Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Brain ; 147(8): 2884-2896, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411458

RESUMO

Recently, we showed that while atogepant-a small-molecule calcitonin gene-related peptide (CGRP) receptor antagonist-does not fully prevent activation of meningeal nociceptors, it significantly reduces a cortical spreading depression (CSD)-induced early response probability in C fibres and late response probability in Aδ fibres. The current study investigates atogepant effect on CSD-induced activation and sensitization of high threshold (HT) and wide dynamic range (WDR) central dura-sensitive trigeminovascular neurons. In anaesthetized male rats, single-unit recordings were used to assess effects of atogepant (5 mg/kg) versus vehicle on CSD-induced activation and sensitization of HT and WDR trigeminovascular neurons. Single cell analysis of atogepant pretreatment effects on CSD-induced activation and sensitization of central trigeminovascular neurons in the spinal trigeminal nucleus revealed the ability of this small molecule CGRP receptor antagonist to prevent activation and sensitization of nearly all HT neurons (8/10 versus 1/10 activated neurons in the control versus treated groups, P = 0.005). In contrast, atogepant pretreatment effects on CSD-induced activation and sensitization of WDR neurons revealed an overall inability to prevent their activation (7/10 versus 5/10 activated neurons in the control versus treated groups, P = 0.64). Unexpectedly however, in spite of atogepant's inability to prevent activation of WDR neurons, it prevented their sensitization (as reflected their responses to mechanical stimulation of the facial receptive field before and after the CSD). Atogepant' ability to prevent activation and sensitization of HT neurons is attributed to its preferential inhibitory effects on thinly myelinated Aδ fibres. Atogepant's inability to prevent activation of WDR neurons is attributed to its lesser inhibitory effects on the unmyelinated C fibres. Molecular and physiological processes that govern neuronal activation versus sensitization can explain how reduction in CGRP-mediated slow but not glutamate-mediated fast synaptic transmission between central branches of meningeal nociceptors and nociceptive neurons in the spinal trigeminal nucleus can prevent their sensitization but not activation.


Assuntos
Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Depressão Alastrante da Atividade Elétrica Cortical , Transtornos de Enxaqueca , Ratos Sprague-Dawley , Animais , Masculino , Transtornos de Enxaqueca/prevenção & controle , Transtornos de Enxaqueca/tratamento farmacológico , Ratos , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Núcleo Espinal do Trigêmeo/efeitos dos fármacos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia
2.
Neurobiol Dis ; 192: 106405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211710

RESUMO

Mechanisms underlying the migraine aura are incompletely understood, which to large extent is related to a lack of models in which cortical spreading depolarization (CSD), the correlate of the aura, occurs spontaneously. Here, we investigated electrophysiological and behavioural CSD features in freely behaving mice expressing mutant CaV2.1 Ca2+ channels, either with the milder R192Q or the severer S218L missense mutation in the α1 subunit, known to cause familial hemiplegic migraine type 1 (FHM1) in patients. Very rarely, spontaneous CSDs were observed in mutant but never in wildtype mice. In homozygous Cacna1aR192Q mice exclusively single-wave CSDs were observed whereas heterozygous Cacna1aS218L mice displayed multiple-wave events, seemingly in line with the more severe clinical phenotype associated with the S218L mutation. Spontaneous CSDs were associated with body stretching, one-directional slow head turning, and rotating movement of the body. Spontaneous CSD events were compared with those induced in a controlled manner using minimally invasive optogenetics. Also in the optogenetic experiments single-wave CSDs were observed in Cacna1aR192Q and Cacna1aS218L mice (whereas the latter also showed multiple-wave events) with movements similar to those observed with spontaneous events. Compared to wildtype mice, FHM1 mutant mice exhibited a reduced threshold and an increased propagation speed for optogenetically induced CSD with a more profound CSD-associated dysfunction, as indicated by a prolonged suppression of transcallosal evoked potentials and a reduction of unilateral forepaw grip performance. When induced during sleep, the optogenetic CSD threshold was particularly lowered, which may explain why spontaneous CSD events predominantly occurred during sleep. In conclusion, our data show that key neurophysiological and behavioural features of optogenetically induced CSDs mimic those of rare spontaneous events in FHM1 R192Q and S218L mutant mice with differences in severity in line with FHM1 clinical phenotypes seen with these mutations.


Assuntos
Ataxia Cerebelar , Depressão Alastrante da Atividade Elétrica Cortical , Epilepsia , Transtornos de Enxaqueca , Enxaqueca com Aura , Humanos , Camundongos , Animais , Enxaqueca com Aura/genética , Camundongos Transgênicos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Transtornos de Enxaqueca/genética , Potenciais Evocados
3.
Neurobiol Dis ; 191: 106407, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199272

RESUMO

Spreading depolarizations (SDs) are profound waves of neuroglial depolarization that can propagate repetitively through injured brain. Recent clinical work has established SD as an important contributor to expansion of acute brain injuries and have begun to extend SD studies into other neurological disorders. A critical challenge is to determine how to selectively prevent deleterious consequences of SD. In the present study, we determined whether a wave of profound Zn2+ release is a key contributor to deleterious consequences of SD, and whether this can be targeted pharmacologically. Focal KCl microinjection was used to initiate SD in the CA1 region of the hippocampus in murine brain slices. An extracellular Zn2+ chelator with rapid kinetics (ZX1) increased SD propagation rates and improved recovery of extracellular DC potential shifts. Under conditions of metabolic compromise, tissues showed sustained impairment of functional and structural recovery following a single SD. ZX1 effectively improved recovery of synaptic potentials and intrinsic optical signals in these vulnerable conditions. Fluorescence imaging and genetic deletion of a presynaptic Zn2+ transporter confirmed synaptic release as the primary contributor to extracellular accumulation and deleterious consequences of Zn2+ during SD. These results demonstrate a role for synaptic Zn2+ release in deleterious consequences of SD and show that targeted extracellular chelation could be useful for disorders where repetitive SD enlarges infarcts in injured tissues.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Hipocampo , Camundongos , Animais , Hipocampo/metabolismo , Proteínas de Membrana Transportadoras , Quelantes , Neuroglia/metabolismo , Zinco/metabolismo
4.
Cephalalgia ; 44(2): 3331024241230466, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38329067

RESUMO

BACKGROUND: Vagus nerve stimulation (VNS) was recently found to inhibit cortical spreading depression (CSD), the underlying mechanism of migraine aura, through activation of the nucleus tractus solitarius (NTS), locus coeruleus (LC) and dorsal raphe nucleus (DRN). The molecular mechanisms underlying the effect of VNS on CSD in these nuclei remain to be explored. We hypothesized that VNS may activate glutamate receptor-mediated tropomyosin kinase B (TrkB) signaling in the NTS, thereby facilitating the noradrenergic and serotonergic neurotransmission to inhibit CSD. METHODS: To investigate the role of TrkB and glutamate receptors in non-invasive VNS efficacy on CSD, a validated KCl-evoked CSD rat model coupled with intra-NTS microinjection of selective antagonists, immunoblot and immunohistochemistry was employed. RESULTS: VNS increased TrkB phosphorylation in the NTS. Inhibition of intra-NTS TrkB abrogated the suppressive effect of VNS on CSD and CSD-induced cortical neuroinflammation. TrkB was found colocalized with glutamate receptors in NTS neurons. Inhibition of glutamate receptors in the NTS abrogated VNS-induced TrkB activation. Moreover, the blockade of TrkB in the NTS attenuated VNS-induced activation of the LC and DRN. CONCLUSIONS: VNS induces the activation of glutamate receptor-mediated TrkB signaling in the NTS, which might modulate serotonergic and norepinephrinergic innervation to the cerebral cortex to inhibit CSD and cortical inflammation.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Proteínas Quinases , Estimulação do Nervo Vago , Ratos , Animais , Núcleo Solitário/fisiologia , Ácido Glutâmico , Nervo Vago/fisiologia , Receptores de Glutamato
5.
Exp Brain Res ; 242(9): 2241-2247, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39034328

RESUMO

Sensory development is a complex process that can influence physiological and pathological factors. In laterally-eyed mammals, monocular enucleation (ME) during development and the subsequent lack of external sensory stimuli can result in permanent morphological and physiological changes. Malnutrition, especially in early life, also can cause permanent morphofunctional changes due to inadequate nutrient intake in both hemispheres. This study investigated the effects of early (postnatal day 7) ME and malnutrition during the suckling period on cortical excitability in adulthood (110-140 days of life). For this, we compared the speed propagation of cortical spreading depression in the occipital and parietal cortex of malnourished and well-nourished adult rats, previously suckled small-sized litters with three pups (L3/dam) medium-sized litters with six pups (L6/dam), and large-sized litters with twelve pups (L12/dam). The CSD velocity was augmented by the ME in the contralateral side of the removed eye in the parietal and occipital cortex. These findings suggest that visual sensory input deprivation is associated with permanent functional changes in the visual pathways, which can alter cortical excitability and lead to modifications in CSD propagation.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Enucleação Ocular , Desnutrição , Ratos Wistar , Animais , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Desnutrição/fisiopatologia , Desnutrição/complicações , Ratos , Masculino , Feminino , Animais Recém-Nascidos , Lobo Occipital/fisiopatologia , Lobo Parietal/fisiopatologia
6.
Biol Res ; 57(1): 39, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867288

RESUMO

BACKGROUND: Spreading depression (SD) is an intriguing phenomenon characterized by massive slow brain depolarizations that affect neurons and glial cells. This phenomenon is repetitive and produces a metabolic overload that increases secondary damage. However, the mechanisms associated with the initiation and propagation of SD are unknown. Multiple lines of evidence indicate that persistent and uncontrolled opening of hemichannels could participate in the pathogenesis and progression of several neurological disorders including acute brain injuries. Here, we explored the contribution of astroglial hemichannels composed of connexin-43 (Cx43) or pannexin-1 (Panx1) to SD evoked by high-K+ stimulation in brain slices. RESULTS: Focal high-K+ stimulation rapidly evoked a wave of SD linked to increased activity of the Cx43 and Panx1 hemichannels in the brain cortex, as measured by light transmittance and dye uptake analysis, respectively. The activation of these channels occurs mainly in astrocytes but also in neurons. More importantly, the inhibition of both the Cx43 and Panx1 hemichannels completely prevented high K+-induced SD in the brain cortex. Electrophysiological recordings also revealed that Cx43 and Panx1 hemichannels critically contribute to the SD-induced decrease in synaptic transmission in the brain cortex and hippocampus. CONCLUSIONS: Targeting Cx43 and Panx1 hemichannels could serve as a new therapeutic strategy to prevent the initiation and propagation of SD in several acute brain injuries.


Assuntos
Astrócitos , Conexina 43 , Conexinas , Depressão Alastrante da Atividade Elétrica Cortical , Transmissão Sináptica , Animais , Astrócitos/fisiologia , Conexinas/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Conexina 43/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Córtex Cerebral , Neurônios/fisiologia , Hipocampo , Ratos Sprague-Dawley , Ratos , Potássio/metabolismo
7.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063222

RESUMO

Migraine is a complex disorder characterized by episodes of moderate-to-severe, often unilateral headaches and generally accompanied by nausea, vomiting, and increased sensitivity to light (photophobia), sound (phonophobia), and smell (hyperosmia). Photophobia is considered the most bothersome symptom of migraine attacks. Although the underlying mechanism remains unclear, the intrinsically photosensitive retinal ganglion cells (ipRGCs) are considered to be involved in photophobia associated with migraine. In this study, we investigated the association between the sensitivity of ipRGCs and migraines and cortical spreading depression (CSD), which may trigger migraine attacks. The pupillary responses closely associated with the function of ipRGCs in patients with migraine who were irradiated with lights were evaluated. Blue (486 nm) light irradiation elicited a response from ipRGCs; however, red light (560 nm) had no such effect. Melanopsin, a photosensitive protein, phototransduces in ipRGCs following blue light stimulation. Hypersensitivity of ipRGCs was observed in patients with migraine. CSD was more easily induced with blue light than with incandescent light using a mouse CSD model. Moreover, CSD was suppressed, even in the presence of blue light, after injecting opsinamide, a melanopsin inhibitor. The hypersensitivity of ipRGCs in patients with migraine may induce CSD, resulting in migraine attacks.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Transtornos de Enxaqueca , Células Ganglionares da Retina , Opsinas de Bastonetes , Transtornos de Enxaqueca/metabolismo , Animais , Células Ganglionares da Retina/patologia , Humanos , Camundongos , Masculino , Feminino , Adulto , Opsinas de Bastonetes/metabolismo , Luz/efeitos adversos , Fotofobia/etiologia , Pessoa de Meia-Idade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
8.
J Headache Pain ; 25(1): 8, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225575

RESUMO

BACKGROUND: Spreading depolarization (SD), underlying mechanism of migraine aura and potential activator of pain pathways, is known to elicit transient local silencing cortical activity. Sweeping across the cortex, the electrocorticographic depression is supposed to underlie spreading negative symptoms of migraine aura. Main information about the suppressive effect of SD on cortical oscillations was obtained in anesthetized animals while ictal recordings in conscious patients failed to detect EEG depression during migraine aura. Here, we investigate the suppressive effect of SD on spontaneous cortical activity in awake animals and examine whether the anesthesia modifies the SD effect. METHODS: Spectral and spatiotemporal characteristics of spontaneous cortical activity following a single unilateral SD elicited by amygdala pinprick were analyzed in awake freely behaving rats and after induction of urethane anesthesia. RESULTS: In wakefulness, SD transiently suppressed cortical oscillations in all frequency bands except delta. Slow delta activity did not decline its power during SD and even increased it afterwards; high-frequency gamma oscillations showed the strongest and longest depression under awake conditions. Unexpectedly, gamma power reduced not only during SD invasion the recording cortical sites but also when SD occupied distant subcortical/cortical areas. Contralateral cortex not invaded by SD also showed transient depression of gamma activity in awake animals. Introduction of general anesthesia modified the pattern of SD-induced depression: SD evoked the strongest cessation of slow delta activity, milder suppression of fast oscillations and no distant changes in gamma activity. CONCLUSION: Slow and fast cortical oscillations differ in their vulnerability to SD influence, especially in wakefulness. In the conscious brain, SD produces stronger and spatially broader depression of fast cortical oscillations than slow ones. The frequency-specific effects of SD on cortical activity of awake brain may underlie some previously unexplained clinical features of migraine aura.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Epilepsia , Enxaqueca com Aura , Humanos , Ratos , Animais , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Enxaqueca com Aura/etiologia , Encéfalo , Cabeça , Epilepsia/etiologia
9.
J Headache Pain ; 25(1): 113, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009958

RESUMO

BACKGROUND: Neurogenic meningeal inflammation is regarded as a key driver of migraine headache. Multiple evidence show importance of inflammatory processes in the dura mater for pain generation but contribution of the leptomeninges is less clear. We assessed effects of cortical spreading depolarization (CSD), the pathophysiological mechanism of migraine aura, on expression of inflammatory mediators in the leptomeninges. METHODS: A single CSD event was produced by a focal unilateral microdamage of the cortex in freely behaving rats. Three hours later intact cortical leptomeninges and parenchyma of ipsi-lesional (invaded by CSD) and sham-treated contra-lesional (unaffected by CSD) hemispheres were collected and mRNA levels of genes associated with inflammation (Il1b, Tnf, Ccl2; Cx3cl1, Zc3h12a) and endocannabinoid CB2 receptors (Cnr2) were measured using qPCR. RESULTS: Three hours after a single unilateral CSD, most inflammatory factors changed their expression levels in the leptomeninges, mainly on the side of CSD. The meninges overlying affected cortex increased mRNA expression of all proinflammatory cytokines (Il1b, Tnf, Ccl2) and anti-inflammatory factors Zc3h12a and Cx3cl1. Upregulation of proinflammatory cytokines was found in both meninges and parenchyma while anti-inflammatory markers increased only meningeal expression. CONCLUSION: A single CSD is sufficient to produce pronounced leptomeningeal inflammation that lasts for at least three hours and involves mostly meninges overlying the cortex affected by CSD. The prolonged post-CSD inflammation of the leptomeninges can contribute to mechanisms of headache generation following aura phase of migraine attack.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Meninges , Animais , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ratos , Masculino , Meninges/fisiopatologia , Inflamação/fisiopatologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Ratos Wistar , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética
10.
J Headache Pain ; 25(1): 120, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044141

RESUMO

Migraine is a neurological disorder characterized by episodes of severe headache. Cortical spreading depression (CSD), the electrophysiological equivalent of migraine aura, results in opening of pannexin 1 megachannels that release ATP and triggers parenchymal neuroinflammatory signaling cascade in the cortex. Migraine symptoms suggesting subcortical dysfunction bring subcortical spread of CSD under the light. Here, we investigated the role of purinergic P2X7 receptors on the subcortical spread of CSD and its consequent neuroinflammation using a potent and selective P2X7R antagonist, JNJ-47965567. P2X7R antagonism had no effect on the CSD threshold and characteristics but increased the latency to hypothalamic voltage deflection following CSD suggesting that ATP acts as a mediator in the subcortical spread. P2X7R antagonism also prevented cortical and subcortical neuronal activation following CSD, revealed by bilateral decrease in c-fos positive neuron count, and halted CSD-induced neuroinflammation revealed by decreased neuronal HMGB1 release and decreased nuclear translocation of NF-kappa B-p65 in astrocytes. In conclusion, our data suggest that P2X7R plays a role in CSD-induced neuroinflammation, subcortical spread of CSD and CSD-induced neuronal activation hence can be a potential target.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Doenças Neuroinflamatórias , Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X7 , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Animais , Antagonistas do Receptor Purinérgico P2X/farmacologia , Masculino , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/efeitos dos fármacos , Optogenética , Camundongos , Transtornos de Enxaqueca/fisiopatologia , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/tratamento farmacológico , Neurônios/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Niacinamida/análogos & derivados , Piperazinas
11.
Cephalalgia ; 43(12): 3331024231212895, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38099600

RESUMO

Targeting CGRP-pathways has substantially expanded our options for treating individuals with migraine. Although the efficacy of these drugs on migraine aura is yet to be fully revealed, it seems from existing studies that CGRP antagonism reduces the number of migraine auras. The present perspective summarizes the evidence linking CGRP to the migraine aura and proposes a model by which targeting the CGRP-pathways and, thus, inhibition the interaction between C- and Aδ-trigeminal fibers might reverse a possible high cortical glutamate level leading to a reduced number of migraine auras.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Epilepsia , Transtornos de Enxaqueca , Enxaqueca com Aura , Humanos , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Transtornos de Enxaqueca/tratamento farmacológico , Enxaqueca com Aura/tratamento farmacológico
12.
Neurotherapeutics ; 21(1): e00298, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241157

RESUMO

Spreading depolarizations (SDs) are an enigmatic and ubiquitous co-morbidity of neural dysfunction. SDs are propagating waves of local field depolarization and increased extracellular potassium. They increase the metabolic demand on brain tissue, resulting in changes in tissue blood flow, and are associated with adverse neurological consequences including stroke, epilepsy, neurotrauma, and migraine. Their occurrence is associated with poor patient prognosis through mechanisms which are only partially understood. Here we show in vivo that two (structurally dissimilar) drugs, which suppress astroglial gap junctional communication, can acutely suppress SDs. We found that mefloquine hydrochloride (MQH), administered IP, slowed the propagation of the SD potassium waveform and intermittently led to its suppression. The hemodynamic response was similarly delayed and intermittently suppressed. Furthermore, in instances where SD led to transient tissue swelling, MQH reduced observable tissue displacement. Administration of meclofenamic acid (MFA) IP was found to reduce blood flow, both proximal and distal, to the site of SD induction, preceding a large reduction in the amplitude of the SD-associated potassium wave. We introduce a novel image processing scheme for SD wavefront localization under low-contrast imaging conditions permitting full-field wavefront velocity mapping and wavefront parametrization. We found that MQH administration delayed SD wavefront's optical correlates. These two clinically used drugs, both gap junctional blockers found to distinctly suppress SDs, may be of therapeutic benefit in the various brain disorders associated with recurrent SDs.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Epilepsia , Acidente Vascular Cerebral , Humanos , Potássio/farmacologia , Imagem Multimodal
13.
J Cereb Blood Flow Metab ; 44(1): 3-5, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871620

RESUMO

Functional ultrasound (FUS) has emerged as a novel imaging method to reliably assess relative cerebral blood volume (rCBV) and infer perfusion, with good spatiotemporal resolution. Brunner and colleagues provide what appears to be its first application to characterize peri-infarct spreading depolarizations (SDs) in experimental stroke through recording of transient hyperemic events. They also report incomplete overlap between acute perfusion deficits and subsequent infarct distribution, specifically noting a rostral expansion to involve penumbral territory from which propagating depolarizations had preferentially originated. This observation would not be straightforward using other methodologies. Other strengths and limitations of the study are considered.


Assuntos
Isquemia Encefálica , Depressão Alastrante da Atividade Elétrica Cortical , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Encéfalo/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Ultrassonografia , Hemodinâmica/fisiologia , Circulação Cerebrovascular/fisiologia , Infarto
14.
Neuroscience ; 543: 90-100, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38417540

RESUMO

Extracellular signal-regulated kinase (ERK) are serine/threonine-selective proteins and ERK1/2 can be phosphorylated in peripheral and central brain regions after cortical spreading depolarization (CSD) and calcitonin gene-related peptide; However, it remains unclear about whether and how ERK activity modulates CSD that correlates to migraine aura. Here, we determined the role of ERK in regulating CSD and explored the underlying mechanism involving transient receptor potential ankyrin 1 (TRPA1), a stress-sensing cation channel. CSD was recorded using intrinsic optical imaging in mouse brain slices, and electrophysiology in rats. Phosphorylated ERK (pERK1/2) and interleukin-1ß (IL-1ß) protein levels were detected using Western blot or enzyme-linked immunosorbent assay, respectively. IL-1ß mRNA level was detected using qPCR. The results showed that an ERK inhibitor, SCH77298, markedly prolonged CSD latency and reduced propagation rate in mouse brain slices. Corresponding to this, CSD induction increased levels of cytosolic pERK1/2 in ipsilateral cerebral cortices of rats, the elevation of which correlated to the level of IL-1ß mRNA. Mechanistic analysis showed that pre-treatment of an anti-TRPA1 antibody reduced the cytosolic pERK2 level but not pERK1 following CSD in cerebral cortices of rats and this level of pERK2 correlated with that of cerebral cortical IL-1ß protein. Furthermore, an ERK activator, AES16-2M, but not its scrambled control, reversed the prolonged CSD latency by a TRPA1 inhibitor, HC-030031, in mouse brain slices. These data revealed a crucial role of ERK activity in regulating CSD, and elevation of pERK and IL-1ß production induced by CSD is predominantly TRPA1 channel-dependent, thereby contributing to migraine pathogenesis.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Transtornos de Enxaqueca , Camundongos , Ratos , Animais , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Anquirinas/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Córtex Cerebral/metabolismo , Transtornos de Enxaqueca/metabolismo , RNA Mensageiro/metabolismo
15.
Nat Rev Neurol ; 20(7): 408-425, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38886512

RESUMO

Considerable strides in medical interventions during the acute phase of traumatic brain injury (TBI) have brought improved overall survival rates. However, following TBI, people often face ongoing, persistent and debilitating long-term complications. Here, we review the recent literature to propose possible mechanisms that lead from TBI to long-term complications, focusing particularly on the involvement of a compromised blood-brain barrier (BBB). We discuss evidence for the role of spreading depolarization as a key pathological mechanism associated with microvascular dysfunction and the transformation of astrocytes to an inflammatory phenotype. Finally, we summarize new predictive and diagnostic biomarkers and explore potential therapeutic targets for treating long-term complications of TBI.


Assuntos
Barreira Hematoencefálica , Lesões Encefálicas Traumáticas , Humanos , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/terapia , Barreira Hematoencefálica/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Animais
16.
Rev Neurosci ; 35(6): 651-678, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38581271

RESUMO

Cerebral autoregulation is an intrinsic myogenic response of cerebral vasculature that allows for preservation of stable cerebral blood flow levels in response to changing systemic blood pressure. It is effective across a broad range of blood pressure levels through precapillary vasoconstriction and dilation. Autoregulation is difficult to directly measure and methods to indirectly ascertain cerebral autoregulation status inherently require certain assumptions. Patients with impaired cerebral autoregulation may be at risk of brain ischemia. One of the central mechanisms of ischemia in patients with metabolically compromised states is likely the triggering of spreading depolarization (SD) events and ultimately, terminal (or anoxic) depolarization. Cerebral autoregulation and SD are therefore linked when considering the risk of ischemia. In this scoping review, we will discuss the range of methods to measure cerebral autoregulation, their theoretical strengths and weaknesses, and the available clinical evidence to support their utility. We will then discuss the emerging link between impaired cerebral autoregulation and the occurrence of SD events. Such an approach offers the opportunity to better understand an individual patient's physiology and provide targeted treatments.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Circulação Cerebrovascular , Homeostase , Humanos , Homeostase/fisiologia , Circulação Cerebrovascular/fisiologia , Isquemia Encefálica/fisiopatologia , Lesões Encefálicas/fisiopatologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Animais , Encéfalo/fisiopatologia
17.
Neurosci Lett ; 832: 137814, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38723760

RESUMO

Galanin (Gal) is a neuropeptide with the potential to ameliorate cortical spreading depolarization (CSD), an electrophysiological phenomenon occurring after brain injury or in migraine aura. Gal is expressed in all cortical neurons both in rat and in mouse cortices. Here we investigated whether the effect of Gal on CSD previously described in the rat is conserved in the mouse cortex. In rats, the topical application of Gal to the cortex for 1 h did not induce any change in CSD amplitudes, propagation velocity, or threshold of elicitation. Rather, topical application of Gal for 3 h was necessary to obtain a significant decrease in these CSD parameters and to develop a remarkable increase in the KCl threshold to elicit a CSD in rat cortex. In contrast, the topical application of Gal on cortical surface for 1 h in mice was sufficient to significantly attenuate CSD amplitudes and increase threshold. A thinner cortex, a faster diffusion or different affinity/expression of receptors for Gal are possible reasons to explain this difference in the time course between rats and mice. Our data are relevant to postulate Gal as a potential target for inhibition of CSD under pathological situations such as stroke or ischemia. SIGNIFICANCE STATEMENT: The neuropeptide Galanin (Gal) is expressed in all neurons throughout the cerebral cortex, both in rats and mice, and is able to reduce or even inhibit Cortical Spreading Depolarization, thus, Gal has the potential to control neuronal excitability that may identify Gal as a target in drug development against CSD.


Assuntos
Córtex Cerebral , Depressão Alastrante da Atividade Elétrica Cortical , Galanina , Animais , Galanina/farmacologia , Galanina/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Masculino , Camundongos , Ratos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Wistar
18.
J Cereb Blood Flow Metab ; 44(6): 1000-1012, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38140913

RESUMO

Cortical spreading depolarization (SD) imposes a massive increase in energy demand and therefore evolves as a target for treatment following acute brain injuries. Anesthetics are empirically used to reduce energy metabolism in critical brain conditions, yet their effect on metabolism during SD remains largely unknown. We investigated oxidative metabolism during SD in brain slices from Wistar rats. Extracellular potassium ([K+]o), local field potential and partial tissue oxygen pressure (ptiO2) were measured simultaneously. The cerebral metabolic rate of oxygen (CMRO2) was calculated using a reaction-diffusion model. By that, we tested the effect of clinically relevant concentrations of isoflurane on CMRO2 during SD and modeled tissue oxygenation for different capillary pO2 values. During SD, CMRO2 increased 2.7-fold, resulting in transient hypoxia in the slice core. Isoflurane decreased CMRO2, reduced peak [K+]o, and prolonged [K+]o clearance, which indicates reduced synaptic transmission and sodium-potassium ATPase inhibition. Modeling tissue oxygenation during SD illustrates the need for increased capillary pO2 levels to prevent hypoxia. In the absence thereof, isoflurane could improve tissue oxygenation by lowering CMRO2. Therefore, isoflurane is a promising candidate for pre-clinical studies on neuronal survival in conditions involving SD.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Isoflurano , Oxigênio , Ratos Wistar , Animais , Isoflurano/farmacologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ratos , Oxigênio/metabolismo , Anestésicos Inalatórios/farmacologia , Masculino , Hipóxia/metabolismo , Potássio/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Hipóxia Encefálica/metabolismo , Hipóxia Encefálica/tratamento farmacológico
19.
Neuroscience ; 551: 323-332, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38821241

RESUMO

Spreading depolarization (SD) is a slowly propagating wave of prolonged activation followed by a period of synaptic suppression. Some prior reports have shown potentiation of synaptic transmission after recovery from synaptic suppression and noted similarities with the phenomenon of long-term potentiation (LTP). Since SD is increasingly recognized as participating in diverse neurological disorders, it is of interest to determine whether SD indeed leads to a generalized and sustained long-term strengthening of synaptic connections. We performed a characterization of SD-induced potentiation, and tested whether distinctive features of SD, including adenosine accumulation and swelling, contribute to reports of SD-induced plasticity. Field excitatory postsynaptic potentials (fEPSPs) were recorded in the hippocampal CA1 subregion of murine brain slices, and SD elicited using focal microinjection of KCl. A single SD was sufficient to induce a consistent potentiation of slope and amplitude of fEPSPs. Both AMPA- and NMDA-receptor mediated components were enhanced. Potentiation peaked ∼20 min after SD recovery and was sustained for ∼30 min. However, fEPSP amplitude and slope decayed over an extended 2-hour recording period and was estimated to reach baseline after ∼3 h. Potentiation was saturated after a single SD and adenosine A1 receptor activation did not mask additional potentiation. Induction of LTP with theta-burst stimulation was not altered by prior induction of SD and molecular mediators known to block LTP induction did not block SD-induced potentiation. Together, these results indicate an intermediate duration potentiation that is distinct from hippocampal LTP and may have implications for circuit function for 1-2 h following SD.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Camundongos Endogâmicos C57BL , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Potenciação de Longa Duração/fisiologia , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Região CA1 Hipocampal/fisiologia , Adenosina/metabolismo , Adenosina/farmacologia , Camundongos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Hipocampo/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de AMPA/metabolismo
20.
Sci Rep ; 14(1): 10186, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702377

RESUMO

Spreading depolarizations (SDs) occur frequently in patients with malignant hemispheric stroke. In animal-based experiments, SDs have been shown to cause secondary neuronal damage and infarct expansion during the initial period of infarct progression. In contrast, the influence of SDs during the delayed period is not well characterized yet. Here, we analyzed the impact of SDs in the delayed phase after cerebral ischemia and the potential protective effect of ketamine. Focal ischemia was induced by distal occlusion of the left middle cerebral artery in C57BL6/J mice. 24 h after occlusion, SDs were measured using electrocorticography and laser-speckle imaging in three different study groups: control group without SD induction, SD induction with potassium chloride, and SD induction with potassium chloride and ketamine administration. Infarct progression was evaluated by sequential MRI scans. 24 h after occlusion, we observed spontaneous SDs with a rate of 0.33 SDs/hour which increased during potassium chloride application (3.37 SDs/hour). The analysis of the neurovascular coupling revealed prolonged hypoemic and hyperemic responses in this group. Stroke volume increased even 24 h after stroke onset in the SD-group. Ketamine treatment caused a lesser pronounced hypoemic response and prevented infarct growth in the delayed phase after experimental ischemia. Induction of SDs with potassium chloride was significantly associated with stroke progression even 24 h after stroke onset. Therefore, SD might be a significant contributor to delayed stroke progression. Ketamine might be a possible drug to prevent SD-induced delayed stroke progression.


Assuntos
Isquemia Encefálica , Progressão da Doença , Ketamina , Camundongos Endogâmicos C57BL , Ketamina/farmacologia , Animais , Camundongos , Masculino , Isquemia Encefálica/prevenção & controle , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Infarto da Artéria Cerebral Média
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA