Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Pharm Dev Technol ; 25(6): 704-719, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32098567

RESUMO

The aim of the present research was to investigate the feasibility of developing polylactide-polycaprolactone-polyethylene glycol-polycaprolactone-polylactide (PLA-PCL-PEG-PCL-PLA) based micelles to improve ocular permeability of dexamethasone (DEX). PLA-PCL-PEG-PCL-PLA copolymers were synthesized by a ring-opening polymerization method. DEX was loaded into the developed copolymers. The DEX-loaded micelles were characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS) methods. Cytotoxicity of the micelles obtained was investigated on L929 cell line. Cellular uptake was followed by fluorescence microscopy and flow cytometry analyses. The release behavior of DEX from the micelles as well as the drug release kinetics was studied. Corneal permeability was also evaluated using an ex vivo bovine model. The pentablock copolymers were successfully synthesized. The TEM results verified the formation of spherical micelles, the sizes of which was approximately 65 nm. The micelles exhibited suitable compatibility on L929 cells. The release profile showed an initial burst release phase followed by a sustained release phase, the kinetic of which was close to the Weibull's distribution model. The micelles showed higher corneal permeability in comparison to a marketed DEX eye drop. Taken together, the results indicated that the PLA-PCL-PEG-PCL-PLA micelles could be appropriate candidates for the ocular delivery of DEX, and probably other hydrophobic drugs.


Assuntos
Córnea/metabolismo , Dexametasona/síntese química , Desenvolvimento de Medicamentos/métodos , Micelas , Poliésteres/síntese química , Polietilenoglicóis/síntese química , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacocinética , Bovinos , Linhagem Celular , Córnea/efeitos dos fármacos , Dexametasona/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Camundongos , Técnicas de Cultura de Órgãos , Permeabilidade/efeitos dos fármacos , Poliésteres/farmacocinética , Polietilenoglicóis/farmacocinética
2.
Pharm Biol ; 56(1): 519-527, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30270694

RESUMO

CONTEXT: Polypropylenimine (PPI), a cationic dendrimer with defined structure and positive surface charge, is a potent non-viral vector. Dexamethasone (Dexa) conveys to the nucleus through interaction with its intracellular receptor. OBJECTIVE: This study develops efficient and non-toxic gene carriers through conjugation of Dexa at various percentages (5, 10 and 20%) to the fourth and the fifth generation PPIs (PPIG4s and PPIG5s). MATERIALS AND METHODS: The 21-OH group of Dexa (0.536 mmol) was modified with methanesulfonyl chloride (0.644 mmol) to activate it (Dexa-mesylate), and then it was conjugated to PPIs using Traut's reagent. After dialysis (48 h) and lyophilization, the physicochemical characteristics of products (PPI-Dexa) including zeta potential, size, buffering capacity and DNA condensing capability were investigated and compared with unmodified PPIs. Moreover, the cytotoxicity and transfection activity of the Dexa-modified PPIs were assessed using Neuro2A cells. RESULTS: Transfection of PPIG4 was close to PEI 25 kDa. Although the addition of Dexa to PPIG4s did not improve their transfection, their cytotoxicity was improved; especially in the carrier to DNA weight ratios (C/P) of one and two. The Dexa conjugation to PPIG5s enhanced their transfection at C/P ratio of one in both 5% (1.3-fold) and 10% (1.6-fold) Dexa grafting, of which the best result was observed in PPIG5-Dexa 10% at C/P ratio of one. DISCUSSION AND CONCLUSIONS: The modification of PPIs with Dexa is a promising approach to improve their cytotoxicity and transfection. The higher optimization of physicochemical characteristics, the better cell transfection and toxicity will be achieved.


Assuntos
Dexametasona/síntese química , Técnicas de Transferência de Genes , Nanopartículas/química , Polipropilenos/síntese química , Transfecção/métodos , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/síntese química , Dexametasona/administração & dosagem , Técnicas de Transferência de Genes/normas , Humanos , Nanopartículas/administração & dosagem , Polipropilenos/administração & dosagem , Transfecção/normas
3.
J Med Chem ; 64(6): 3115-3130, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33666428

RESUMO

Cisplatin (CDDP) is an extensively used chemotherapeutic agent but has a high incidence of severe ototoxicity. Although a few molecules have entered clinical trials, none have been approved to prevent or treat CDDP-induced hearing loss by the Food and Drug Administration. In this study, an amphiphilic drug-drug conjugate was synthesized by covalently linking dexamethasone (DEX) and salvianolic acid B (SAL) through an ester or amide bond. The conjugates could self-assemble into nanoparticles (NPs) with ultrahigh drug loading capacity and favorable stability. Compared with DEX, SAL, or their physical mixture at the same concentrations, both conjugates and NPs showed enhanced otoprotection in vitro and in vivo. More importantly, the conjugates and NPs almost completely restored hearing in a guinea pig model with good biocompatibility. Immunohistochemical analyses suggested that conjugates and NPs activated the glucocorticoid receptor, which may work as one of the major mechanisms for their protective effects.


Assuntos
Antineoplásicos/efeitos adversos , Benzofuranos/uso terapêutico , Cisplatino/efeitos adversos , Dexametasona/uso terapêutico , Perda Auditiva/induzido quimicamente , Perda Auditiva/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Animais , Benzofuranos/síntese química , Benzofuranos/química , Dexametasona/análogos & derivados , Dexametasona/síntese química , Desenho de Fármacos , Cobaias , Perda Auditiva/patologia , Humanos , Substâncias Protetoras/síntese química , Substâncias Protetoras/química
4.
J Cell Biochem ; 110(3): 743-51, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20512934

RESUMO

Linear polyethylenimine (25 kDa, LPEI25k) has been shown to be an effective non-viral gene carrier with higher transfection and lower toxicity than branched polyethylenimine (BPEI) of comparable molecular weight. In this study, dexamethasone was conjugated to LPEI25k to improve the efficiency of gene delivery. Dexamethasone is a synthetic glucocorticoid receptor ligand. Dexamethasone-conjugated LPEI25k (LPEI-Dexa) was evaluated as a gene carrier in various cells. Gel retardation assays showed that LPEI-Dexa completely retarded plasmid DNA (pDNA) at a 0.75:1 weight ratio (LPEI/pDNA). LPEI-Dexa had the highest transfection efficiency at a 2:1 weight ratio (LPEI-Dexa/DNA). At this ratio, the size of the LPEI-Dexa/pDNA complex was approximately 125 nm and the zeta potential was 35 mV. LPEI-Dexa had higher transfection efficiency than LPEI and Lipofectamine 2000. In addition, the cytotoxicity of LPEI-Dexa was much lower than that of BPEI (25 kDa, BPEI25k). In conclusion, LPEI-Dexa has a high transfection efficiency and low toxicity and can therefore be used for non-viral gene delivery.


Assuntos
Dexametasona/síntese química , Técnicas de Transferência de Genes , Glucocorticoides/síntese química , Polietilenoimina/síntese química , Animais , Linhagem Celular , Separação Celular , Citometria de Fluxo , Humanos , Camundongos , Microscopia Confocal , Ratos , Transfecção
5.
Biomacromolecules ; 11(10): 2621-8, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20831200

RESUMO

A novel linear multifunctional polyethylene glycol (PEG)-dexamethasone (Dex) conjugate (click PEG-Dex) was synthesized using facile Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition (a click reaction). Dex was conjugated to the click PEG via an acid-labile hydrazone bond to allow the drug release in a pathophysiological environment. To evaluate click PEG's potential as a versatile drug delivery platform, the click PEG-Dex conjugates were tested in an adjuvant-induced arthritis (AA) rat model. In vivo optical imaging data confirmed the arthrotropism of the conjugates in the arthritic rats. A long-term treatment study revealed that a single click PEG-Dex conjugate administration provided sustained (>15 days) amelioration of ankle joint inflammation to the AA rats. Treatment with an equivalent dose of dexamethasone phosphate sodium (free Dex) only provided temporal resolution of the arthritis, which recurred upon treatment withdrawal. Further histological and bone mineral density comparison between the ankle joints from both click PEG-Dex and free Dex treatment groups confirmed the superior anti-inflammatory and disease modifying effects of the novel polymer-drug conjugates.


Assuntos
Anti-Inflamatórios/síntese química , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Química Click/métodos , Dexametasona/análogos & derivados , Polietilenoglicóis/síntese química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Catálise , Dexametasona/síntese química , Dexametasona/química , Dexametasona/uso terapêutico , Masculino , Estrutura Molecular , Polietilenoglicóis/química , Polietilenoglicóis/uso terapêutico , Ratos , Ratos Endogâmicos Lew , Solubilidade
6.
J Comb Chem ; 12(3): 321-6, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20210299

RESUMO

Cyclic peptides and their cyclic analogs have received a great deal of attention because of their numerous interesting biological activities and their challenging chemical synthesis. It has also been hypothesized that they might improve the cell permeability compared to linear molecules by providing internal hydrogen bonding and generally decreasing the conformational flexibility. In this study, a series of cyclic and linear peptoid-dexamethasone conjugates were rationally designed and efficiently synthesized on solid-phase for systematic cell permeability studies using reporter gene-based assays. These model compounds should be used to reveal how the cell permeability of cyclic molecules is affected by several physicochemical properties, especially, the reduced conformational flexibility and the ring size. In addition, the synthetic strategy that was adopted in this study can also provide a robust platform for postchemical modifications of various molecular scaffolds in solid-phase or solution-phase syntheses.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Técnicas de Química Combinatória/métodos , Dexametasona/síntese química , Dexametasona/farmacologia , Peptídeos Cíclicos/síntese química , Peptoides/síntese química , Peptoides/farmacologia , Sequência de Aminoácidos , Permeabilidade da Membrana Celular/fisiologia , Cromatografia Líquida de Alta Pressão , Dexametasona/análogos & derivados , Dexametasona/química , Humanos , Ligação de Hidrogênio , Micro-Ondas , Dados de Sequência Molecular , Estrutura Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptoides/análogos & derivados , Peptoides/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Steroids ; 148: 47-55, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31075340

RESUMO

There are quite substantial number of impurities related to dexamethasone or mometasone which cannot be made from respective Active Pharmaceutical Ingredients but from common intermediate 21-acetoxy-17α-hydroxy-16α-methyl-pregna-1,4,9(11)-triene-3,20-dione (12). As such, a robust and economical synthesis of this key intermediate is important for delivering a resilient and economically viable supply chain for these impurities. Therefore, it is critical to have a robust and economically viable process to synthesize the intermediate 12 in good yield and quality. We report here an improved synthesis of 12 and eight impurities related to dexamethasone and mometasone from this common intermediate.


Assuntos
Dexametasona/síntese química , Furoato de Mometasona/síntese química , Progesterona/química , Dexametasona/química , Conformação Molecular , Furoato de Mometasona/química , Progesterona/síntese química
8.
Curr Pharm Des ; 24(11): 1224-1240, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29141539

RESUMO

BACKGROUND: Unintentional passive diffusion of conventional small molecular weight pharmaceuticals across intact membranes of normal healthy cells in tissues and organ systems induces sequelae that limit therapeutic dosage and duration of administration. Selective "targeted" delivery of pharmaceuticals is a molecular strategy that can potentially provide heightened margins-of-safety with greater potency and improved efficacy. MATERIALS AND METHODS: Monophosphate analogs of fludarabine, gemcitabine, and dexamethasone were combined with a carbodiimide reagent in the presence of imidazole to produce reactive intermediates that were subsequently covalently bound to monoclonal anti-IGF-1R or anti-EGFR IgG-immunoglobulin. The resulting covalent immunopharmaceutical end-products, fludarabine-(5'-phosphoramidate)-[anti-IGF-1R], gemcitabine-(5'- phosphoramidate)-[anti-IGF-1R], and dexamethasone-(C21-phosphoramidate)-[anti-EGFR] were evaluated by SDS-PAGE/chemiluminescent autoradiography (fragmentation/polymerization detection), UV spectrophotometric absorbance (purity; molar-incorporation-index), cell-ELISA (retained selective binding-avidity), and cell vitality-viability (selectively "targeted" anti-neoplastic cytotoxicity). RESULTS: Maximum selectively "targeted" anti-neoplastic cytotoxicity of fludarabine-(5'-phosphoramidate)-[anti- IGF-1R], gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R], and dexamethasone-(C21-phosphoramidate)-[anti- EGFR] was detected at the pharmaceutical-equivalent concentrations of 10-5 M (94.7%), 10-7 M (93.1%), and 10-7 M (64.9%) respectively. DISCUSSION: Organic chemistry reactions were optimized in a template multi-stage synthesis regimen for fludarabine-( 5'-phosphoramidate)-[anti-IGF-1R], gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R], and dexamethasone-( C21-phosphoramidate)-[anti-EGFR]. Attributes of the synthesis regimen include; [-i-] covalent bonding of pharmaceutical moeities at high molar incorporation indexes, [-ii-] implementation of organic chemistry reactions in a non-dedicated synthesis regimen allowing component substitution and [-iii-] optional preservation of presynthesized amine-reactive pharmaceutical intermediates for on-demand immunopharmaceutical synthesis. Attributes of the covalent immunopharmaceuticals are; absence of any synthetically introduced chemical groups, retained IgG-immunoglobulin binding-avidity and potent selective "targeted" anti-neoplastic cytotoxic potency. Under in-vivo conditions, supplemental anti-neoplastic cytotoxicity is realized through trophic receptor inhibition and activation of multiple cytotoxic host immune responses.


Assuntos
Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Dexametasona/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Vidarabina/análogos & derivados , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/síntese química , Desoxicitidina/química , Desoxicitidina/farmacologia , Dexametasona/síntese química , Dexametasona/química , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Vidarabina/síntese química , Vidarabina/química , Vidarabina/farmacologia , Gencitabina
9.
Drug Des Devel Ther ; 10: 2575-97, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27574398

RESUMO

PURPOSE: Corticosteroids are effective in the management of a variety of disease states, such as several forms of neoplasia (leukemia and lymphoma), autoimmune conditions, and severe inflammatory responses. Molecular strategies that selectively "target" delivery of corticosteroids minimize or prevents large amounts of the pharmaceutical moiety from passively diffusing into normal healthy cell populations residing within tissues and organ systems. MATERIALS AND METHODS: The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR] was synthesized by reacting dexamethasone-21-monophosphate with a carbodiimide reagent to form a dexamethasone phosphate carbodiimide ester that was subsequently reacted with imidazole to create an amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate. Monoclonal anti-EGFR immunoglobulin was combined with the amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate, resulting in the synthesis of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Following spectrophotometric analysis and validation of retained epidermal growth factor receptor type 1 (EGFR)-binding avidity by cell-ELISA, the selective anti-neoplasic cytotoxic potency of dexamethasone-(C21-phosphoramide)-[anti-EGFR] was established by MTT-based vitality stain methodology using adherent monolayer populations of human pulmonary adenocarcinoma (A549) known to overexpress the tropic membrane receptors EGFR and insulin-like growth factor receptor type 1. RESULTS: The dexamethasone:IgG molar-incorporation-index for dexamethasone-(C21-phosphoramide)-[anti-EGFR] was 6.95:1 following exhaustive serial microfiltration. Cytotoxicity analysis: covalent bonding of dexamethasone to monoclonal anti-EGFR immunoglobulin did not significantly modify the ex vivo antineoplastic cytotoxicity of dexamethasone against pulmonary adenocarcinoma at and between the standardized dexamethasone equivalent concentrations of 10(-9) M and 10(-5) M. Rapid increases in antineoplastic cytotoxicity were observed at and between the dexamethasone equivalent concentrations of 10(-9) M and 10(-7) M where cancer cell death increased from 7.7% to a maximum of 64.9% (92.3%-35.1% residual survival), respectively, which closely paralleled values for "free" noncovalently bound dexamethasone. DISCUSSION: Organic chemistry reaction regimens were optimized to develop a multiphase synthesis regimen for dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Attributes of dexamethasone-(C21-phosphoramide)-[anti-EGFR] include a high dexamethasone molar incorporation-index, lack of extraneous chemical group introduction, retained EGFR-binding avidity ("targeted" delivery properties), and potential to enhance long-term pharmaceutical moiety effectiveness.


Assuntos
Adenocarcinoma/patologia , Antineoplásicos/farmacologia , Dexametasona/análogos & derivados , Desenho de Fármacos , Neoplasias Pulmonares/patologia , Fosforamidas/farmacologia , Adenocarcinoma/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dexametasona/síntese química , Dexametasona/química , Dexametasona/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Fosforamidas/síntese química , Fosforamidas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
J Endod ; 41(8): 1253-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25956605

RESUMO

INTRODUCTION: The spatial and temporal control of stem cell differentiation into odontoblast-like cells remains one of the major challenges in regenerative endodontic procedures. The current study aims to synthesize and compare the effect of dexamethasone (Dex) release from 2 variants of Dex-loaded chitosan nanoparticles (CSnp) on the odontogenic differentiation of stem cells from apical papilla (SCAP). METHODS: Two variants of Dex-loaded CSnp were synthesized by encapsulation (Dex-CSnpI) and adsorption (Dex-CSnpII) methods. The physicochemical characterization of Dex-CSnpI and Dex-CSnpII was assessed by transmission electron microscopy, Zetasizer, and Fourier transform infrared spectroscopy, whereas the Dex release kinetics was assessed by spectrophotometry. A previously characterized SCAP cell line was cultured onto CSnp, Dex-CSnpI, or Dex-CSnpII. The biomineralization potential was determined by alizarin red staining. Alkaline phosphatase, dentin sialophosphoprotein, and dentin matrix protein-1 gene expressions were analyzed by real-time reverse-transcription polymerase chain reaction. RESULTS: Dex-CSnpI resulted in slower release of Dex compared with Dex-CSnpII, but both demonstrated sustained release of Dex for 4 weeks. Biomineralization of SCAP was significantly higher (P < .05) in presence of Dex-CSnpII compared with that in Dex-CSnpI at 3 weeks. Alkaline phosphatase gene expression was significantly higher in the presence of Dex-CSnpII compared with Dex-CSnpI, with peak expression seen at 2 weeks (P < .05). The expression of odontogenic specific marker dentin matrix protein-1 was significantly higher in presence of Dex-CSnpII compared with Dex-CSnpI at 3 weeks (P < .05). CONCLUSIONS: Collectively, these data suggest that sustained release of Dex results in enhanced odontogenic differentiation of SCAP. These findings highlight the potential of temporal-controlled delivery of bioactive molecules to direct the spatial- and temporal-controlled odontogenic differentiation of dental stem cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Quitosana , Dexametasona/administração & dosagem , Substâncias de Crescimento/administração & dosagem , Nanopartículas , Células-Tronco/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Quitosana/química , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Papila Dentária/citologia , Dexametasona/síntese química , Dexametasona/farmacocinética , Proteínas da Matriz Extracelular/metabolismo , Expressão Gênica/efeitos dos fármacos , Substâncias de Crescimento/síntese química , Substâncias de Crescimento/farmacocinética , Nanopartículas/química , Odontogênese/efeitos dos fármacos , Odontogênese/fisiologia , Fosfoproteínas/metabolismo , Sialoglicoproteínas/metabolismo , Células-Tronco/citologia , Células-Tronco/fisiologia
11.
Yao Xue Xue Bao ; 36(8): 625-30, 2001 Aug.
Artigo em Zh | MEDLINE | ID: mdl-12579944

RESUMO

AIM: To develop an orally administered colon targeting drug delivery system dexamethasone succinate dextran (DSD) tablets. METHODS: Dexamethasone succinate dextran was synthesized in an anhydrous environment. Using 4-dimethyl aminopyridine and 1,1'-carbonyldiimidazole as the catalyzer. The chemical structure was identified by UV, IR, NMR and MS. The contents of dexamethasone in various samples were determined by HPLC. RESULTS: Dexamethasone was distributed mainly in plasma and gastric contents after the oral administration of common tablets. In contrast, after oral administration of DSD tablets, the recovery of dexamethasone in plasma and gastric contents decreased significantly, while the percentage of dexamethasone in cecum and colon increased obviously. CONCLUSION: The experimental results showed the good colon targeting property of DSD prodrug compared with free dexamethasone.


Assuntos
Anti-Inflamatórios/farmacocinética , Colo/metabolismo , Dexametasona/farmacocinética , Dextranos/farmacocinética , Administração Oral , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/síntese química , Ceco/metabolismo , Dexametasona/administração & dosagem , Dexametasona/análogos & derivados , Dexametasona/síntese química , Dextranos/administração & dosagem , Dextranos/síntese química , Sistemas de Liberação de Medicamentos , Masculino , Pró-Fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Comprimidos
12.
Int J Pharm ; 456(2): 269-81, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24008084

RESUMO

A supercritical carbon dioxide (scCO2)-assisted foaming/mixing method (SFM) was implemented for preparing dexamethasone (DXMT)-loaded poly(ε-caprolactone)/silica nanoparticles (PCL/SNPs) composite materials suitable for bone regeneration. The composites were prepared from PCL and mesoporous SNPs (MCM-41/SBA-15) by means of scCO2-assisted SFM at several operational pressures, processing times and depressurization conditions. DXMT was loaded into SNPs (applying a scCO2 solvent impregnation/deposition method - SSID) and into PCL/SNPs composites (using the SFM method). The effects of the employed operational and compositional variables on the physicochemical and morphological features as well as in the in vitro release profiles of DXMT were analyzed in detail. This work demonstrates that the above-referred scCO2-based methods can be very useful for the preparation of DXMT-loaded PCL/SNPs composites with tunable physicochemical, thermomechanical, morphological and drug release properties and suitable for hard-tissue regeneration applications.


Assuntos
Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Dexametasona/síntese química , Nanopartículas/química , Poliésteres/síntese química , Dióxido de Silício/síntese química , Difração de Raios X
13.
Drug Deliv ; 20(3-4): 134-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23745720

RESUMO

Hot-melt extrusion (HME) plays an important role in preparing implants as local drug delivery systems in pharmaceutical fields. Here, a new PLA/PEG-PPG-PEG/Dexamethasone (PLA/F68/Dex) implant prepared by HME has been developed. Importantly, the implant was successfully achieved to control release of immunosuppressive drug to an implanted device. In particular, this implant has not been reported previously in pharmaceutical fields. FTIR and XRD were adopted to investigate the properties of the samples. The in vivo release study showed that the maximum value of Dex release from the implants was approximately 50% at 1 month. The in vivo degradation behavior was determined by UV spectrophotometer and scanning electron microscopy studies, and the weight loss rate of the implants were up to 25% at 1 month. Furthermore, complete blood count (CBC) test, serum chemistry and major organs were performed, and there is no significant lesion and side effects observed in these results. Therefore, the results elucidated that the new PLA/F68/Dex implant prepared by HME could deliver an immunosuppressive drug to control the inflammatory reaction at the implant site.


Assuntos
Dexametasona/síntese química , Temperatura Alta , Imunossupressores/síntese química , Bombas de Infusão Implantáveis , Polietilenoglicóis/síntese química , Propilenoglicóis/síntese química , Animais , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/síntese química , Dexametasona/administração & dosagem , Avaliação Pré-Clínica de Medicamentos/métodos , Imunossupressores/administração & dosagem , Masculino , Polietilenoglicóis/administração & dosagem , Propilenoglicóis/administração & dosagem , Ratos , Ratos Sprague-Dawley , Difração de Raios X
14.
J Drug Target ; 19(6): 434-45, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20677913

RESUMO

BACKGROUND: Corticosteroids like dexamethasone are often used in the treatment of inflammatory diseases. Despite efficacy, their use is limited by severe side-effects. Targeted drug-delivery to the site of inflammation would be advantageous for the patients. Macromolecules can be used for this approach, because they accumulate at sites of inflammation due to the enhanced permeability and retention effect. PURPOSE: Our aim was to develop a polymer-corticosteroid-conjugate for the treatment of inflammatory diseases. The authors covalently linked a derivative of dexamethasone to the macromolecule polyethylene glycol (PEG), using an acid-cleavable linker to achieve lysosomal drug-release. METHODS: The corticosteroid-PEG-conjugate was synthesized and characterized by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry. Cleavage experiments were performed to study the nature of products after incubation at acidic pH, and the efficacy of the conjugate was tested in two model cell lines. RESULTS: Acid hydrolysis of the novel corticosteroid-PEG-conjugate resulted in two new derivatives of dexamethasone. The conjugate was effective in both model cell lines showing lysosomal release and efficacy of the cleavage products. DISCUSSION AND CONCLUSION: The authors new corticosteroid-PEG-conjugate shows glucocorticoid activity and should be developed further to treat inflammatory diseases with reduced side-effects while retaining drug efficacy.


Assuntos
Anti-Inflamatórios/síntese química , Dexametasona/síntese química , Portadores de Fármacos/química , Hidrazonas/síntese química , Polietilenoglicóis/química , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Dexametasona/administração & dosagem , Dexametasona/química , Dexametasona/farmacologia , Desenho de Fármacos , Glicina/análogos & derivados , Humanos , Hidrazonas/administração & dosagem , Hidrazonas/química , Hidrazonas/farmacologia , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Camundongos , Microscopia Confocal , Estrutura Molecular , Receptores de Glucocorticoides/metabolismo
17.
Drug Dev Ind Pharm ; 32(3): 389-97, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16556543

RESUMO

We synthesized dexamethasone 21-sulfate sodium (DS) as a colon-specific prodrug of dexamethasone and investigated its properties. Introduction of a sulfate group to dexamethasone lowered the apparent partition coefficient from 52.5 to 0.27 in 1-octanol/pH 6.8 phosphate buffer at 37 degrees C. DS was stable on incubation with buffer solutions of varied pH or with the upper intestinal contents of rats at 37 degrees C for 24 h. On incubation with the cecal contents, DS was hydrolyzed by producing dexamethasone over 80% of the dose at 10 h. When DS was incubated with the cecal contents collected from trinitrobenzenesulfonic acid (TNBS)-induced colitic rats, the degree of prodrug hydrolysis and production of dexamethasone amounted to 70% of healthy rats. In comparison with prednisolone, hydrocortisone, and cortisone, dexamethasone was stable against bioinactivation by the cecal contents, a desirable property for the development of a colon-specific prodrug. These results demonstrated that DS might be delivered specifically to the colon as an intact form to produce dexamethasone in high yield, suggesting DS as a potential colon-specific prodrug of dexamethasone.


Assuntos
Dexametasona/análogos & derivados , Pró-Fármacos/síntese química , Animais , Dexametasona/síntese química , Dexametasona/química , Dexametasona/farmacocinética , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Mucosa Intestinal/metabolismo , Masculino , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Ratos , Ratos Sprague-Dawley , Solubilidade
18.
Bioorg Med Chem Lett ; 16(9): 2470-4, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16480868
19.
Eur J Biochem ; 131(2): 333-8, 1983 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-6832154

RESUMO

A new, general methodology for 'sandwich' affinity chromatography of steroid hormone receptors is proposed, the part purification of the human spleen tumor glucocorticoid receptor is quoted as an illustration. 9-Fluoro-16 alpha-methyl-11 beta, 17-dihydroxy-1,4-androstadiene-3-one-17 beta-carboxylic acid was coupled to biotin using pentamethylenediamine (BioDex 1) as a spacer. The bifunctional derivative binds to glucocorticoid receptors and avidin-Sepharose and efficiently protects the glucocorticoid receptor against inactivation when previously added during homogenisation. We have standardized the capacity and optimum conditions for elution of receptor-BioDex-1 complexes which are bound to avidin-Sepharose. Receptor purification of several thousand fold can be obtained with good yield.


Assuntos
Marcadores de Afinidade/síntese química , Biotina/análogos & derivados , Dexametasona/análogos & derivados , Sítios de Ligação , Ligação Competitiva , Biotina/síntese química , Cadaverina/síntese química , Cromatografia de Afinidade , Citosol/metabolismo , Dexametasona/síntese química , Eletroforese em Gel de Poliacrilamida , Humanos , Receptores de Glucocorticoides/isolamento & purificação , Neoplasias Esplênicas/metabolismo
20.
Gene Ther ; 11(8): 668-74, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14724671

RESUMO

Delivery of plasmid DNA for gene therapy often provokes an inflammatory response that reduces transgene expression. Cationic lipids for lipofection lack pharmacological activity despite the hydrophobicity of many drug candidates that could be exploited. We report a one-step synthesis of a water-soluble, dexamethasone-spermine (DS) cationic lipid that has potent gene transfer capability in confluent endothelial cells when used with the neutral lipid, dioleoylphosphatidylethanolamine (DOPE). In contrast, unconjugated mixtures of dexamethasone, spermine, and/or DOPE have essentially no gene transfer activity. DS retains partial corticosteroid character as quantified by the rapid translocation of glucocorticoid receptor to the nucleus and by dose-dependent transactivation from a glucocorticoid response element. DS has anti-inflammatory activity in vivo in the mouse thioglycollate model of inflammation. In a mouse lung model, DS:DOPE resulted in significantly less interferon-gamma production at Day 1 and elevated transgene expression at Days 1 and 7 postintranasal instillation compared to DC-Chol:DOPE (sterol:DOPE:phosphate molar ratio of 1:1:1). Cationic pharmacophores such as DS represent a new approach to gene delivery and localized therapy.


Assuntos
Dexametasona/administração & dosagem , Terapia Genética/métodos , Glucocorticoides/genética , Espermina/administração & dosagem , Transfecção/métodos , Animais , Cátions , Dexametasona/síntese química , Células Endoteliais/metabolismo , Inflamação/metabolismo , Inflamação/terapia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Pró-Fármacos , Tioglicolatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA