RESUMO
Field and greenhouse studies attempting to describe the molecular responses of plant species under waterlogging (WL) combined with salinity (ST) are almost nonexistent. We integrated transcriptional, metabolic, and physiological responses involving several crucial transcripts and common differentially expressed genes and metabolites in fragrant rosewood (Dalbergia odorifera) leaflets to dissect plant-specific molecular responses and patterns under WL combined with ST (SWL). We discovered that the synergistic pattern of the transcriptional response of fragrant rosewood under SWL was exclusively characterized by the number of regulated transcripts. The response patterns under SWL based on transcriptome and metabolome regulation statuses revealed different patterns (additive, dominant, neutral, minor, unilateral, and antagonistic) of transcripts or metabolites that were commonly regulated or expressed uniquely under SWL. Under SWL, the synergistic transcriptional response of several functional gene subsets was positively associated with several metabolomic and physiological responses related to the shutdown of the photosynthetic apparatus and the extensive degradation of starch into saccharides through α-amylase, ß-amylase, and α-glucosidase or plastoglobuli accumulation. The dissimilarity between the regulation status and number of transcripts in plants under combined stresses led to nonsynergistic responses in several physiological and phytohormonal traits. As inferred from the impressive synergistic transcriptional response to morpho-physiological changes, combined stresses exhibited a gradually decreasing effect on the changes observed at the molecular level compared to those in the morphological one. Here, by characterizing the molecular responses and patterns of plant species under SWL, our study considerably improves our understanding of the molecular mechanisms underlying combined stress.
Assuntos
Dalbergia , Dalbergia/genética , Salinidade , Transcriptoma/genética , Fenótipo , Metabolômica , Estresse Fisiológico/genéticaRESUMO
BACKGROUND: Alternative polyadenylation (APA), alternative splicing (AS), and long non-coding RNAs (lncRNAs) play regulatory roles in post-transcriptional processes in plants. However, little is known about their involvement in xylem development in Dalbergia odorifera, a valuable rosewood species with medicinal and commercial significance. We addressed this by conducting Isoform Sequencing (Iso-Seq) using PacBio's SMRT technology and combined it with RNA-seq analysis (RNA sequencing on Illumina platform) after collecting xylem samples from the transition zone and the sapwood of D. odorifera. RESULTS: We identified 14,938 full-length transcripts, including 9,830 novel isoforms, which has updated the D. odorifera genome annotation. Our analysis has revealed that 4,164 genes undergo APA, whereas 3,084 genes encounter AS. We have also annotated 118 lncRNAs. Furthermore, RNA-seq analysis identified 170 differential alternative splicing (DAS) events, 344 genes with differential APA site usage (DE-APA), and 6 differentially expressed lncRNAs in the transition zone when compared to the sapwood. AS, APA, and lncRNAs are differentially regulated during xylem development. Differentially expressed APA genes were enriched for terpenoid and flavonoid metabolism, indicating their role in the heartwood formation. Additionally, DE-APA genes were associated with cell wall biosynthesis and terpenoid metabolism, implying an APA's role in wood formation. A DAS gene (involved in chalcone accumulation) with a significantly greater inclusion of the last exon in the transition zone than in the sapwood was identified. We also found that differentially expressed lncRNAs targeted the genes related to terpene synthesis. CONCLUSIONS: This study enhances our understanding of the molecular regulatory mechanisms underlying wood formation in D. odorifera, and provides valuable genetic resources and insights for its molecular-assisted breeding.
Assuntos
Dalbergia , RNA Longo não Codificante , Madeira/genética , Madeira/metabolismo , Dalbergia/genética , Dalbergia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA-Seq , Processamento Alternativo , Isoformas de Proteínas/genética , Terpenos/metabolismoRESUMO
BACKGROUND: Trees have developed a broad spectrum of molecular mechanisms to counteract oxidative stress. Secondary metabolites via phenolic compounds emblematized the hidden bridge among plant kingdom, human health, and oxidative stress. Although studies have demonstrated that abiotic stresses can increase the production of medicinal compounds in plants, research comparing the efficiency of these stresses still needs to be explored. Thus, the present research paper provided an exhaustive comparative metabolomic study in Dalbergia odorifera under salinity (ST) and waterlogging (WL). RESULTS: High ST reduced D. odorifera's fresh biomass compared to WL. While WL only slightly affected leaf and vein size, ST had a significant negative impact. ST also caused more significant damage to water status and leaflet anatomy than WL. As a result, WL-treated seedlings exhibited better photosynthesis and an up-regulation of nonenzymatic pathways involved in scavenging reactive oxygen species. The metabolomic and physiological responses of D. odorifera under WL and salinity ST stress revealed an accumulation of secondary metabolites by the less aggressive stress (WL) to counterbalance the oxidative stress. Under WL, more metabolites were more regulated compared to ST. ST significantly altered the metabolite profile in D. odorifera leaflets, indicating its sensitivity to salinity. WL synthesized more metabolites involved in phenylpropanoid, flavone, flavonol, flavonoid, and isoflavonoid pathways than ST. Moreover, the down-regulation of L-phenylalanine correlated with increased p-coumarate, caffeate, and ferulate associated with better cell homeostasis and leaf anatomical indexes under WL. CONCLUSIONS: From a pharmacological and medicinal perspective, WL improved larger phenolics with therapeutic values compared to ST. Therefore, the data showed evidence of the crucial role of medical tree species' adaptability on ROS detoxification under environmental stresses that led to a significant accumulation of secondary metabolites with therapeutic value.
Assuntos
Dalbergia , Humanos , Dalbergia/metabolismo , Salinidade , Plantas/metabolismo , Antioxidantes/metabolismo , FotossínteseRESUMO
BACKGROUND: Dalbergia odorifera is a rare and precious rosewood specie, which is valued for its amber tones, abstract figural patterns, and impermeability to water and insects. However, the information on genetic diversity and marker-assisted selection breeding of D. odorifera is still limited. Simple sequence repeat (SSR) markers are an ideal tool for genetic diversity analysis and marker-assisted molecular breeding for complex traits. RESULTS: Here, we have developed SSR markers within candidate genes and used them to explore the genetic diversity among D. odorifera germplasm resources. A total of 635 SSR loci were identified. The proportions of mono-, di- and tri-nucleotide repeat motifs were 52.28%, 22.99% and 21.42%, respectively. From these, a total of 114 SSR primers were synthesized, of which 24 SSR markers displayed polymorphism (polymorphic information content (PIC) > 0.25). Subsequently, these polymorphic markers were used for the genetic diversity analysis of 106 D. odorifera individuals from 11 natural populations. According to the genetic diversity analysis of D. odorifera natural populations, the average observed heterozygosity (Ho) was 0.500, the average expected heterozygosity (He) was 0.524, and the average Shannon's information index (I) was 0.946. These indicated that the natural populations had moderate genetic diversity. AMOVA analysis showed that 5% of the total variation was within the individuals of a population, whereas 95% of the variation was among the individuals of the populations, indicating a high degree of genetic variation between populations. On the basis of their genetic structures, these populations could be divided into four groups. CONCLUSIONS: Our study provides important experimental resources for genetic studies and assists in the program of molecular breeding of D. odorifera wood formation.
Assuntos
Dalbergia , Repetições de Microssatélites , Repetições de Microssatélites/genética , Dalbergia/genética , Polimorfismo Genético , Marcadores Genéticos , Variação Genética , FilogeniaRESUMO
Three new dihydroflavonols, gloverinols A-C (1-3), a new flavon-3-ol, gloverinol D (4), two new isoflavans, gloveriflavan A (5) and B (6), and seven known compounds were isolated from the root bark of Dalbergia gloveri. The structures of the isolates were elucidated by using NMR, ECD, and HRESIMS data analyses. Among the isolated compounds, gloverinol B (2), gloveriflavan B (6), and 1-(2,4-dihydroxyphenyl)-3-hydroxy-3-(4-hydroxyphenyl)-1-propanone (10) were the most active against Staphylococcus aureus, with MIC values of 9.2, 18.4, and 14.2 µM, respectively.
Assuntos
Dalbergia , Testes de Sensibilidade Microbiana , Casca de Planta , Raízes de Plantas , Staphylococcus aureus , Casca de Planta/química , Raízes de Plantas/química , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Dalbergia/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/isolamento & purificação , Isoflavonas/farmacologia , Isoflavonas/química , Isoflavonas/isolamento & purificaçãoRESUMO
The purpose of this research was to investigate the cardioprotective effects and pharmacokinetics of Dalbergia odorifera flavonoids. The cardioprotective effects were detected by hematoxylin-eosin staining histopathological observations and the detection of myocardial enzymes by kits in serum, peroxidation and antioxidant levels and ATPase activities by kits in the homogenate supernatant, and antioxidant and apoptosis-related protein expression in heart tissue by immunohistochemistry. The pharmacokinetics parameters of the flavonoids in rat plasma were investigated by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. Molecular docking of the compounds absorbed by the blood with specific proteins was carried out. D. odorifera flavonoids significantly reduced the levels of creatinine kinase, alanine transaminase, nitric oxide, and Hydrogen peroxide, elevated the levels of glutathione, superoxide dismutase, and ATPase, significantly reduced the pathological degree of heart tissue and had obvious anti-myocardial ischemia efficacy. Nine out of the 17 flavonoids were detected in rat plasma. The peak concentration and the area under the plasma concentration-time curve values of 3'-O-methylviolanone and sativanone were significantly higher than those of other ingredients. The peak time of most flavonoids (except for Genistein and Pruneion) was lower than 2 h, while the half-life of elimination of the nine flavonoids ranged from 3.32 to 21.5 h. The molecular docking results showed that daidzein, dalbergin, formononetin, and genistein had the potential to bind to the target proteins. The results of the study provide an important basis for understanding the cardioprotective effects and clinical application of D. odorifera.
Assuntos
Dalbergia , Flavonoides , Ratos , Animais , Flavonoides/farmacologia , Flavonoides/química , Dalbergia/química , Simulação de Acoplamento Molecular , Genisteína , Antioxidantes/farmacologia , Adenosina TrifosfatasesRESUMO
Dalbergia odorifera is a natural product rich in pharmacological ingredients, but the comprehensive characterization and rapid profiling of active components remain a challenge. Thus, an integrated data mining and identification strategy was exploited to efficiently identify the chemical constituents and screen acetylcholinesterase inhibitors (AChEIs) through affinity ultrafiltration and ultra-high-performance liquid chromatography-mass spectrometry (AUF-UHPLC-MS). As a result, polygonal mass defect filtering, diagnostic product ions, and neutral loss rules were created for rapid structural classification and component identification. A total of 140 flavonoids were tentatively characterized, including 41 isoflavonoids, 23 flavanones, 21 isoflavans, 19 flavones and flavonols, 13 neoflavonoids, 11 isoflavanones, seven flavone glycosides, and five chalcones. Subsequently, six natural AChEIs including tectorigenin, fisetin, dalbergin, pterostilbene, isoliquiritigenin, and biochanin A were screened out using AUF-UHPLC-MS and molecular docking. Meanwhile, the AChE inhibitory activities of the six compounds were assessed in vitro, tectorigenin, fisetinand, and dalbergin have moderate inhibitory activity. In conclusion, a novel strategy for systematic characterization and further screening of active compounds in natural products was established, which provides a material basis for quality control of Dalbergia odorifera.
Assuntos
Inibidores da Colinesterase , Dalbergia , Espectrometria de Massas em Tandem , Ultrafiltração , Inibidores da Colinesterase/química , Inibidores da Colinesterase/análise , Dalbergia/química , Cromatografia Líquida de Alta Pressão , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Flavonoides/química , Flavonoides/análise , Estrutura Molecular , Extratos Vegetais/químicaRESUMO
Dalbergia pinnata (Lour.) Prain (D. pinnata) is a valuable medicinal plant, and its volatile parts have a pleasant aroma. In recent years, there have been a large number of studies investigating the effect of aroma on human performance. However, the effect of the aroma of D. pinnata on human psychophysiological activity has not been reported. Few reports have been made about the effects of aroma and sound on human electroencephalographic (EEG) activity. This study aimed to investigate the effects of D. pinnata essential oil in EEG activity response to various auditory stimuli. In the EEG study, 30 healthy volunteers (15 men and 15 women) participated. The electroencephalogram changes of participants during the essential oil (EO) of D. pinnata inhalation under white noise, pink noise and traffic noise stimulations were recorded. EEG data from 30 electrodes placed on the scalp were analyzed according to the international 10-20 system. The EO of D. pinnata had various effects on the brain when subjected to different auditory stimuli. In EEG studies, delta waves increased by 20% in noiseless and white noise environments, a change that may aid sleep and relaxation. In the presence of pink noise and traffic noise, alpha and delta wave activity (frontal pole and frontal lobe) increased markedly when inhaling the EO of D. pinnata, a change that may help reduce anxiety. When inhaling the EO of D. pinnata with different auditory stimuli, women are more likely to relax and get sleepy compared to men.
Assuntos
Dalbergia , Óleos Voláteis , Masculino , Humanos , Feminino , Som , Ansiedade , Eletroencefalografia , Óleos Voláteis/farmacologiaRESUMO
This study employed microcirculation visualization and metabolomics methods to explore the effect and possible mechanism of Dalbergia cochinchinensis in ameliorating coronary microvascular dysfunction(CMD) induced by microsphere embolization in rats. Sixty SPF-grade male SD rats were randomized into sham, model, and low-, medium-, and high-dose [1.5, 3.0, and 6.0 g·kg~(-1)·d~(-1), respectively] D. cochinchinensis water extract groups. The rats in sham and model groups were administrated with equal volume of normal saline by gavage once a day for 7 consecutive days. The rat model of CMD was prepared by injecting polyethylene microspheres into the left ventricle, while the sham group was injected with an equal amount of normal saline. A blood flow meter was used to measure blood flow, and a blood rheometer to measure blood viscosity and fibrinogen content. An automatic biochemical analyzer and reagent kits were used to measure the serum levels of myocardial enzymes, glucose, and nitric oxide(NO). Hematoxylin-eosin(HE) staining was used to observe the pathological changes of myocardial tissue. DiI C12/C18 perfusion was used to infuse coronary microvessels, and the structural and morphological changes were observed using a confocal laser scanning microscope. AngioTool was used to analyze the vascular area, density, radius, and mean E lacunarity in the microsphere embolization area, and vascular blood flow resistance was calculated based on Poiseuille's law. Non-targeted metabolomics based on high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed screen potential biomarkers and differential metabolites regulated by D. cochinchinensis and the involved metabolic pathways were enriched. The pharmacodynamic results showed that compared with the model group, D. cochinchinensis significantly increased mean blood flow, reduced plasma fibrinogen content, lowered the levels of myocardial enzymes such as creatine kinase(CK), creatine kinase-MB(CK-MB), and lactate dehydrogenase(LDH), alleviate myocardial injury, and protect damaged myocardium. In addition, D. cochinchinensis significantly increased serum NO content, promoted vascular smooth muscle relaxation, dilated blood vessels, lowered serum glucose(GLU) level, improved myocardial energy metabolism, and alleviated pathological changes in myocardial fibrosis and inflammatory cell infiltration. The results of coronary microcirculation perfusion showed that D. cochinchinensis improved the vascular morphology, increased the vascular area, density, and radius, reduced vascular mean E lacunarity and blood flow resistance, and alleviated vascular endothelial damage in CMD rats. The results of metabolomics identified 45 differential metabolites between sham and model groups, and D. cochinchinensis recovered the levels 25 differential metabolites, which were involved in 8 pathways including arachidonic acid metabolism, arginine biosynthesis, and sphingolipids metabolism. D. cochinchinensis can ameliorate coronary microcirculation dysfunction caused by microsphere embolization in rats, and it may alleviate the pathological changes of CMD rats by regulating inflammatory reaction, endothelial damage, and phospholipid metabolism.
Assuntos
Dalbergia , Medicamentos de Ervas Chinesas , Metabolômica , Microcirculação , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Microcirculação/efeitos dos fármacos , Dalbergia/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Miocárdio/metabolismo , Vasos Coronários/fisiopatologia , HumanosRESUMO
Reference-guided de novo assembly of the Dalbergia congesta chloroplast genome was carried out using whole-genome sequencing data. The newly generated chloroplast genome size had a total length of 156,048 bp and a GC content of 36.1%. The plastome showed the classical quadripartite structure with two inverted repeats regions (IRs; each 25,715 bp) separating the large single-copy region (LSC; 85,456 bp) from the small single-copy region (SSC; 19,162 bp). The plastid genome contained 111 unique genes, including 77 protein-coding genes (CDS), 30 tRNAs, and 4 rRNAs. The phylogenomic analyses based on whole chloroplast genome sequences recovered Dalbergia as a distinct clade of the Papilionoideae, with Dalbergia congesta having a sister relationship to a clade comprising D. fusca and D. cultrata. The newly available plastome sequence will facilitate future genetic and conservational research aiming to protect this economically important but highly threatened legume species.
Assuntos
Dalbergia , Genoma de Cloroplastos , Cloroplastos/genética , Dalbergia/genética , ÍndiaRESUMO
BACKGROUND: Dalbergia odorifera is a precious tree species with unique economic and medicinal values, which is difficult to distinguish from Dalbergia tonkinensis by traditional identification methods such as morphological characteristics and wood structure characteristics. It has been demonstrated that the identification of tree species can be effectively achieved using DNA barcoding, but there is a lack of study of the combined sequences used as DNA barcodes in the two tree species. In this study, 10 single sequences and 4 combined sequences were selected for analysis, and the identification effect of each sequence was evaluated by the distance-based method, BLAST-based search, character-based method, and tree-based method. RESULTS: Among the single sequences and the combined sequences, the interspecies distance of trnH-psbA and ITS2 + trnH-psbA was greater than the intraspecies distance, and there was no overlap in their frequency distribution plots. The results of the Wilcoxon signed-rank test for the interspecies distance of each sequence showed that the interspecies differences of the single sequences except trnL-trnF, trnH-psbA, and ycf3 were significantly smaller than those of the combined sequences. The results of BLAST analysis showed that trnH-psbA could accurately identify D. odorifera and D. tonkinensis at the species level. In the character-based method, single sequences of trnL-trnF, trnH-psbA with all the combined sequences can be used for the identification of D. odorifera and D. tonkinensis. In addition, the neighbor-joining (NJ) trees constructed based on trnH-psbA and ITS2 + trnH-psbA were able to cluster D. odorifera and D. tonkinensis on two clades. CONCLUSIONS: The results showed that the character-based method with the BLOG algorithm was the most effective among all the evaluation methods, and the combined sequences can improve the ability to identify tree species compared with single sequences. Finally, the trnH-psbA and ITS2 + trnH-psbA were proposed as DNA barcodes to identify D. odorifera and D. tonkinensis.
Assuntos
Código de Barras de DNA Taxonômico , Dalbergia , Código de Barras de DNA Taxonômico/métodos , Dalbergia/genética , DNA de Plantas/genética , Análise de Sequência de DNARESUMO
BACKGROUND: The formation of a tree's heartwood gives the wood properties such as natural decay resistance and aesthetic color, and often directly determines the value of wood products. Regulating the quantity and quality of heartwood is of great importance to the use of wood. However, the mechanism of heartwood formation has been poorly understood. RESULTS: Using Dalbergia odorifera as the study species, the number of starch grains, the morphology of the nuclei, the changes in the content of water and secondary metabolites were observed continuously in the radial direction of the xylem. The results show that from the outer toward inner sapwood, the starch grains are abundant, the length to diameter ratio of the nuclei is decreasing, and the morphology changes from elongated elliptical and then to round. In the outer transition zone, the starch grains begin to decrease abruptly and the nuclei shrink at a slower rate, with a radial width of approximately 2 mm. In the inner transition zone, the heartwood color begins to appear, the starch grains disappear and a few nuclei with reduced fluorescence are present, with a radial width of approximately 1 mm. Heartwood formation after complete disappearance of the nuclei. The moisture content of the heartwood is higher than that of the sapwood, and the inner transition zone is where the content rises. The secondary metabolites of the heartwood begin to accumulate in large quantities in the inner transition zone. CONCLUSION: Based on the physiological changes of parenchyma cells in the xylem, the radial width of the transition zone of Dalbergia odorifera is clearly defined as approximately 3 mm. Both the water and secondary metabolite abrupt changes occur at the final stage of programmed cell death, and neither is a direct cause of programmed cell death in parenchyma cells.
Assuntos
Dalbergia , Dalbergia/metabolismo , Xilema/metabolismo , Madeira/metabolismo , Água/metabolismo , Amido/metabolismoRESUMO
R2R3-MYB transcription factors (TFs) form one of the most important TF families involved in regulating various physiological functions in plants. The heartwood of Dalbergia odorifera is a kind of high-grade mahogany and valuable herbal medicine with wide application. However, the role of R2R3-MYB genes in the growth and development of D. odorifera, especially their relevance to heartwood formation, has not been revealed. A total of 126 R2R3-MYBs were screened from the D. odorifera genome and named DodMYB1-126 based on their location on 10 chromosomes. The collinearity results showed that purification selection was the main driving force for the evolution of the R2R3-MYB TFs family, and whole genome/fragment replication event was the main form for expanding the R2R3-MYB family, generating a divergence of gene structure and function. Comparative phylogenetic analysis classified the R2R3-MYB TFs into 33 subfamilies. S3-7,10,12-13,21 and N4-7 were extensively involved in the metabolic process; S9,13,16-19,24-25 and N1-3,8 were associated with the growth and development of D. odorifera. Based on the differential transcriptional expression levels of R2R3-MYBs in different tissues, DodMYB32, DodMYB55, and DodMYB89 were tentatively screened for involvement in the regulatory process of heartwood. Further studies have shown that the DodMYB89, localized in the nucleus, has transcriptional activation activity and is involved in regulating the biosynthesis of the secondary metabolites of heartwood by activating the promoters of the structural genes DodI2'H and DodCOMT. This study aimed to comprehensively analyze the functions of the R2R3-MYB TFs and screen for candidate genes that might be involved in heartwood formation of D. odorifera.
Assuntos
Dalbergia , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Dalbergia/genética , Genes myb , Filogenia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Skin is the first line of defense in the body against external stimulation and injury. Inflammation and oxidative stress in skin cells are the initiators and promoters of several skin diseases. Latifolin is a natural flavonoid isolated from Dalbergia odorifera T. Chen. This study aimed to evaluate the anti-inflammatory and antioxidant properties of latifolin. The anti-inflammatory effects were evaluated using tumor necrosis factor-α/interferon-γ (TNF-α/IFN-γ)-treated HaCaT cells, revealing that latifolin inhibited the secretion of Interleukin 6 (IL-6); Interleukin 8 (IL-8); Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted (RANTES); and Macrophage-derived chemokine (MDC) while decreasing the expression of Intercellular Adhesion Molecule 1 (ICAM-1). The results of western blots and immunofluorescence demonstrated that the activation of Janus kinase 2 (JAK2), Signal transducer and activator of transcription 1 (STAT1), Signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) cells signaling pathways were significantly inhibited by latifolin. The antioxidant properties were evaluated using t-BHP-induced BJ-5ta cells. Latifolin increased the viability of t-BHP-induced BJ-5ta cells. Additionally, fluorescent staining of reactive oxygen species (ROS) showed that the production of ROS was inhibited by latifolin. Additionally, latifolin reduced the phosphorylation of p38 and JNK. The results indicate that latifolin has potential anti-inflammatory and antioxidant properties, and may be a candidate natural compound for the treatment of skin diseases.
Assuntos
Dalbergia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Linhagem Celular , Queratinócitos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Dalbergia odorifera T. Chen is traditionally referred to as "Dalbergiae Odoriferae Lignum" in traditional Chinese medicine. Its quality is typically assessed subjectively based on colour and texture observations and lacks a universal grading system. Our objective was to establish a relationship between heartwood colour and the content of key constituents, including total flavonoids, six specific flavonoids, alcohol-soluble extracts, and volatile oils, to assess their impact on heartwood quality. Substantial correlations were observed between the colour depth (L*), red-green direction (a*), and yellow-blue direction (b*), as well as the content of the extract, volatile oil, total flavonoids, naringenin, formononetin, pinocembrin, and isoliquiritigenin. Specifically, a* was correlated with the extract, total flavonoids, and isoliquiritigenin, whereas b* was correlated with the extract, volatile oil, total flavonoids, naringenin, formononetin, pinocembrin, and isoliquiritigenin. The results suggested that L*, b*, and chemical composition indices, such as extract, volatile oil, total flavonoids, and naringenin, could serve as primary criteria for classifying the quality of medicinal materials. This is consistent with market classification based on colour and texture, which facilitates material identification and guides the cultivation, harvesting, and processing of D. odorifera. This study provides a scientific foundation for its future development and use.
Assuntos
Dalbergia , Medicamentos de Ervas Chinesas , Óleos Voláteis , Cor , Flavonoides/química , Dalbergia/químicaRESUMO
This paper aimed to study the effect of Dalbergia cochinchinensis heartwood on plasma endogenous metabolites in rats with ligation of the left anterior descending coronary artery, and to analyze the mechanism of D. cochinchinensis heartwood in improving acute myocardial ischemic injury. The stability and consistency of the components in the D. cochinchinensis heartwood were verified by the establishment of fingerprint, and 30 male SD rats were randomly divided into a sham group, a model group, and a D. cochinchinensis heartwood(6 g·kg~(-1)) group, with 10 rats in each group. The sham group only opened the chest without ligation, while the other groups established the model of ligation. Ten days after administration, the hearts were taken for hematoxylin-eosin(HE) staining, and the content of heart injury indexes in the plasma creatine kinase isoenzyme(CK-MB) and lactate dehydrogenase(LDH), energy metabolism-related index glucose(Glu) content, and vascular endothelial function index nitric oxide(NO) was determined. The endogenous metabolites were detected by ultra-high-performance liquid chromatography-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS). The results showed that the D. cochinchinensis heartwood reduced the content of CK-MB and LDH in the plasma of rats to relieve myocardial injury, reduced the content of Glu in the plasma, improved myocardial energy metabolism, increased the content of NO, cured the vascular endothelial injury, and promoted vasodilation. D. cochinchinensis heartwood improved the increase of intercellular space, myocardial inflammatory cell infiltration, and myofilament rupture caused by ligation of the left anterior descending coronary artery. The metabolomic study showed that the content of 26 metabolites in the plasma of rats in the model group increased significantly, while the content of 27 metabolites decreased significantly. Twenty metabolites were significantly adjusted after the administration of D. cochinchinensis heartwood. D. cochinchinensis heartwood can significantly adjust the metabolic abnormality in rats with ligation of the left anterior descending coronary artery, and its mechanism may be related to the regulation of cardiac energy metabolism, NO production, and inflammation. The results provide a corresponding basis for further explaining the effect of D. cochinchinensis on the acute myocardial injury.
Assuntos
Dalbergia , Traumatismos Cardíacos , Isquemia Miocárdica , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Metabolômica , Coração , Creatina Quinase Forma MBRESUMO
Analysis of wood transects in a manner that preserves the spatial distribution of the metabolites present is highly desirable to among other things: (1) facilitate ecophysiology studies that reveal the association between chemical make-up and environmental factors or climatic events over time; and (2) investigate the mechanisms of the synthesis and trafficking of small molecules within specialised tissues. While a variety of techniques could be applied to achieve these goals, most remain challenging and impractical. Laser ablation direct analysis in real time imaging-mass spectrometry (LADI-MS) was successfully used to survey the chemical profile of wood, while also preserving the small-molecule spatial distributions. The tree species Entandrophragma candollei Harms, Millettia laurentii DeWild., Pericopsis elata (Harms) Meeuwen, Dalbergia nigra (Vell.) Benth. and Dalbergia normandii Bosser & R.Rabev were analysed. Several compounds were associated with anatomical features. A greater diversity was detected in the vessels and parenchyma compared with the fibres. Analysis of single vessels revealed that the chemical fingerprint used for timber identification is mainly determined by vessel content. Laser ablation direct analysis in real time imaging-mass spectrometry offers unprecedented opportunities to investigate the distribution of metabolites within wood samples, while circumventing the issues associated with previous methods. This technique opens up new vistas for the discovery of small-molecule biomarkers that are linked to environmental events.
Assuntos
Dalbergia , Fabaceae , Terapia a Laser , Dalbergia/química , Espectrometria de Massas/métodos , Madeira/químicaRESUMO
Hongmu, a Chinese customary noun representing 29 kinds of wood species such as some Pterocarpus species (abbreviated as spp. hereinafter), Dalbergia spp. and Diospyros spp., is popular among Chinese people due to the furniture made from it. The slow regeneration of hongmu resources led to a decline in production, making hongmu prices high and illegal businesses profit from it. Therefore, it is necessary to identify and distinguish different varieties of hongmu for commercial trade. Herein, a cost-effective and rapid methodology was first developed via atmospheric pressure glow discharge mass spectrometry (APGD-MS) to classify three Dalbergia spp. and three Pterocarpus spp. Meanwhile, principal component analysis (PCA) was further applied to distinguish wood species and six kinds of hongmu extracts were able to be approximately separated into six units. Besides, hongmu could be clearly distinguished from their counterfeits, such as Guibourtia spp., using the method provided here. This method may provide a timely and necessary way for the determination of ingredients and identification of the authenticity of hongmu.
Assuntos
Pressão Atmosférica , Dalbergia , Humanos , Espectrometria de Massas/métodos , Madeira/química , Extratos Vegetais/análiseRESUMO
Red propolis is a substance produced by bees by mixing resins from plants with wax, oils, and other secretions to protect the hive against natural enemies. Dalbergia ecastaphyllum (L.) Taub. (Fabaceae) is the primary botanical source of the Brazilian red propolis, where bees Apis mellifera L. collect a reddish resin from the stems to produce propolis. This species occurs in coastal dune and mangrove ecosystems, where local beekeepers install their beehives for propolis production. The induction of propolis production was virtually unknown. Previous reports and field evidence suggested that the reddish resin available in D. ecastaphyllum stems was not produced spontaneously but induced by the presence of a parasitic insect that feeds on the plant's stems. Research in the apiaries of the beekeepers' association of Canavieiras, Bahia, Brazil, led to the capture of a jewel beetle of an unknown species of the genus Agrilus Curtis (Buprestidae). It was confirmed that this jewel beetle is a red propolis production inductor. The adult and immature of this new species, Agrilus propolis Migliore, Curletti, and Casari sp. nov. are here described and illustrated. Behavioral information on the biology and chemical ecology confirms that the reddish resin of D. ecastaphyllum is directly related to the beetle attack and only occurs when Agrilus propolis sp. nov. adults emerge from the plant stem. This information is very important for Brazilian propolis producers interested in expanding red propolis production, which can have favorable effects on the economy of mangrove communities, promoting income generation, creating new business opportunities, and helping to sustain local communities and families.
Assuntos
Besouros , Dalbergia , Própole , Animais , Brasil , Dalbergia/química , Ecossistema , Própole/química , Própole/farmacologiaRESUMO
Oral squamous cell carcinoma (OSCC) is the most common malignant neoplasm with frequent metastasis and high mortality in the oral cavity. Plant-derived natural compounds are actively progressing as a trend for cancer treatment. Latifolin (Latif), is a natural flavonoid isolated from the heartwood of Dalbergia odorifera T. Chen (D. odorifera) has been known to have beneficial effects on anti-aging, anti-carcinogenic, anti-inflammatory, and cardio-protective activities. However, the anti-cancer effects of Latif are unknown in OSCC. Herein, as a result of analysis in terms of the aggressive features of OSCCs, we found that Latif significantly inhibited the cell proliferation of human YD-8 and YD-10B OSCCs, and caused the anti-metastatic activities by effectively blocking cell migration, invasion, and adhesion via the inactivation of focal adhesion kinase (FAK)/non-receptor tyrosine kinase (Src). Moreover, we found that Latif induced apoptotic cell death to suppress the cell survival and proliferation of YD-10B OSCCs by targeting PI3K/AKT/mTOR/p70S6K signaling. Finally, we analyzed in terms of autophagy and necroptosis, which are other mechanisms of programmed cell death and survival compared to apoptosis in YD-10B OSCCs. We found that Latif suppressed autophagic-related proteins and autophagosome formation, and also Latif inhibited necroptosis by dephosphorylating necroptosis-regulatory proteins (RIP1, RIP3, and MLKL). Given these findings, our results provided new evidence for Latif's biological effect and mechanism in YD-10B OSCCs, suggesting that Latif may be a new candidate for patients with OSCCs.