therefore essential for understanding molecular processes in biology. Numerous studies have been devoted to this challenge, but current methods cannot map the hydration of single biomolecules, let alone do so under physiological conditions. Here, we show that frequency-modulation atomic force microscopy (FM-AFM) can fill this gap and generate 3D hydration maps of single DNA molecules under near-physiological conditions. Additionally, we present real-space images of DNA in which the double helix is resolved with unprecedented resolution, clearly revealing individual phosphate groups along the DNA backbone. FM-AFM therefore emerges as a powerful enabling tool in the study of individual biomolecules and their hydration under physiological conditions.


Assuntos
DNA/química , DNA/ultraestrutura , Microscopia de Força Atômica/métodos , Conformação de Ácido Nucleico , Água/química , DNA de Forma B/química , DNA de Forma B/ultraestrutura , Imageamento Tridimensional , Fosfatos/análise
4.
Nucleic Acids Res ; 44(9): 4052-66, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27084952

RESUMO

We present a systematic study of the long-timescale dynamics of the Drew-Dickerson dodecamer (DDD: d(CGCGAATTGCGC)2) a prototypical B-DNA duplex. Using our newly parameterized PARMBSC1 force field, we describe the conformational landscape of DDD in a variety of ionic environments from minimal salt to 2 M Na(+)Cl(-) or K(+)Cl(-) The sensitivity of the simulations to the use of different solvent and ion models is analyzed in detail using multi-microsecond simulations. Finally, an extended (10 µs) simulation is used to characterize slow and infrequent conformational changes in DDD, leading to the identification of previously uncharacterized conformational states of this duplex which can explain biologically relevant conformational transitions. With a total of more than 43 µs of unrestrained molecular dynamics simulation, this study is the most extensive investigation of the dynamics of the most prototypical DNA duplex.


Assuntos
DNA de Forma B/química , DNA de Forma B/ultraestrutura , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Modelos Moleculares , Cloreto de Potássio/química , Cloreto de Sódio/química
5.
Biochem Biophys Res Commun ; 485(2): 492-498, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28189681

RESUMO

DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices.


Assuntos
DNA de Forma B/química , DNA/química , Nanoestruturas/química , Conformação de Ácido Nucleico , Sequência de Bases , Cátions/química , DNA/genética , DNA/ultraestrutura , DNA de Forma B/genética , DNA de Forma B/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Microscopia Eletrônica de Varredura , Modelos Moleculares , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Oligonucleotídeos/química , Oligonucleotídeos/genética , Propriedades de Superfície
6.
Biochem Biophys Res Commun ; 482(2): 335-340, 2017 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-27856245

RESUMO

A Z-DNA binding protein (ZBP)-containing protein kinase (PKZ) in fish species has an important role in the innate immune response. Previous structural studies of the Zα domain of the PKZ from Carassius auratus (caZαPKZ) showed that the protein initially binds to B-DNA and induces B-Z transition of double stranded DNA in a salt concentration-dependent manner. However, the significantly reduced B-Z transition activity of caZαPKZ at high salt concentration was not fully understood. In this study, we present the binding affinity of the protein for B-DNA and Z-DNA and characterize its extremely low B-Z transition activity at 250 mM NaCl. Our results emphasize that the B-DNA-bound form of caZαPKZ can be used as molecular ruler to measure the degree of B-Z transition.


Assuntos
DNA de Forma B/química , DNA Forma Z/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas Quinases/química , Proteínas Quinases/ultraestrutura , Cloreto de Sódio/química , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/ultraestrutura , Sítios de Ligação , DNA de Forma B/ultraestrutura , DNA Forma Z/ultraestrutura , Ativação Enzimática , Cinética , Ligação Proteica
7.
Nat Commun ; 10(1): 4818, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645548

RESUMO

Metal-mediated base pairs expand the repertoire of nucleic acid structures and dynamics. Here we report solution structures and dynamics of duplex DNA containing two all-natural C-HgII-T metallo base pairs separated by six canonical base pairs. NMR experiments reveal a 3:1 ratio of well-resolved structures in dynamic equilibrium. The major species contains two (N3)T-HgII-(N3)C base pairs in a predominantly B-form helix. The minor species contains (N3)T-HgII-(N4)C base pairs and greater A-form characteristics. Ten-fold different 1J coupling constants (15N,199Hg) are observed for (N3)C-HgII (114 Hz) versus (N4)C-HgII (1052 Hz) connectivities, reflecting differences in cytosine ionization and metal-bonding strengths. Dynamic interconversion between the two types of C-HgII-T base pairs are coupled to a global conformational exchange between the helices. These observations inspired the design of a repetitive DNA sequence capable of undergoing a global B-to-A-form helical transition upon adding HgII, demonstrating that C-HgII-T has unique switching potential in DNA-based materials and devices.


Assuntos
DNA Forma A/ultraestrutura , DNA de Forma B/ultraestrutura , Mercúrio/química , Pareamento de Bases , Citosina , DNA/química , DNA/ultraestrutura , DNA Forma A/química , DNA de Forma B/química , Metais , Modelos Moleculares , Conformação de Ácido Nucleico , Espectroscopia de Prótons por Ressonância Magnética , Soluções , Timina
8.
Chem Commun (Camb) ; 51(91): 16389-92, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26411524

RESUMO

5-Hydroxylmethylcytosine (5hmC) has been recognized as the sixth base with important biological functions in many tissues and cell types. We present here the high-resolution crystal structures and molecular simulation studies of both A-form and B-form DNA duplexes containing 5hmC. We observed that 5hmC interacts with its 3'-neighboring bases through water-bridged hydrogen bonds and these interactions may affect the further oxidation of 5hmC.


Assuntos
Citosina/análogos & derivados , DNA Forma A/química , DNA de Forma B/química , Ligação de Hidrogênio , Água/química , 5-Metilcitosina/análogos & derivados , Pareamento de Bases , Cristalografia por Raios X , Citosina/química , DNA Forma A/ultraestrutura , DNA de Forma B/ultraestrutura , Simulação de Dinâmica Molecular
9.
Nanoscale ; 6(12): 7085-92, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24847505

RESUMO

Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg(2+) ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg(2+) or Na(+), benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg(2+) bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.


Assuntos
DNA de Forma B/química , DNA de Forma B/ultraestrutura , DNA Forma Z/química , DNA Forma Z/ultraestrutura , Magnésio/química , Simulação de Dinâmica Molecular , Sítios de Ligação , Simulação por Computador , Modelos Químicos , Conformação de Ácido Nucleico , Eletricidade Estática , Estresse Mecânico
10.
J R Soc Interface ; 11(97): 20140454, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-24898023

RESUMO

The role that DNA conformation plays in the biochemistry of cells has been the subject of intensive research since DNA polymorphism was discovered. B-DNA has long been considered the native form of DNA in cells although alternative conformations of DNA are thought to occur transiently and along short tracts. Here, we report the first direct observation of a fully reversible en masse conformational transition between B- and A-DNA within live bacterial cells using Fourier transform infrared (FTIR) spectroscopy. This biospectroscopic technique allows for non-invasive and reagent-free examination of the holistic biochemistry of samples. For this reason, we have been able to observe the previously unknown conformational transition in all four species of bacteria investigated. Detection of this transition is evidence of a previously unexplored biological significance for A-DNA and highlights the need for new research into the role that A-DNA plays as a cellular defence mechanism and in stabilizing the DNA conformation. Such studies are pivotal in understanding the role of A-DNA in the evolutionary pathway of nucleic acids. Furthermore, this discovery demonstrates the exquisite capabilities of FTIR spectroscopy and opens the door for further investigations of cell biochemistry with this under-used technique.


Assuntos
DNA Forma A/química , DNA Forma A/ultraestrutura , DNA de Forma B/química , DNA de Forma B/ultraestrutura , DNA Bacteriano/química , DNA Bacteriano/ultraestrutura , Dessecação , Conformação de Ácido Nucleico , Transição de Fase , Proteus vulgaris/genética
11.
Ultramicroscopy ; 145: 36-49, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24524867

RESUMO

Monochromatic, aberration-corrected, dual-beam low energy electron microscopy (MAD-LEEM) is a novel technique that is directed towards imaging nanostructures and surfaces with sub-nanometer resolution. The technique combines a monochromator, a mirror aberration corrector, an energy filter, and dual beam illumination in a single instrument. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. Simulation results predict that the novel aberration corrector design will eliminate the second rank chromatic and third and fifth order spherical aberrations, thereby improving the resolution into the sub-nanometer regime at landing energies as low as one hundred electron-Volts. The energy filter produces a beam that can extract detailed information about the chemical composition and local electronic states of non-periodic objects such as nanoparticles, interfaces, defects, and macromolecules. The dual flood illumination eliminates charging effects that are generated when a conventional LEEM is used to image insulating specimens. A potential application for MAD-LEEM is in DNA sequencing, which requires high resolution to distinguish the individual bases and high speed to reduce the cost. The MAD-LEEM approach images the DNA with low electron impact energies, which provides nucleobase contrast mechanisms without organometallic labels. Furthermore, the micron-size field of view when combined with imaging on the fly provides long read lengths, thereby reducing the demand on assembling the sequence. Experimental results from bulk specimens with immobilized single-base oligonucleotides demonstrate that base specific contrast is available with reflected, photo-emitted, and Auger electrons. Image contrast simulations of model rectangular features mimicking the individual nucleotides in a DNA strand have been developed to translate measurements of contrast on bulk DNA to the detectability of individual DNA bases in a sequence.


Assuntos
Microscopia Eletrônica/instrumentação , Análise de Sequência de DNA/instrumentação , Simulação por Computador , DNA de Forma B/química , DNA de Forma B/ultraestrutura , Elétrons , Desenho de Equipamento , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Microscopia Eletrônica/métodos , Microscopia Eletrônica/estatística & dados numéricos , Nanoestruturas , Dispositivos Ópticos , Fenômenos Ópticos , Espectroscopia Fotoeletrônica , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/estatística & dados numéricos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA