Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(14): e2107994119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35363566

RESUMO

Persistence of Acinetobacter baumannii in environments with low water activity is largely attributed to the biosynthesis of compatible solutes. Mannitol is one of the key compatible solutes in A. baumannii, and it is synthesized by a bifunctional mannitol-1-phosphate dehydrogenase/phosphatase (AbMtlD). AbMtlD catalyzes the conversion of fructose-6-phosphate to mannitol in two consecutive steps. Here, we report the crystal structure of dimeric AbMtlD, constituting two protomers each with a dehydrogenase and phosphatase domain. A proper assembly of AbMtlD dimer is facilitated by an intersection comprising a unique helix­loop­helix (HLH) domain. Reduction and dephosphorylation catalysis of fructose-6-phosphate to mannitol is dependent on the transient dimerization of AbMtlD. AbMtlD presents as a monomer under lower ionic strength conditions and was found to be mainly dimeric under high-salt conditions. The AbMtlD catalytic efficiency was markedly increased by cross-linking the protomers at the intersected HLH domain via engineered disulfide bonds. Inactivation of the AbMtlD phosphatase domain results in an intracellular accumulation of mannitol-1-phosphate in A. baumannii, leading to bacterial growth impairment upon salt stress. Taken together, our findings demonstrate that salt-induced dimerization of the bifunctional AbMtlD increases catalytic dehydrogenase and phosphatase efficiency, resulting in unidirectional catalysis of mannitol production.


Assuntos
Acinetobacter baumannii , Sequências Hélice-Alça-Hélice , Manitol , Desidrogenase do Álcool de Açúcar , Acinetobacter baumannii/enzimologia , Manitol/metabolismo , Pressão Osmótica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Estresse Salino , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo
2.
Crit Rev Biochem Mol Biol ; 52(6): 674-695, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28901199

RESUMO

Glycyl radical enzymes (GREs) are important biological catalysts in both strict and facultative anaerobes, playing key roles both in the human microbiota and in the environment. GREs contain a backbone glycyl radical that is post-translationally installed, enabling radical-based mechanisms. GREs function in several metabolic pathways including mixed acid fermentation, ribonucleotide reduction and the anaerobic breakdown of the nutrient choline and the pollutant toluene. By generating a substrate-based radical species within the active site, GREs enable C-C, C-O and C-N bond breaking and formation steps that are otherwise challenging for nonradical enzymes. Identification of previously unknown family members from genomic data and the determination of structures of well-characterized GREs have expanded the scope of GRE-catalyzed reactions as well as defined key features that enable radical catalysis. Here, we review the structures and mechanisms of characterized GREs, classifying members into five categories. We consider the open questions about each of the five GRE classes and evaluate the tools available to interrogate uncharacterized GREs.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Microbiota , Acetiltransferases/química , Acetiltransferases/metabolismo , Anaerobiose , Bactérias/química , Proteínas de Bactérias/química , Carboxiliases/química , Carboxiliases/metabolismo , Fermentação , Humanos , Ligases/química , Ligases/metabolismo , Modelos Moleculares , Conformação Proteica , Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo
3.
J Biol Chem ; 293(45): 17375-17386, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30224354

RESUMO

Levoglucosan is the 1,6-anhydrosugar of d-glucose formed by pyrolysis of glucans and is found in the environment and industrial waste. Two types of microbial levoglucosan metabolic pathways are known. Although the eukaryotic pathway involving levoglucosan kinase has been well-studied, the bacterial pathway involving levoglucosan dehydrogenase (LGDH) has not been well-investigated. Here, we identified and cloned the lgdh gene from the bacterium Pseudarthrobacter phenanthrenivorans and characterized the recombinant protein. The enzyme exhibited high substrate specificity toward levoglucosan and NAD+ for the oxidative reaction and was confirmed to be LGDH. LGDH also showed weak activities (∼4%) toward l-sorbose and 1,5-anhydro-d-glucitol. The reverse (reductive) reaction using 3-keto-levoglucosan and NADH exhibited significantly lower Km and higher kcat values than those of the forward reaction. The crystal structures of LGDH in the apo and complex forms with NADH, NADH + levoglucosan, and NADH + l-sorbose revealed that LGDH has a typical fold of Gfo/Idh/MocA family proteins, similar to those of scyllo-inositol dehydrogenase, aldose-aldose oxidoreductase, 1,5-anhydro-d-fructose reductase, and glucose-fructose oxidoreductase. The crystal structures also disclosed that the active site of LGDH is distinct from those of these enzymes. The LGDH active site extensively recognized the levoglucosan molecule with six hydrogen bonds, and the C3 atom of levoglucosan was closely located to the C4 atom of NADH nicotinamide. Our study is the first molecular characterization of LGDH, providing evidence for C3-specific oxidation and representing a starting point for future biotechnological use of LGDH and levoglucosan-metabolizing bacteria.


Assuntos
Actinobacteria/enzimologia , Glucose/análogos & derivados , NAD/química , Desidrogenase do Álcool de Açúcar/química , Actinobacteria/genética , Domínio Catalítico , Cristalografia por Raios X , Glucose/química , Glucose/metabolismo , Ligação de Hidrogênio , NAD/metabolismo , Oxirredução , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo
4.
J Struct Biol ; 203(2): 109-119, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29605571

RESUMO

Sorbitol-6-phosphate 2-dehydrogenases (S6PDH) catalyze the interconversion of d-sorbitol 6-phosphate to d-fructose 6-phosphate. In the plant pathogen Erwinia amylovora the S6PDH SrlD is used by the bacterium to utilize sorbitol, which is used for carbohydrate transport in the host plants belonging to the Amygdaloideae subfamily (e.g., apple, pear, and quince). We have determined the crystal structure of S6PDH SrlD at 1.84 Šresolution, which is the first structure of an EC 1.1.1.140 enzyme. Kinetic data show that SrlD is much faster at oxidizing d-sorbitol 6-phosphate than in reducing d-fructose 6-phosphate, however, equilibrium analysis revealed that only part of the d-sorbitol 6-phosphate present in the in vitro environment is converted into d-fructose 6-phosphate. The comparison of the structures of SrlD and Rhodobacter sphaeroides sorbitol dehydrogenase showed that the tetrameric quaternary structure, the catalytic residues and a conserved aspartate residue that confers specificity for NAD+ over NADP+ are preserved. Analysis of the SrlD cofactor and substrate binding sites identified residues important for the formation of the complex with cofactor and substrate and in particular the role of Lys42 in selectivity towards the phospho-substrate. The comparison of SrlD backbone with the backbone of 302 short-chain dehydrogenases/reductases showed the conservation of the protein core and identified the variable parts. The SrlD sequence was compared with 500 S6PDH sequences selected by homology revealing that the C-terminal part is more conserved than the N-terminal, the consensus of the catalytic tetrad (Y[SN]AGXA) and a not previously described consensus for the NAD(H) binding.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Erwinia amylovora/enzimologia , Erwinia amylovora/metabolismo , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo , Proteínas de Bactérias/genética , Erwinia amylovora/genética , Hexosefosfatos/metabolismo , Cinética , Rosaceae/microbiologia , Desidrogenase do Álcool de Açúcar/genética , Tomografia Computadorizada por Raios X
5.
Biochem Biophys Res Commun ; 503(1): 195-201, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29864427

RESUMO

Archaeal/fungal Rib7 and eubacterial RibG possess a reductase domain for ribosyl reduction in the second and third steps, respectively, of riboflavin biosynthesis. These enzymes are specific for an amino and a carbonyl group of the pyrimidine ring, respectively. Here, several crystal structures of Methanosarcina mazei Rib7 are reported at 2.27-1.95 Šresolution, which are the first archaeal dimeric Rib7 structures. Mutational analysis displayed that no detectable activity was observed for the Bacillus subtilis RibG K151A, K151D, and K151E mutants, and the M. mazei Rib7 D33N, D33K, and E156Q variants, while 0.1-0.6% of the activity was detected for the M. mazei Rib7 N9A, S29A, D33A, and D57N variants. Our results suggest that Lys151 in B. subtilis RibG, while Asp33 together with Arg36 in M. mazei Rib7, ensure the specific substrate recognition. Unexpectedly, an endogenous NADPH cofactor is observed in M. mazei Rib7, in which the 2'-phosphate group interacts with Ser88, and Arg91. Replacement of Ser88 with glutamate eliminates the endogenous NADPH binding and switches preference to NADH. The lower melting temperature of ∼10 °C for the S88E and R91A mutants suggests that nature had evolved a tightly bound NADPH to greatly enhance the structural stability of archaeal Rib7.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Nucleotídeo Desaminases/metabolismo , Oxirredutases/metabolismo , Riboflavina/biossíntese , Desidrogenase do Álcool de Açúcar/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Estabilidade Enzimática , Evolução Molecular , Methanosarcina/enzimologia , Methanosarcina/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , NAD/metabolismo , NADP/metabolismo , Nucleotídeo Desaminases/química , Nucleotídeo Desaminases/genética , Oxirredutases/química , Oxirredutases/genética , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/genética
6.
J Nanosci Nanotechnol ; 18(7): 4852-4857, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442665

RESUMO

Immobilization of glycerol dehydrogenase (GDH) from Serratia marcescens H30 onto epoxy functional magnetic nanoparticles by covalent attachment was carried out. The optimal immobilization conditions were obtained as follows: enzyme/support 6.08 mg/g, temperature 25 °C, pH 7.0 and time 8 h. Under these conditions, a high immobilization yield above 90% was obtained. The characterization of the immobilized GDH indicated that enhanced pH and thermal stability were achieved. Kinetic parameters Km of free and immobilized GDH were determined as 10.35 mM and 15.76 mM, respectively. The immobilized GDH retained about 85% initial activity after ten cycles. These results suggested that GDH immobilized onto magnetic nanoparticles is a simple and efficient way for preparation of stable enzyme. And the immobilized GDH has potential applications in the production of DHA.


Assuntos
Enzimas Imobilizadas , Nanopartículas de Magnetita , Desidrogenase do Álcool de Açúcar/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Desidrogenase do Álcool de Açúcar/análise , Temperatura
7.
Biosci Biotechnol Biochem ; 81(2): 411-418, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27849146

RESUMO

A novel oxidation of D-pentonates to 4-keto-D-pentonates was analyzed with Gluconobacter thailandicus NBRC 3258. D-Pentonate 4-dehydrogenase activity in the membrane fraction was readily inactivated by EDTA and it was reactivated by the addition of PQQ and Ca2+. D-Pentonate 4-dehydrogenase was purified to two different subunits, 80 and 14 kDa. The absorption spectrum of the purified enzyme showed no typical absorbance over the visible regions. The enzyme oxidized D-pentonates to 4-keto-D-pentonates at the optimum pH of 4.0. In addition, the enzyme oxidized D-fructose to 5-keto-D-fructose, D-psicose to 5-keto-D-psicose, including the other polyols such as, glycerol, D-ribitol, D-arabitol, and D-sorbitol. Thus, D-pentonate 4-dehydrogenase was found to be identical with glycerol dehydrogenase (GLDH), a major polyol dehydrogenase in Gluconobacter species. The reaction versatility of quinoprotein GLDH was notified in this study.


Assuntos
Biocatálise , Membrana Celular/enzimologia , Frutose/análogos & derivados , Desidrogenase do Álcool de Açúcar/metabolismo , Membrana Celular/metabolismo , Frutose/química , Genômica , Gluconobacter/enzimologia , Oxirredução , Solubilidade , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/genética
8.
IUBMB Life ; 68(9): 700-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27416973

RESUMO

As methods for the use of anhydrosugars in chemical and biofuel production continue to develop, our collective knowledge of anhydrosugar processing enzymes continues to improve, including their mechanistic details, structural dynamics and modes of substrate binding. Of particular interest, anhydrosugar kinases, such as levoglucosan kinase (LGK) and 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), utilize an unusual mechanism whereby the sugar substrate is both cleaved and phosphorylated. The phosphorylated sugar can then be routed to other metabolic pathways, thereby allowing its further bioconversion. Advanced engineering efforts to improve the catalytic efficiency and stability of LGK have been steadily progressing. Other enzymes that cleave the glycosidic bond of disaccharide sugars containing an anhydrosugar component are also being identified and characterized. Accordingly, the potential future use of these enzymes in large-scale production strategies is becoming increasingly viable. Here, a mini-review of the observed characteristics of anhydrosugar processing enzymes is presented along with recent developments in the bioconversion of these sugars. © 2016 IUBMB Life 68(9):700-708, 2016.


Assuntos
Escherichia coli/enzimologia , Fosfotransferases/genética , Desidrogenase do Álcool de Açúcar/genética , Biocombustíveis , Carboidratos/química , Carboidratos/genética , Escherichia coli/genética , Ácidos Murâmicos/química , Ácidos Murâmicos/metabolismo , Fosforilação , Fosfotransferases/química , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo
9.
Microb Cell Fact ; 15: 23, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26822953

RESUMO

BACKGROUND: Imbalance in cofactors causing the accumulation of intermediates in biosynthesis pathways is a frequently occurring problem in metabolic engineering when optimizing a production pathway in a microorganism. In our previous study, a single knock-out Citrobacter werkmanii ∆dhaD was constructed for improved 1,3-propanediol (PDO) production. Instead of an enhanced PDO concentration on this strain, the gene knock-out led to the accumulation of the toxic intermediate 3-hydroxypropionaldehyde (3-HPA). The hypothesis was emerged that the accumulation of this toxic intermediate, 3-HPA, is due to a cofactor imbalance, i.e. to the limited supply of reducing equivalents (NADH). Here, this bottleneck is alleviated by rationally engineering cell metabolism to balance the cofactor supply. RESULTS: By eliminating non-essential NADH consuming enzymes (such as lactate dehydrogenase coded by ldhA, and ethanol dehydrogenase coded by adhE) or by increasing NADH producing enzymes, the accumulation of 3-HPA is minimized. Combining the above modifications in C. werkmanii ∆dhaD resulted in the strain C. werkmanii ∆dhaD∆ldhA∆adhE::ChlFRT which provided the maximum theoretical yield of 1.00 ± 0.03 mol PDO/mol glycerol when grown on glucose/glycerol (0.33 molar ratio) on flask scale under anaerobic conditions. On bioreactor scale, the yield decreased to 0.73 ± 0.01 mol PDO/mol glycerol although no 3-HPA could be measured, which indicates the existence of a sink of glycerol by a putative glycerol dehydrogenase, channeling glycerol to the central metabolism. CONCLUSIONS: In this study, a multiple knock-out was created in Citrobacter species for the first time. As a result, the concentration of the toxic intermediate 3-HPA was reduced to below the detection limit and the maximal theoretical PDO yield on glycerol was reached.


Assuntos
Citrobacter/metabolismo , Gliceraldeído/análogos & derivados , Engenharia Metabólica/métodos , Propano/metabolismo , Propilenoglicóis/metabolismo , Sequência de Aminoácidos , Técnicas de Cultura Celular por Lotes , Reatores Biológicos/microbiologia , Citrobacter/efeitos dos fármacos , Citrobacter/enzimologia , Citrobacter/crescimento & desenvolvimento , Fermentação/efeitos dos fármacos , Técnicas de Inativação de Genes , Glucose/farmacologia , Gliceraldeído/metabolismo , Glicerol/farmacologia , Glicerol Quinase/metabolismo , Concentração de Íons de Hidrogênio , Metaboloma/efeitos dos fármacos , Dados de Sequência Molecular , Mutação/genética , NAD/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/efeitos dos fármacos , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo
10.
J Biol Chem ; 289(9): 6080-90, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24429283

RESUMO

Glycerol dehydrogenase (GDH) is an important polyol dehydrogenase for glycerol metabolism in diverse microorganisms and for value-added utilization of glycerol in the industry. Two GDHs from Klebsiella pneumoniae, DhaD and GldA, were expressed in Escherichia coli, purified and characterized for substrate specificity and kinetic parameters. Both DhaD and GldA could catalyze the interconversion of (3R)-acetoin/(2R,3R)-2,3-butanediol or (3S)-acetoin/meso-2,3-butanediol, in addition to glycerol oxidation. Although purified GldA appeared more active than DhaD, in vivo inactivation and quantitation of their respective mRNAs indicate that dhaD is highly induced by glycerol and plays a dual role in glycerol metabolism and 2,3-butanediol formation. Complementation in K. pneumoniae further confirmed the dual role of DhaD. Promiscuity of DhaD may have vital physiological consequences for K. pneumoniae growing on glycerol, which include balancing the intracellular NADH/NAD(+) ratio, preventing acidification, and storing carbon and energy. According to the kinetic response of DhaD to modified NADH concentrations, DhaD appears to show positive homotropic interaction with NADH, suggesting that the physiological role could be regulated by intracellular NADH levels. The co-existence of two functional GDH enzymes might be due to a gene duplication event. We propose that whereas DhaD is specialized for glycerol utilization, GldA plays a role in backup compensation and can turn into a more proficient catalyst to promote a survival advantage to the organism. Revelation of the dual role of DhaD could further the understanding of mechanisms responsible for enzyme evolution through promiscuity, and guide metabolic engineering methods of glycerol metabolism.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas de Bactérias/química , Glicerol/química , Klebsiella pneumoniae/enzimologia , Desidrogenase do Álcool de Açúcar/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicerol/metabolismo , Klebsiella pneumoniae/genética , Viabilidade Microbiana , NAD/química , NAD/genética , NAD/metabolismo , Oxirredução , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo
11.
Planta ; 240(1): 223-38, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24817585

RESUMO

The sorbitol-6-phosphate dehydrogenase (S6PDH) is a key enzyme for sorbitol synthesis and plays an important role in the alleviation of salinity stress in plants. Despite the huge significance, the structure and the mode of action of this enzyme are still not known. In the present study, sequence analysis, cloning, expression, activity assays and enzyme kinetics using various substrates (glucose-6-phosphate, sorbitol-6-phosphate and mannose-6-phosphate) were performed to establish the functional role of S6PDH protein from rice (Oryza sativa). For the structural analysis of the protein, a comparative homology model was prepared on the basis of percentage sequence identity and substrate similarity using the crystal structure of human aldose reductase in complex with glucose-6-phosphate and NADP(+) (PDB ID: 2ACQ) as a template. Molecular docking was performed for studying the structural details of substrate binding and possible enzyme mechanism. The cloned sequence resulted into an active recombinant protein when expressed into a bacterial expression system. The purified recombinant protein was found to be active with glucose-6-phosphate and sorbitol-6-phosphate; however, activity against mannose-6-phosphate was not found. The K m values for glucose-6-phosphate and sorbitol-6-phosphate were found to be 15.9 ± 0.2 and 7.21 ± 0.5 mM, respectively. A molecular-level analysis of the active site of OsS6PDH provides valuable information about the enzyme mechanism and requisite enantioselectivity for its physiological substrates. Thus, the fundamental studies of structure and function of OsS6PDH could serve as the basis for the future studies of bio-catalytic applications of this enzyme.


Assuntos
Simulação de Acoplamento Molecular , Oryza/enzimologia , Processamento de Proteína Pós-Traducional , Desidrogenase do Álcool de Açúcar/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Hexosefosfatos/metabolismo , Cinética , Oryza/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/isolamento & purificação
12.
Appl Microbiol Biotechnol ; 98(16): 7039-50, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24664447

RESUMO

NAD-dependent Thermotoga maritima glycerol dehydrogenase (TmGlyDH) converts glycerol into dihydroxyacetone (DHA), a valuable synthetic precursor and sunless tanning agent. In this work, recombinant TmGlyDH was characterized to determine if it can be used to catalyze DHA production. The pH optima for glycerol oxidation and DHA reduction at 50 °C were 7.9 and 6.0, respectively. Under the conditions tested, TmGlyDH had a linear Arrhenius plot up to 80 °C. TmGlyDH was more thermostable than other glycerol dehydrogenases, remaining over 50 % active after 7 h at 50 °C. TmGlyDH was active on racemic 1,2-propanediol and produced (R)-1,2-propanediol from hydroxyacetone with an enantiomeric excess above 99 %, suggesting that TmGlyDH can also be used for chiral synthesis. (R)-1,2-propanediol production from hydroxyacetone was demonstrated for the first time in a one-enzyme cycling reaction using glycerol as the second substrate. Negative cooperativity was observed with glycerol and DHA, but not with the cofactor. Apparent kinetic parameters for glycerol, DHA, and NAD(H) were determined over a broad pH range. TmGlyDH showed little activity with N(6)-carboxymethyl-NAD(+) (N(6)-CM-NAD), an NAD(+) analog modified for easy immobilization to amino groups, but the double mutation V44A/K157G increased catalytic efficiency with N(6)-CM-NAD(+) ten-fold. Finally, we showed for the first time that a GlyDH is active with immobilized N(6)-CM-NAD(+), suggesting that N(6)-CM-NAD(+) can be immobilized on an electrode to allow TmGlyDH activity in a system that reoxidizes the cofactor electrocatalytically.


Assuntos
Di-Hidroxiacetona/metabolismo , Desidrogenase do Álcool de Açúcar/metabolismo , Thermotoga maritima/enzimologia , Thermotoga maritima/metabolismo , Estabilidade Enzimática , Glicerol/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Desidrogenase do Álcool de Açúcar/química , Temperatura
13.
Appl Microbiol Biotechnol ; 98(3): 1095-104, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24193245

RESUMO

L-Xylulose is a potential starting material for therapeutics. However, its translation into clinical practice has been hampered by its inherently low bioavailability. In addition, the high cost associated with the production of L-xylulose is a major factor hindering its rapid deployment beyond the laboratory. In the current study, L-arabinitol 4-dehydrogenase from Hypocrea jecorina (HjLAD), which catalyzes the conversion of L-arabinitol into L-xylulose, was immobilized onto various carriers, and the immobilized enzymes were characterized. HjLAD covalently immobilized onto silicon oxide nanoparticles showed the highest immobilization efficiency (94.7 %). This report presents a comparative characterization of free and immobilized HjLAD, including its thermostability and kinetic parameters. The thermostability of HjLAD immobilized on silicon oxide nanoparticles was more than 14.2-fold higher than free HjLAD; the t1/2 of HjLAD at 25 °C was enhanced from 190 min (free) to 45 h (immobilized). In addition, the immobilized HjLAD retained 94 % of its initial activity after 10 cycles. When the immobilized HjLAD was used to catalyze the biotransformation of L-arabinitol to L-xylulose, 66 % conversion and a productivity of 7.9 g · h(-1) · L(-1) were achieved. The enhanced thermostability and reusability of HjLAD suggest that immobilization of HjLAD onto silicon oxide nanoparticles has the potential for use in the industrial production of rare sugars.


Assuntos
Enzimas Imobilizadas/metabolismo , Nanopartículas/química , Dióxido de Silício/química , Desidrogenase do Álcool de Açúcar/metabolismo , Xilulose/metabolismo , Estabilidade Enzimática , Enzimas Imobilizadas/química , Cinética , Desidrogenase do Álcool de Açúcar/química , Temperatura , Trichoderma/enzimologia
14.
Appl Microbiol Biotechnol ; 98(7): 3023-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24061413

RESUMO

A gene in Bradyrhizobium japonicum USDA 110, annotated as a ribitol dehydrogenase (RDH), had 87 % sequence identity (97 % positives) to the N-terminal 31 amino acids of an L-glucitol dehydrogenase from Stenotrophomonas maltophilia DSMZ 14322. The 729-bp long RDH gene coded for a protein consisting of 242 amino acids with a molecular mass of 26.1 kDa. The heterologously expressed protein not only exhibited the main enantio selective activity with D-glucitol oxidation to D-fructose but also converted L-glucitol to D-sorbose with enzymatic cofactor regeneration and a yield of 90 %. The temperature stability and the apparent K m value for L-glucitol oxidation let the enzyme appear as a promising subject for further improvement by enzyme evolution. We propose to rename the enzyme from the annotated RDH gene (locus tag bll6662) from B. japonicum USDA as a D-sorbitol dehydrogenase (EC 1.1.1.14).


Assuntos
Bradyrhizobium/enzimologia , Coenzimas/metabolismo , Sorbitol/metabolismo , Sorbose/metabolismo , Desidrogenase do Álcool de Açúcar/metabolismo , Biotransformação , Bradyrhizobium/genética , Clonagem Molecular , Estabilidade Enzimática , Frutose/metabolismo , Expressão Gênica , Cinética , Peso Molecular , Oxirredução , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Stenotrophomonas maltophilia/enzimologia , Stenotrophomonas maltophilia/genética , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/genética , Temperatura
15.
J Ind Microbiol Biotechnol ; 41(9): 1319-27, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24981852

RESUMO

The meso-2,3-butanediol dehydrogenase (meso-BDH) from S. marcescens H30 is responsible for converting acetoin into 2,3-butanediol during sugar fermentation. Inactivation of the meso-BDH encoded by budC gene does not completely abolish 2,3-butanediol production, which suggests that another similar enzyme involved in 2,3-butanediol formation exists in S. marcescens H30. In the present study, a glycerol dehydrogenase (GDH) encoded by gldA gene from S. marcescens H30 was expressed in Escherichia coli BL21(DE3), purified and characterized for its properties. In vitro conversion indicated that the purified GDH could catalyze the interconversion of (3S)-acetoin/meso-2,3-butanediol and (3R)-acetoin/(2R,3R)-2,3-butanediol. (2S,3S)-2,3-Butanediol was not a substrate for the GDH at all. Kinetic parameters of the GDH enzyme showed lower K m value and higher catalytic efficiency for (3S/3R)-acetoin in comparison to those for (2R,3R)-2,3-butanediol and meso-2,3-butanediol, implying its physiological role in favor of 2,3-butanediol formation. Maximum activity for reduction of (3S/3R)-acetoin and oxidations of meso-2,3-butanediol and glycerol was observed at pH 8.0, while it was pH 7.0 for diacetyl reduction. The enzyme exhibited relative high thermotolerance with optimum temperature of 60 °C in the oxidation-reduction reactions. Over 60 % of maximum activity was retained at 70 °C. Additionally, the GDH activity was significantly enhanced for meso-2,3-BD oxidation in the presence of Fe(2+) and for (3S/3R)-acetoin reduction in the presence of Mn(2+), while several cations inhibited its activity, particularly Fe(2+) and Fe(3+) for (3S/3R)-acetoin reduction. The properties provided potential application for single configuration production of acetoin and 2,3-butanediol .


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Butileno Glicóis/metabolismo , Clonagem Molecular , Serratia marcescens/enzimologia , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Butileno Glicóis/química , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Dados de Sequência Molecular , Alinhamento de Sequência , Serratia marcescens/química , Serratia marcescens/genética , Serratia marcescens/metabolismo , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/metabolismo
16.
J Biol Chem ; 287(31): 26010-8, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22654107

RESUMO

In addition to the well established Leloir pathway for the catabolism of d-galactose in fungi, the oxidoreductive pathway has been recently identified. In this oxidoreductive pathway, D-galactose is converted via a series of NADPH-dependent reductions and NAD(+)-dependent oxidations into D-fructose. The pathway intermediates include galactitol, L-xylo-3-hexulose, and d-sorbitol. This study identified the missing link in the pathway, the L-xylo-3-hexulose reductase that catalyzes the conversion of L-xylo-3-hexulose to D-sorbitol. In Trichoderma reesei (Hypocrea jecorina) and Aspergillus niger, we identified the genes lxr4 and xhrA, respectively, that encode the l-xylo-3-hexulose reductases. The deletion of these genes resulted in no growth on galactitol and in reduced growth on D-galactose. The LXR4 was heterologously expressed, and the purified protein showed high specificity for L-xylo-3-hexulose with a K(m) = 2.0 ± 0.5 mm and a V(max) = 5.5 ± 1.0 units/mg. We also confirmed that the product of the LXR4 reaction is D-sorbitol.


Assuntos
Aspergillus niger/enzimologia , Galactose/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Trichoderma/enzimologia , Aspergillus niger/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Hexoses/química , Hexoses/metabolismo , Cetoses/química , Cetoses/metabolismo , Cinética , Redes e Vias Metabólicas , NADP/química , Oxirredução , Sorbitol/metabolismo , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo , Transcrição Gênica , Trichoderma/crescimento & desenvolvimento
17.
Artigo em Inglês | MEDLINE | ID: mdl-24192347

RESUMO

The primary role of yeast Ara1, previously mis-annotated as a D-arabinose dehydrogenase, is to catalyze the reduction of a variety of toxic α,ß-dicarbonyl compounds using NADPH as a cofactor at physiological pH levels. Here, crystal structures of Ara1 in apo and NADPH-complexed forms are presented at 2.10 and 2.00 Šresolution, respectively. Ara1 exists as a homodimer, each subunit of which adopts an (α/ß)8-barrel structure and has a highly conserved cofactor-binding pocket. Structural comparison revealed that induced fit upon NADPH binding yielded an intact active-site pocket that recognizes the substrate. Moreover, the crystal structures combined with computational simulation defined an open substrate-binding site to accommodate various substrates that possess a dicarbonyl group.


Assuntos
NADP/metabolismo , Oxirredutases Atuantes sobre Doadores de Grupos Aldeído ou Oxo/química , Oxirredutases Atuantes sobre Doadores de Grupos Aldeído ou Oxo/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Alinhamento de Sequência , Especificidade por Substrato
18.
Artigo em Inglês | MEDLINE | ID: mdl-23295493

RESUMO

YisP is an enzyme involved in the pathway of biofilm formation in bacteria and is predicted to possess squalene synthase activity. A BlastP search using the YisP protein sequence from Bacillus subtilis subsp. subtilis strain 168 shows that it shares 23% identity with the dehydrosqualene synthase from Staphylococcus aureus. The YisP from B. subtilis 168 was expressed in Escherichia coli and the recombinant protein was purified and crystallized. The crystals, which belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 43.966, b = 77.576, c = 91.378 Å, were obtained by the sitting-drop vapour-diffusion method and diffracted to 1.92 Šresolution. Structure determination using MAD and MIR methods is in progress.


Assuntos
Proteínas de Bactérias/química , Desidrogenase do Álcool de Açúcar/química , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Cristalização/métodos , Cristalografia por Raios X , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/isolamento & purificação
19.
FEBS J ; 290(17): 4342-4355, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37165682

RESUMO

During glycerol metabolism, the initial step of glycerol oxidation is catalysed by glycerol dehydrogenase (GDH), which converts glycerol to dihydroxyacetone in a NAD+ -dependent manner via an ordered Bi-Bi kinetic mechanism. Structural studies conducted with GDH from various species have mainly elucidated structural details of the active site and ligand binding. However, the structure of the full GDH complex with both cofactor and substrate bound is not determined, and thus, the structural basis of the kinetic mechanism of GDH remains unclear. Here, we report the crystal structures of Escherichia coli GDH with a substrate analogue bound in the absence or presence of NAD+ . Structural analyses including molecular dynamics simulations revealed that GDH possesses a flexible ß-hairpin, and that during the ordered progression of the kinetic mechanism, the flexibility of the ß-hairpin is reduced after NAD+ binding. It was also observed that this alterable flexibility of the ß-hairpin contributes to the cofactor binding and possibly to the catalytic efficiency of GDH. These findings suggest the importance of the flexible ß-hairpin to GDH enzymatic activity and shed new light on the kinetic mechanism of GDH.


Assuntos
NAD , Desidrogenase do Álcool de Açúcar , NAD/metabolismo , Glicerol/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo , Oxirredução , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Glutamato Desidrogenase/metabolismo
20.
J Biol Chem ; 285(26): 20006-14, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20410293

RESUMO

Galactitol 2-dehydrogenase (GatDH) belongs to the protein superfamily of short-chain dehydrogenases. As an enzyme capable of the stereo- and regioselective modification of carbohydrates, it exhibits a high potential for application in biotechnology as a biocatalyst. We have determined the crystal structure of the binary form of GatDH in complex with its cofactor NAD(H) and of the ternary form in complex with NAD(H) and three different substrates. The active form of GatDH constitutes a homo-tetramer with two magnesium-ion binding sites each formed by two opposing C termini. The catalytic tetrad is formed by Asn(116), Ser(144), Tyr(159), and Lys(163). GatDH structurally aligns well with related members of the short-chain dehydrogenase family. The substrate binding pocket can be divided into two parts of different size and polarity. In the smaller part, the side chains of amino acids Ser(144), Ser(146), and Asn(151) are important determinants for the binding specificity and the orientation of (pro-) chiral compounds. The larger part of the pocket is elongated and flanked by polar and non-polar residues, enabling a rather broad substrate spectrum. The presented structures provide valuable information for a rational design of this enzyme to improve its stability against pH, temperature, or solvent concentration and to optimize product yield in bioreactors.


Assuntos
Proteínas de Bactérias/química , Rhodobacter sphaeroides/enzimologia , Desidrogenase do Álcool de Açúcar/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Metabolismo dos Carboidratos , Domínio Catalítico , Cristalização , Cinética , Magnésio/química , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , NAD/química , NAD/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Rhodobacter sphaeroides/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA