Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Genet ; 67(4): 613-630, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33683401

RESUMO

Aspergillus nidulans produces cleistothecia as sexual reproductive organs in a process affected by genetic and external factors. To gain a deeper insight into A. nidulans sexual development, we performed comparative proteome analyses based on the wild type developmental periods. We identified sexual development-specific proteins with a more than twofold increase in production during hypoxia or the sexual period compared to the asexual period. Among the sexual development-specific proteins analyzed by gene-deletion experiments and functional assays, MpdA, a putative mannitol-1-phosphate 5-dehydrogenase, plays multiple roles in growth and differentiation of A. nidulans. The most distinct mpdA-deletion phenotype was ascosporogenesis failure. Genetic mpdA deletion resulted in small cleistothecia with no functional ascospores. Transcriptional analyses indicated that MpdA modulates the expression of key development- and meiosis-regulatory genes during sexual development. The mpdA deletion increased hyphal branching and decreased conidial heat resistance. Mannitol production in conidia showed no difference, whereas it was decreased in mycelia and sexual cultures. Addition of mannitol during vegetative growth recovered the defects in conidial heat resistance and ascospore genesis. Taken together, these results indicate that MpdA plays an important role in sexual development, hyphal branching, and conidial heat resistance in Aspergillus nidulans.


Assuntos
Aspergillus nidulans/genética , Hifas/genética , Esporos Fúngicos/genética , Desidrogenase do Álcool de Açúcar/genética , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/patogenicidade , Regulação Fúngica da Expressão Gênica/genética , Hifas/crescimento & desenvolvimento , Manitol/metabolismo , Meiose/genética , Desenvolvimento Sexual/genética , Esporos Fúngicos/metabolismo
2.
Am J Med Genet A ; 185(11): 3350-3358, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34165242

RESUMO

From Sir Archibald Garrod's initial description of the tetrad of albinism, alkaptonuria, cystinuria, and pentosuria to today, the field of medicine dedicated to inborn errors of metabolism has evolved from disease identification and mechanistic discovery to the development of therapies designed to subvert biochemical defects. In this review, we highlight major milestones in the treatment and diagnosis of inborn errors of metabolism, starting with dietary therapy for phenylketonuria in the 1950s and 1960s, and ending with current approaches in genetic manipulation.


Assuntos
Albinismo/terapia , Alcaptonúria/terapia , Cistinúria/terapia , Erros Inatos do Metabolismo/terapia , Albinismo/genética , Albinismo/metabolismo , Albinismo/patologia , Alcaptonúria/genética , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/patologia , Erros Inatos do Metabolismo dos Carboidratos/terapia , Cistinúria/genética , Cistinúria/metabolismo , Cistinúria/patologia , Humanos , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/patologia , Fenilcetonúrias/genética , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Fenilcetonúrias/terapia , Desidrogenase do Álcool de Açúcar/deficiência , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Xilulose/genética , Xilulose/metabolismo
3.
Parasitol Res ; 119(7): 2275-2286, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32451716

RESUMO

Giardia and Cryptosporidium infections are common in cats, but knowledge is limited about their clinical importance, risk factors, and the role of cats as a reservoir for human infections. Here, we collected faeces and questionnaire data from 284 cats from shelters and veterinary clinics in the Copenhagen Metropolitan Region (= study population). Additionally, 33 samples were analysed separately from catteries with gastrointestinal clinical signs (= cases). (Oo-)cysts were quantified by immunofluorescence microscopy. All Giardia (n = 34) and Cryptosporidium (n = 29) positive samples were analysed by sequencing of the 18S rRNA, gdh and hsp70 loci, and co-infections were detected by McMaster/inverted microscopy. In the study population, 7.0% and 6.7% were positive for Giardia and Cryptosporidium respectively; 48.5% and 36.4% of the breeder cats (cases) were infected. Increased odds of diarrhoea were demonstrated in Giardia (p = 0.0008) and Cryptosporidium (p = 0.034) positive cats. For Giardia, the odds were positively correlated with infection intensity. Co-infection with Cryptosporidium (OR 12.79; p < 0.001), parasitic co-infections other than Cryptosporidium (OR 5.22; p = 0.009), no deworming (OR 4.67; p = 0.035), and male sex (OR 3.63; p = 0.025) were risk factors for Giardia. For Cryptosporidium, co-infection with Giardia was the only risk factor (OR 11.93; p < 0.0001). Genotyping revealed G. duodenalis assemblages A and F, and C. felis, all of them previously detected in humans. In conclusion, excretion of Giardia and Cryptosporidium was associated with clinical disease. Although a public health risk is likely, studies including larger sample sizes, more discriminatory markers and samples from other animals and humans are needed to reveal the full zoonotic potential.


Assuntos
Doenças do Gato/parasitologia , Criptosporidiose/epidemiologia , Giardíase/epidemiologia , Giardíase/veterinária , Animais , Gatos , Criptosporidiose/parasitologia , Cryptosporidium/genética , Dinamarca/epidemiologia , Reservatórios de Doenças/parasitologia , Reservatórios de Doenças/veterinária , Fezes/parasitologia , Feminino , Giardia/genética , Giardíase/parasitologia , Proteínas de Choque Térmico HSP70/genética , Humanos , Masculino , RNA Ribossômico 18S/genética , Fatores de Risco , Desidrogenase do Álcool de Açúcar/genética
4.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348713

RESUMO

Phosphofructokinase (PFK) plays a pivotal role in glycolysis. By deletion of the genes pfkA, pfkB (encoding the two PFK isoenzymes), and zwf (glucose 6-phosphate dehydrogenase) in Escherichia coli K-12, a mutant strain (GL3) with a complete block in glucose catabolism was created. Introduction of plasmid-borne copies of the fsaA wild type gene (encoding E. coli fructose 6-phosphate aldolase, FSAA) did not allow a bypass by splitting fructose 6-phosphate (F6P) into dihydroxyacetone (DHA) and glyceraldehyde 3-phosphate (G3P). Although FSAA enzyme activity was detected, growth on glucose was not reestablished. A mutant allele encoding for FSAA with an amino acid exchange (Ala129Ser) which showed increased catalytic efficiency for F6P, allowed growth on glucose with a µ of about 0.12 h-1. A GL3 derivative with a chromosomally integrated copy of fsaAA129S (GL4) grew with 0.05 h-1 on glucose. A mutant strain from GL4 where dhaKLM genes were deleted (GL5) excreted DHA. By deletion of the gene glpK (glycerol kinase) and overexpression of gldA (of glycerol dehydrogenase), a strain (GL7) was created which showed glycerol formation (21.8 mM; yield approximately 70% of the theoretically maximal value) as main end product when grown on glucose. A new-to-nature pathway from glucose to glycerol was created.


Assuntos
Aldeído Liases/genética , Vias Biossintéticas/genética , Di-Hidroxiacetona/biossíntese , Escherichia coli K12/enzimologia , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Expressão Gênica , Genes Bacterianos , Glicerol/metabolismo , Alelos , Frutosefosfatos/metabolismo , Deleção de Genes , Glucose/metabolismo , Glucosefosfato Desidrogenase/genética , Glicerol Quinase/genética , Isoenzimas/genética , Via de Pentose Fosfato/genética , Fosfofrutoquinases/química , Fosfofrutoquinases/genética , Desidrogenase do Álcool de Açúcar/genética
5.
World J Microbiol Biotechnol ; 36(9): 136, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32783085

RESUMO

Glycerol dehydrogenase has been identified and characterized functionally in many species. However, little is known about glycerol dehydrogenase genes and their functions in Aspergillus oryzae. Here, a total of 45 glycerol dehydrogenase genes in Aspergillus oryzae were identified and renamed from AoGld1 to AoGld45 according to their chromosome distribution. They were classified into three groups based on phylogenetic analysis. Synteny analysis revealed that thirteen AoGld genes are conserved among Aspergillus species. Promoter analysis displayed that AoGld3 and AoGld13 harbored multiple binding elements of GATA-type transcription factors and zinc-finger protein msnA that were involved in nitrogen and kojic acid metabolism, respectively. Moreover, the AoGld3 deletion strain Δgld3 was generated by the CRISPR/Cas9 system, which had no visible growth defects compared with the control wild-type strain under the control and osmotic stress treatments. However, disruption of AoGld3 led to the inhibition of kojic acid production, and the expression of kojA, kojR was down-regulated in the Δgld3 strain. Furthermore, when kojA or kojR was overexpressed in the Δgld3 strain, the yield of kojic acid was restored, suggesting that AoGld3 is involved in kojic acid production through affecting the expression of kojR and kojA. Taken together, these findings provide new insights into our understanding of glycerol dehydrogenase and establish foundation for further study of their roles in Aspergillus oryzae.


Assuntos
Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Pironas/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora) , Nitrogênio/metabolismo , Filogenia , Regiões Promotoras Genéticas
6.
J Biol Chem ; 293(45): 17375-17386, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30224354

RESUMO

Levoglucosan is the 1,6-anhydrosugar of d-glucose formed by pyrolysis of glucans and is found in the environment and industrial waste. Two types of microbial levoglucosan metabolic pathways are known. Although the eukaryotic pathway involving levoglucosan kinase has been well-studied, the bacterial pathway involving levoglucosan dehydrogenase (LGDH) has not been well-investigated. Here, we identified and cloned the lgdh gene from the bacterium Pseudarthrobacter phenanthrenivorans and characterized the recombinant protein. The enzyme exhibited high substrate specificity toward levoglucosan and NAD+ for the oxidative reaction and was confirmed to be LGDH. LGDH also showed weak activities (∼4%) toward l-sorbose and 1,5-anhydro-d-glucitol. The reverse (reductive) reaction using 3-keto-levoglucosan and NADH exhibited significantly lower Km and higher kcat values than those of the forward reaction. The crystal structures of LGDH in the apo and complex forms with NADH, NADH + levoglucosan, and NADH + l-sorbose revealed that LGDH has a typical fold of Gfo/Idh/MocA family proteins, similar to those of scyllo-inositol dehydrogenase, aldose-aldose oxidoreductase, 1,5-anhydro-d-fructose reductase, and glucose-fructose oxidoreductase. The crystal structures also disclosed that the active site of LGDH is distinct from those of these enzymes. The LGDH active site extensively recognized the levoglucosan molecule with six hydrogen bonds, and the C3 atom of levoglucosan was closely located to the C4 atom of NADH nicotinamide. Our study is the first molecular characterization of LGDH, providing evidence for C3-specific oxidation and representing a starting point for future biotechnological use of LGDH and levoglucosan-metabolizing bacteria.


Assuntos
Actinobacteria/enzimologia , Glucose/análogos & derivados , NAD/química , Desidrogenase do Álcool de Açúcar/química , Actinobacteria/genética , Domínio Catalítico , Cristalografia por Raios X , Glucose/química , Glucose/metabolismo , Ligação de Hidrogênio , NAD/metabolismo , Oxirredução , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo
7.
J Struct Biol ; 203(2): 109-119, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29605571

RESUMO

Sorbitol-6-phosphate 2-dehydrogenases (S6PDH) catalyze the interconversion of d-sorbitol 6-phosphate to d-fructose 6-phosphate. In the plant pathogen Erwinia amylovora the S6PDH SrlD is used by the bacterium to utilize sorbitol, which is used for carbohydrate transport in the host plants belonging to the Amygdaloideae subfamily (e.g., apple, pear, and quince). We have determined the crystal structure of S6PDH SrlD at 1.84 Šresolution, which is the first structure of an EC 1.1.1.140 enzyme. Kinetic data show that SrlD is much faster at oxidizing d-sorbitol 6-phosphate than in reducing d-fructose 6-phosphate, however, equilibrium analysis revealed that only part of the d-sorbitol 6-phosphate present in the in vitro environment is converted into d-fructose 6-phosphate. The comparison of the structures of SrlD and Rhodobacter sphaeroides sorbitol dehydrogenase showed that the tetrameric quaternary structure, the catalytic residues and a conserved aspartate residue that confers specificity for NAD+ over NADP+ are preserved. Analysis of the SrlD cofactor and substrate binding sites identified residues important for the formation of the complex with cofactor and substrate and in particular the role of Lys42 in selectivity towards the phospho-substrate. The comparison of SrlD backbone with the backbone of 302 short-chain dehydrogenases/reductases showed the conservation of the protein core and identified the variable parts. The SrlD sequence was compared with 500 S6PDH sequences selected by homology revealing that the C-terminal part is more conserved than the N-terminal, the consensus of the catalytic tetrad (Y[SN]AGXA) and a not previously described consensus for the NAD(H) binding.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Erwinia amylovora/enzimologia , Erwinia amylovora/metabolismo , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo , Proteínas de Bactérias/genética , Erwinia amylovora/genética , Hexosefosfatos/metabolismo , Cinética , Rosaceae/microbiologia , Desidrogenase do Álcool de Açúcar/genética , Tomografia Computadorizada por Raios X
8.
Biochem Biophys Res Commun ; 503(1): 195-201, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29864427

RESUMO

Archaeal/fungal Rib7 and eubacterial RibG possess a reductase domain for ribosyl reduction in the second and third steps, respectively, of riboflavin biosynthesis. These enzymes are specific for an amino and a carbonyl group of the pyrimidine ring, respectively. Here, several crystal structures of Methanosarcina mazei Rib7 are reported at 2.27-1.95 Šresolution, which are the first archaeal dimeric Rib7 structures. Mutational analysis displayed that no detectable activity was observed for the Bacillus subtilis RibG K151A, K151D, and K151E mutants, and the M. mazei Rib7 D33N, D33K, and E156Q variants, while 0.1-0.6% of the activity was detected for the M. mazei Rib7 N9A, S29A, D33A, and D57N variants. Our results suggest that Lys151 in B. subtilis RibG, while Asp33 together with Arg36 in M. mazei Rib7, ensure the specific substrate recognition. Unexpectedly, an endogenous NADPH cofactor is observed in M. mazei Rib7, in which the 2'-phosphate group interacts with Ser88, and Arg91. Replacement of Ser88 with glutamate eliminates the endogenous NADPH binding and switches preference to NADH. The lower melting temperature of ∼10 °C for the S88E and R91A mutants suggests that nature had evolved a tightly bound NADPH to greatly enhance the structural stability of archaeal Rib7.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Nucleotídeo Desaminases/metabolismo , Oxirredutases/metabolismo , Riboflavina/biossíntese , Desidrogenase do Álcool de Açúcar/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Estabilidade Enzimática , Evolução Molecular , Methanosarcina/enzimologia , Methanosarcina/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , NAD/metabolismo , NADP/metabolismo , Nucleotídeo Desaminases/química , Nucleotídeo Desaminases/genética , Oxirredutases/química , Oxirredutases/genética , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/genética
9.
Plant Mol Biol ; 95(4-5): 507-517, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29038917

RESUMO

KEY MESSAGE: PpeS6PDH gene is postulated to mediate sorbitol synthesis in flower buds of peach concomitantly with specific chromatin modifications. Perennial plants have evolved an adaptive mechanism involving protection of meristems within specialized structures named buds in order to survive low temperatures and water deprivation during winter. A seasonal period of dormancy further improves tolerance of buds to environmental stresses through specific mechanisms poorly known at the molecular level. We have shown that peach PpeS6PDH gene is down-regulated in flower buds after dormancy release, concomitantly with changes in the methylation level at specific lysine residues of histone H3 (H3K27 and H3K4) in the chromatin around the translation start site of the gene. PpeS6PDH encodes a NADPH-dependent sorbitol-6-phosphate dehydrogenase, the key enzyme for biosynthesis of sorbitol. Consistently, sorbitol accumulates in dormant buds showing higher PpeS6PDH expression. Moreover, PpeS6PDH gene expression is affected by cold and water deficit stress. Particularly, its expression is up-regulated by low temperature in buds and leaves, whereas desiccation treatment induces PpeS6PDH in buds and represses the gene in leaves. These data reveal the concurrent participation of chromatin modification mechanisms, transcriptional regulation of PpeS6PDH and sorbitol accumulation in flower buds of peach. In addition to its role as a major translocatable photosynthate in Rosaceae species, sorbitol is a widespread compatible solute and cryoprotectant, which suggests its participation in tolerance to environmental stresses in flower buds of peach.


Assuntos
Metabolismo dos Carboidratos , Cromatina/genética , Prunus persica/genética , Sorbitol/metabolismo , Temperatura Baixa , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Prunus persica/crescimento & desenvolvimento , Prunus persica/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo
10.
Am J Pathol ; 186(11): 2887-2908, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27643531

RESUMO

Inhaled diacetyl vapors are associated with flavorings-related lung disease, a potentially fatal airway disease. The reactive α-dicarbonyl group in diacetyl causes protein damage in vitro. Dicarbonyl/l-xylulose reductase (DCXR) metabolizes diacetyl into acetoin, which lacks this α-dicarbonyl group. To investigate the hypothesis that flavorings-related lung disease is caused by in vivo protein damage, we correlated diacetyl-induced airway damage in mice with immunofluorescence for markers of protein turnover and autophagy. Western immunoblots identified shifts in ubiquitin pools. Diacetyl inhalation caused dose-dependent increases in bronchial epithelial cells with puncta of both total ubiquitin and K63-ubiquitin, central mediators of protein turnover. This response was greater in Dcxr-knockout mice than in wild-type controls inhaling 200 ppm diacetyl, further implicating the α-dicarbonyl group in protein damage. Western immunoblots demonstrated decreased free ubiquitin in airway-enriched fractions. Transmission electron microscopy and colocalization of ubiquitin-positive puncta with lysosomal-associated membrane proteins 1 and 2 and with the multifunctional scaffolding protein sequestosome-1 (SQSTM1/p62) confirmed autophagy. Surprisingly, immunoreactive SQSTM1 also accumulated in the olfactory bulb of the brain. Olfactory bulb SQSTM1 often congregated in activated microglial cells that also contained olfactory marker protein, indicating neuronophagia within the olfactory bulb. This suggests the possibility that SQSTM1 or damaged proteins may be transported from the nose to the brain. Together, these findings strongly implicate widespread protein damage in the etiology of flavorings-related lung disease.


Assuntos
Diacetil/efeitos adversos , Aromatizantes/efeitos adversos , Pneumopatias/etiologia , Proteína Sequestossoma-1/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Ubiquitina/metabolismo , Animais , Autofagia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Exposição por Inalação , Pneumopatias/induzido quimicamente , Pneumopatias/metabolismo , Pneumopatias/patologia , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Proteína de Marcador Olfatório/genética , Proteína de Marcador Olfatório/metabolismo , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Proteína Sequestossoma-1/genética , Desidrogenase do Álcool de Açúcar/metabolismo
11.
BMC Microbiol ; 17(1): 154, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28693424

RESUMO

BACKGROUND: Bacillus subtilis is able to utilize at least three inositol stereoisomers as carbon sources, myo-, scyllo-, and D-chiro-inositol (MI, SI, and DCI, respectively). NAD+-dependent SI dehydrogenase responsible for SI catabolism is encoded by iolX. Even in the absence of functional iolX, the presence of SI or MI in the growth medium was found to induce the transcription of iolX through an unknown mechanism. RESULTS: Immediately upstream of iolX, there is an operon that encodes two genes, yisR and iolQ (formerly known as degA), each of which could encode a transcriptional regulator. Here we performed an inactivation analysis of yisR and iolQ and found that iolQ encodes a repressor of the iolX transcription. The coding sequence of iolQ was expressed in Escherichia coli and the gene product was purified as a His-tagged fusion protein, which bound to two sites within the iolX promoter region in vitro. CONCLUSIONS: IolQ is a transcriptional repressor of iolX. Genetic evidences allowed us to speculate that SI and MI might possibly be the intracellular inducers, however they failed to antagonize DNA binding of IolQ in in vitro experiments.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Enzimológica da Expressão Gênica , Inositol/metabolismo , NAD/metabolismo , Proteínas Repressoras/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Desidrogenase do Álcool de Açúcar/metabolismo
12.
Chem Res Toxicol ; 30(7): 1406-1418, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28595002

RESUMO

Reactive carbonyls such as diacetyl (2,3-butanedione) and 2,3-pentanedione in tobacco and many food and consumer products are known to cause severe respiratory diseases. Many of these chemicals are detoxified by carbonyl reductases in the lung, in particular, dicarbonyl/l-xylulose reductase (DCXR), a multifunctional enzyme important in glucose metabolism. DCXR is a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Using recombinant human enzyme, we discovered that DCXR mediates redox cycling of a variety of quinones generating superoxide anion, hydrogen peroxide, and, in the presence of transition metals, hydroxyl radicals. Redox cycling activity preferentially utilized NADH as a cosubstrate and was greatest for 9,10-phenanthrenequinone and 1,2-naphthoquinone, followed by 1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone (menadione). Using 9,10-phenanthrenequinone as the substrate, quinone redox cycling was found to inhibit DCXR reduction of l-xylulose and diacetyl. Competitive inhibition of enzyme activity by the quinone was observed with respect to diacetyl (Ki = 190 µM) and l-xylulose (Ki = 940 µM). Abundant DCXR activity was identified in A549 lung epithelial cells when diacetyl was used as a substrate. Quinones inhibited reduction of this dicarbonyl, causing an accumulation of diacetyl in the cells and culture medium and a decrease in acetoin, the reduced product of diacetyl. The identification of DCXR as an enzyme activity mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. These activities, together with the inhibition of dicarbonyl/l-xylulose metabolism by redox-active chemicals, as well as consequent deficiencies in pentose metabolism, are likely to contribute to lung injury following exposure to dicarbonyls and quinones.


Assuntos
Células Epiteliais/metabolismo , Pulmão/patologia , Desidrogenase do Álcool de Açúcar/metabolismo , Células A549 , Relação Dose-Resposta a Droga , Células Epiteliais/enzimologia , Humanos , Pulmão/enzimologia , Pulmão/metabolismo , Estrutura Molecular , Oxirredução , Quinonas/química , Quinonas/farmacologia , Relação Estrutura-Atividade , Desidrogenase do Álcool de Açúcar/antagonistas & inibidores , Desidrogenase do Álcool de Açúcar/genética
13.
Microb Cell Fact ; 16(1): 88, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28532451

RESUMO

BACKGROUND: Poly-γ-glutamic acid (γ-PGA) is a valuable polymer with glutamate as its sole precursor. Enhancement of the intracellular glutamate synthesis is a very important strategy for the improvement of γ-PGA production, especially for those glutamate-independent γ-PGA producing strains. Corynebacterium glutamicum has long been used for industrial glutamate production and it exhibits some unique features for glutamate synthesis; therefore introduction of these metabolic characters into the γ-PGA producing strain might lead to increased intracellular glutamate availability, and thus ultimate γ-PGA production. RESULTS: In this study, the unique glutamate synthesis features from C. glutamicum was introduced into the glutamate-independent γ-PGA producing Bacillus amyloliquefaciens NK-1 strain. After introducing the energy-saving NADPH-dependent glutamate dehydrogenase (NADPH-GDH) pathway, the NK-1 (pHT315-gdh) strain showed slightly increase (by 9.1%) in γ-PGA production. Moreover, an optimized metabolic toggle switch for controlling the expression of ɑ-oxoglutarate dehydrogenase complex (ODHC) was introduced into the NK-1 strain, because it was previously shown that the ODHC in C. glutamicum was completely inhibited when glutamate was actively produced. The obtained NK-PO1 (pHT01-xylR) strain showed 66.2% higher γ-PGA production than the NK-1 strain. However, the further combination of these two strategies (introducing both NADPH-GDH pathway and the metabolic toggle switch) did not lead to further increase of γ-PGA production but rather the resultant γ-PGA production was even lower than that in the NK-1 strain. CONCLUSIONS: We proposed new metabolic engineering strategies to improve the γ-PGA production in B. amyloliquefaciens. The NK-1 (pHT315-gdh) strain with the introduction of NADPH-GDH pathway showed 9.1% improvement in γ-PGA production. The NK-PO1 (pHT01-xylR) strain with the introduction of a metabolic toggle switch for controlling the expression of ODHC showed 66.2% higher γ-PGA production than the NK-1 strain. This work proposed a new strategy for improving the target product in microbial cell factories.


Assuntos
Bacillus amyloliquefaciens/genética , Corynebacterium glutamicum/genética , Ácido Glutâmico/biossíntese , Ácido Poliglutâmico/análogos & derivados , Bacillus amyloliquefaciens/metabolismo , Corynebacterium glutamicum/metabolismo , Fermentação , Deleção de Genes , Microbiologia Industrial , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , NADP/genética , Ácido Poliglutâmico/biossíntese , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo
14.
Microb Cell Fact ; 16(1): 156, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931395

RESUMO

BACKGROUND: The regeneration of cofactors and the supply of alkane substrate are key considerations for the biocatalytic activation of hydrocarbons by cytochrome P450s. This study focused on the biotransformation of n-octane to 1-octanol using resting Escherichia coli cells expressing the CYP153A6 operon, which includes the electron transport proteins ferredoxin and ferredoxin reductase. Glycerol dehydrogenase was co-expressed with the CYP153A6 operon to investigate the effects of boosting cofactor regeneration. In order to overcome the alkane supply bottleneck, various chemical and physical approaches to membrane permeabilisation were tested in strains with or without additional dehydrogenase expression. RESULTS: Dehydrogenase co-expression in whole cells did not improve product formation and reduced the stability of the system at high cell densities. Chemical permeabilisation resulted in initial hydroxylation rates that were up to two times higher than the whole cell system, but severely impacted biocatalyst stability. Mechanical cell breakage led to improved enzyme stability, but additional dehydrogenase expression was necessary to improve product formation. The best-performing system (in terms of final titres) consisted of mechanically ruptured cells expressing additional dehydrogenase. This system had an initial activity of 1.67 ± 0.12 U/gDCW (32% improvement on whole cells) and attained a product concentration of 34.8 ± 1.6 mM after 24 h (22% improvement on whole cells). Furthermore, the system was able to maintain activity when biotransformation was extended to 72 h, resulting in a final product titre of 60.9 ± 1.1 mM. CONCLUSIONS: This study suggests that CYP153A6 in whole cells is limited by coupling efficiencies rather than cofactor supply. However, the most significant limitation in the current system is hydrocarbon transport, with substrate import being the main determinant of hydroxylation rates, and product export playing a key role in system stability.


Assuntos
Biocatálise , Sistema Enzimático do Citocromo P-450/metabolismo , Escherichia coli/genética , Octanos/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , 1-Octanol/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotransformação , Sistema Enzimático do Citocromo P-450/genética , Escherichia coli/enzimologia , Óperon , Permeabilidade , Proteínas Recombinantes/metabolismo
15.
Appl Microbiol Biotechnol ; 101(13): 5453-5467, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28484812

RESUMO

The obligatory aerobic acetic acid bacterium Gluconobacter oxydans incompletely oxidizes carbon sources regio- and stereoselectively in the periplasm and therefore is used industrially for oxidative biotransformations, e. g., in vitamin C production. However, it has a very low biomass yield as the oxidized products largely remain in the medium and cannot be used for anabolism. Cytoplasmic carbon metabolism occurs via the pentose phosphate pathway and the Entner-Doudoroff pathway, whereas glycolysis and the tricarboxylic acid cycle are incomplete. Acetate is formed as an end product via pyruvate decarboxylase and acetaldehyde dehydrogenase. In order to increase the biomass yield from glucose, we sequentially replaced (i) gdhS encoding the cytoplasmic NADP-dependent glucose dehydrogenase by the Acetobacter pasteurianus sdhCDABE genes for succinate dehydrogenase and the flavinylation factor SdhE (strain IK001), (ii) pdc encoding pyruvate decarboxylase by a second ndh gene encoding a type II NADH dehydrogenase (strain IK002.1), and (iii) gdhM encoding the membrane-bound PQQ-dependent glucose dehydrogenase by sucCD from Gluconacetobacter diazotrophicus encoding succinyl-CoA synthetase (strain IK003.1). Analysis of the strains under controlled cultivation conditions in bioreactors revealed for IK003.1 that neither gluconate nor 2-ketogluconate was formed, but some 5-ketogluconate. Acetate formation was eliminated, and comparable amounts of pyruvate were formed instead. CO2 formation by IK003.1 was more than doubled compared to the reference strain. Growth of IK003.1 was retarded, but the biomass yield of this strain was raised by 60%. IK003.1 serves as suitable host for oxidative biotransformations and for further metabolic engineering.


Assuntos
Biomassa , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Glucose/metabolismo , Engenharia Metabólica/métodos , Acetobacter/genética , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos , Ciclo do Ácido Cítrico , Gluconobacter oxydans/crescimento & desenvolvimento , Glucose 1-Desidrogenase/metabolismo , Glicólise , Oxirredução , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Succinato Desidrogenase/metabolismo , Desidrogenase do Álcool de Açúcar/genética
16.
Biosci Biotechnol Biochem ; 81(5): 1026-1032, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28043209

RESUMO

Bacillus subtilis genes iolG, iolW, iolX, ntdC, yfiI, yrbE, yteT, and yulF belong to the Gfo/Idh/MocA family. The functions of iolG, iolW, iolX, and ntdC are known; however, the functions of the others are unknown. We previously reported the B. subtilis cell factory simultaneously overexpressing iolG and iolW to achieve bioconversion of myo-inositol (MI) into scyllo-inositol (SI). YulF shares a significant similarity with IolW, the NADP+-dependent SI dehydrogenase. Transcriptional abundance of yulF did not correlate to that of iol genes involved in inositol metabolism. However, when yulF was overexpressed instead of iolW in the B. subtilis cell factory, SI was produced from MI, suggesting a similar function to iolW. In addition, we demonstrated that recombinant His6-tagged YulF converted scyllo-inosose into SI in an NADPH-dependent manner. We have thus identified yulF encoding an additional NADP+-dependent SI dehydrogenase, which we propose to rename iolU.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Inositol/metabolismo , NADP/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Ativação Enzimática
17.
Biosci Biotechnol Biochem ; 81(2): 411-418, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27849146

RESUMO

A novel oxidation of D-pentonates to 4-keto-D-pentonates was analyzed with Gluconobacter thailandicus NBRC 3258. D-Pentonate 4-dehydrogenase activity in the membrane fraction was readily inactivated by EDTA and it was reactivated by the addition of PQQ and Ca2+. D-Pentonate 4-dehydrogenase was purified to two different subunits, 80 and 14 kDa. The absorption spectrum of the purified enzyme showed no typical absorbance over the visible regions. The enzyme oxidized D-pentonates to 4-keto-D-pentonates at the optimum pH of 4.0. In addition, the enzyme oxidized D-fructose to 5-keto-D-fructose, D-psicose to 5-keto-D-psicose, including the other polyols such as, glycerol, D-ribitol, D-arabitol, and D-sorbitol. Thus, D-pentonate 4-dehydrogenase was found to be identical with glycerol dehydrogenase (GLDH), a major polyol dehydrogenase in Gluconobacter species. The reaction versatility of quinoprotein GLDH was notified in this study.


Assuntos
Biocatálise , Membrana Celular/enzimologia , Frutose/análogos & derivados , Desidrogenase do Álcool de Açúcar/metabolismo , Membrana Celular/metabolismo , Frutose/química , Genômica , Gluconobacter/enzimologia , Oxirredução , Solubilidade , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/genética
18.
Biosci Biotechnol Biochem ; 81(8): 1612-1618, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28471330

RESUMO

l-Xylulose reductase (LXR) catalyzes the reduction of l-xylulose to xylitol in the fungal l-arabinose catabolic pathway. LXR (RpLXR) was purified from the pentose-fermenting zygomycetous fungus Rhizomucor pusillus NBRC 4578. The native RpLXR is a homotetramer composed of 29 kDa subunits and preferred NADPH as a coenzyme. The Km values were 8.71 mM for l-xylulose and 3.89 mM for dihydroxyacetone. The lxr3 (Rplxr3) gene encoding RpLXR consists of 792 bp and encodes a putative 263 amino acid protein (Mr = 28,341). The amino acid sequence of RpLXR showed high similarity to 3-oxoacyl-(acyl-carrier-protein) reductase. The Rplxr3 gene was expressed in Escherichia coli and the recombinant RpLXR exhibited properties similar to those of native RpLXR. Transcription of the Rplxr3 gene in R. pusillus NBRC 4578 was induced in the presence of l-arabinose and inhibited in the presence of d-glucose, d-xylose, and d-mannitol, indicating that RpLXR is involved in the l-arabinose catabolic pathway.


Assuntos
Proteínas Fúngicas/metabolismo , Subunidades Proteicas/metabolismo , Rhizomucor/enzimologia , Desidrogenase do Álcool de Açúcar/metabolismo , Xilitol/metabolismo , Xilulose/metabolismo , Arabinose/metabolismo , Clonagem Molecular , Coenzimas/metabolismo , Di-Hidroxiacetona/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Proteínas Fúngicas/genética , Expressão Gênica , Glucose/metabolismo , Cinética , Manitol/metabolismo , NADP/metabolismo , Fases de Leitura Aberta , Filogenia , Multimerização Proteica , Subunidades Proteicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhizomucor/química , Rhizomucor/classificação , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/genética , Xilose/metabolismo
19.
Microbiology (Reading) ; 162(2): 420-432, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26678992

RESUMO

Lactobacillus plantarum strains produce either glycerol (Gro)- or ribitol (Rbo)-backbone wall teichoic acid (WTA) (Gro-WTA and Rbo-WTA, respectively). The strain WCFS1 has been shown to be able to activate the tarIJKL locus involved in Rbo-WTA synthesis when the tagD1F1F2 locus for Gro-WTA synthesis was mutated, resulting in switching of the native Gro-WTA into Rbo-WTA. Here, we identify a regulator involved in the WTA backbone alditol switching and activation of the tarIJKL locus. Promoter reporter assays of the tarI promoter (Ptar) demonstrated its activity in the Rbo-WTA-producing mutant derivative (ΔtagF1-2) but not in the parental strain WCFS1. An electrophoresis mobility shift assay using a Ptar nucleotide fragment showed that this fragment bound to Ptar-binding protein(s) in a cell-free extract of WCFS1. Three proteins were subsequently isolated using Ptar bound to magnetic beads. These proteins were isolated efficiently from the lysate of WCFS1 but not from the lysate of its ΔtagF1-2 derivative, and were identified as redox-sensitive transcription regulator (Lp_0725), catabolite control protein A (Lp_2256) and TetR family transcriptional regulator (Lp_1153). The role of these proteins in Ptar regulation was investigated by knockout mutagenesis, showing that the Δlp_1153 mutant expressed the tarI gene at a significantly higher level, supporting its role as a repressor of the tarIJKL locus. Notably, the Δlp_1153 mutation also led to reduced expression of the tagF1 gene. These results show that Lp_1153 is a regulatory factor that plays a role in WTA alditol switching in Lb. plantarum WCFS1 and we propose to rename this gene/protein wasR/WasR, for WTA alditol switch regulator.


Assuntos
Regulação Bacteriana da Expressão Gênica , Lactobacillus plantarum/genética , Nucleotidiltransferases/genética , Fosfotransferases/genética , Desidrogenase do Álcool de Açúcar/genética , Ácidos Teicoicos/biossíntese , Parede Celular/química , Lactobacillus plantarum/metabolismo , Nucleotidiltransferases/biossíntese , Fosfotransferases/biossíntese , Desidrogenase do Álcool de Açúcar/biossíntese
20.
IUBMB Life ; 68(9): 700-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27416973

RESUMO

As methods for the use of anhydrosugars in chemical and biofuel production continue to develop, our collective knowledge of anhydrosugar processing enzymes continues to improve, including their mechanistic details, structural dynamics and modes of substrate binding. Of particular interest, anhydrosugar kinases, such as levoglucosan kinase (LGK) and 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), utilize an unusual mechanism whereby the sugar substrate is both cleaved and phosphorylated. The phosphorylated sugar can then be routed to other metabolic pathways, thereby allowing its further bioconversion. Advanced engineering efforts to improve the catalytic efficiency and stability of LGK have been steadily progressing. Other enzymes that cleave the glycosidic bond of disaccharide sugars containing an anhydrosugar component are also being identified and characterized. Accordingly, the potential future use of these enzymes in large-scale production strategies is becoming increasingly viable. Here, a mini-review of the observed characteristics of anhydrosugar processing enzymes is presented along with recent developments in the bioconversion of these sugars. © 2016 IUBMB Life 68(9):700-708, 2016.


Assuntos
Escherichia coli/enzimologia , Fosfotransferases/genética , Desidrogenase do Álcool de Açúcar/genética , Biocombustíveis , Carboidratos/química , Carboidratos/genética , Escherichia coli/genética , Ácidos Murâmicos/química , Ácidos Murâmicos/metabolismo , Fosforilação , Fosfotransferases/química , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA