Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 20(3): 257-264, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778250

RESUMO

Post-translational modification of chemokines mediated by the dipeptidyl peptidase DPP4 (CD26) has been shown to negatively regulate lymphocyte trafficking, and its inhibition enhances T cell migration and tumor immunity by preserving functional chemokine CXCL10. By extending those initial findings to pre-clinical models of hepatocellular carcinoma and breast cancer, we discovered a distinct mechanism by which inhibition of DPP4 improves anti-tumor responses. Administration of the DPP4 inhibitor sitagliptin resulted in higher concentrations of the chemokine CCL11 and increased migration of eosinophils into solid tumors. Enhanced tumor control was preserved in mice lacking lymphocytes and was ablated after depletion of eosinophils or treatment with degranulation inhibitors. We further demonstrated that tumor-cell expression of the alarmin IL-33 was necessary and sufficient for eosinophil-mediated anti-tumor responses and that this mechanism contributed to the efficacy of checkpoint-inhibitor therapy. These findings provide insight into IL-33- and eosinophil-mediated tumor control, revealed when endogenous mechanisms of DPP4 immunoregulation are inhibited.


Assuntos
Dipeptidil Peptidase 4/imunologia , Eosinófilos/imunologia , Interleucina-33/imunologia , Neoplasias Experimentais/imunologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Quimiocina CCL11/imunologia , Quimiocina CCL11/metabolismo , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Modelos Animais de Doenças , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Humanos , Interleucina-33/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/prevenção & controle , Fosfato de Sitagliptina/farmacologia
2.
Nat Immunol ; 16(8): 850-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26075911

RESUMO

The success of antitumor immune responses depends on the infiltration of solid tumors by effector T cells, a process guided by chemokines. Here we show that in vivo post-translational processing of chemokines by dipeptidylpeptidase 4 (DPP4, also known as CD26) limits lymphocyte migration to sites of inflammation and tumors. Inhibition of DPP4 enzymatic activity enhanced tumor rejection by preserving biologically active CXCL10 and increasing trafficking into the tumor by lymphocytes expressing the counter-receptor CXCR3. Furthermore, DPP4 inhibition improved adjuvant-based immunotherapy, adoptive T cell transfer and checkpoint blockade. These findings provide direct in vivo evidence for control of lymphocyte trafficking via CXCL10 cleavage and support the use of DPP4 inhibitors for stabilizing biologically active forms of chemokines as a strategy to enhance tumor immunotherapy.


Assuntos
Dipeptidil Peptidase 4/imunologia , Imunoterapia/métodos , Linfócitos/imunologia , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Transferência Adotiva , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Quimiocina CXCL10/imunologia , Quimiocina CXCL10/metabolismo , Quimiocinas/imunologia , Quimiocinas/metabolismo , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Feminino , Citometria de Fluxo , Linfócitos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Experimentais/genética , Pirazinas/farmacologia , Receptores CXCR3/imunologia , Receptores CXCR3/metabolismo , Fosfato de Sitagliptina , Triazóis/farmacologia
4.
Int J Mol Sci ; 23(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35628317

RESUMO

Ulcerative colitis (UC) is a multifactorial condition characterized by a destructive immune response that failed to be attenuated by common regulatory mechanisms which reduce inflammation and promote mucosa healing. The inhibition of CD26, a multifunctional glycoprotein that controls the immune response via its dipeptidyl peptidase (DP) 4 enzyme activity, was proven to have beneficial effects in various autoimmune inflammatory diseases. The polarization of macrophages into either pro-inflammatory M1 or anti-inflammatory M2 subclass is a key intersection that mediates the immune-inflammatory process in UC. Hence, we hypothesized that the deficiency of CD26 affects that process in the dextran sulfate sodium (DSS)-induced model of UC. We found that mRNA expression of M2 markers arginase 1 and Fizz were increased, while the expression of M1 marker inducible NO synthase was downregulated in CD26-/- mice. Decreased STAT1 mRNA, as well as upregulated pSTAT6 and pSTAT3, additionally support the demonstrated activation of M2 macrophages under CD26 deficiency. Finally, we investigated DP8 and DP9, proteins with DP4-like activity, and found that CD26 deficiency is not a key factor for the noted upregulation of their expression in UC. In conclusion, we demonstrate that CD26 deficiency regulates macrophage polarization toward the anti-inflammatory M2 phenotype, which is driven by STAT6/STAT3 signaling pathways. This process is additionally enhanced by the reduction of M1 differentiation via the suppression of proinflammatory STAT1. Therefore, further studies should investigate the clinical potential of CD26 inhibitors in the treatment of UC.


Assuntos
Colite Ulcerativa , Dipeptidil Peptidase 4 , Macrófagos , Animais , Anti-Inflamatórios/farmacologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Dipeptidil Peptidase 4/deficiência , Dipeptidil Peptidase 4/imunologia , Dipeptidil Peptidase 4/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , RNA Mensageiro/metabolismo
5.
Exp Dermatol ; 30(3): 304-318, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33131073

RESUMO

Dipeptidyl peptidase-4 (DPP4) is a multifunctional, transmembrane glycoprotein present on the cell surface of various tissues. It is present in multiple molecular forms including cell surface and soluble. The role of DPP4 and its inhibition in cutaneous dermatoses have been a recent point of investigation. DPP4 exerts a notable influence on T-cell biology, the induction of skin-specific lymphocytes, and the homeostasis between regulatory and effector T cells. Moreover, DPP4 interacts with a broad range of molecules, including adenosine deaminase, caveolin-1, CXCR4 receptor, M6P/insulin-like growth factor II-receptor and fibroblast activation protein-α, triggering downstream effects that modulate the immune response, cell adhesion and chemokine activity. DPP4 expression on melanocytes, keratinocytes and fibroblasts further alters cell function and, thus, has crucial implications in cutaneous pathology. As a result, DPP4 plays a significant role in bullous pemphigoid, T helper type 1-like reactions, cutaneous lymphoma, melanoma, wound healing and fibrotic disorders. This review illustrates the multifactorial role of DPP4 expression, regulation, and inhibition in cutaneous diseases.


Assuntos
Dipeptidil Peptidase 4/imunologia , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/efeitos adversos , Dermatopatias/enzimologia , Dermatopatias/etiologia , Animais , Biomarcadores Tumorais/metabolismo , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Dipeptidil Peptidase 4/genética , Humanos , Imunidade , Queratinócitos/metabolismo , Leishmaniose Cutânea/enzimologia , Linfócitos/metabolismo , Linfoma Cutâneo de Células T/enzimologia , Penfigoide Mucomembranoso Benigno/induzido quimicamente , Penfigoide Bolhoso/induzido quimicamente , Psoríase/enzimologia , Neoplasias Cutâneas/enzimologia , Cicatrização
6.
Allergy ; 75(11): 2829-2845, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32496587

RESUMO

BACKGROUND: Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19. METHODS: We performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status. RESULTS: ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147-related genes in the lesional skin of patients with atopic dermatitis. CONCLUSIONS: Our data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID-19 morbidity and severity patterns.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Basigina/imunologia , COVID-19/epidemiologia , Doença Crônica/epidemiologia , Dipeptidil Peptidase 4/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Enzima de Conversão de Angiotensina 2/genética , Asma/epidemiologia , Asma/genética , Asma/imunologia , Basigina/genética , COVID-19/genética , COVID-19/imunologia , Criança , Pré-Escolar , Comorbidade , Dipeptidil Peptidase 4/genética , Feminino , Expressão Gênica/genética , Humanos , Hipertensão/epidemiologia , Hipertensão/genética , Hipertensão/imunologia , Imunidade Inata/imunologia , Lactente , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Obesidade/genética , Obesidade/imunologia , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Fatores de Risco , SARS-CoV-2/genética , Adulto Jovem
7.
Blood ; 129(17): 2384-2394, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28122740

RESUMO

Understanding leukemia heterogeneity is critical for the development of curative treatments as the failure to eliminate therapy-persistent leukemic stem cells (LSCs) may result in disease relapse. Here we have combined high-throughput immunophenotypic screens with large-scale single-cell gene expression analysis to define the heterogeneity within the LSC population in chronic phase chronic myeloid leukemia (CML) patients at diagnosis and following conventional tyrosine kinase inhibitor (TKI) treatment. Our results reveal substantial heterogeneity within the putative LSC population in CML at diagnosis and demonstrate differences in response to subsequent TKI treatment between distinct subpopulations. Importantly, LSC subpopulations with myeloid and proliferative molecular signatures are proportionally reduced at a higher extent in response to TKI therapy compared with subfractions displaying primitive and quiescent signatures. Additionally, cell surface expression of the CML stem cell markers CD25, CD26, and IL1RAP is high in all subpopulations at diagnosis but downregulated and unevenly distributed across subpopulations in response to TKI treatment. The most TKI-insensitive cells of the LSC compartment can be captured within the CD45RA- fraction and further defined as positive for CD26 in combination with an aberrant lack of cKIT expression. Together, our results expose a considerable heterogeneity of the CML stem cell population and propose a Lin-CD34+CD38-/lowCD45RA-cKIT-CD26+ population as a potential therapeutic target for improved therapy response.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Análise de Célula Única/métodos , ADP-Ribosil Ciclase 1/deficiência , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/imunologia , Antígenos CD34/genética , Antígenos CD34/imunologia , Biomarcadores Tumorais/imunologia , Estudos de Casos e Controles , Linhagem da Célula/imunologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/imunologia , Expressão Gênica , Heterogeneidade Genética , Humanos , Imunofenotipagem , Proteína Acessória do Receptor de Interleucina-1/genética , Proteína Acessória do Receptor de Interleucina-1/imunologia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Antígenos Comuns de Leucócito/deficiência , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-kit/deficiência , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/imunologia , Resultado do Tratamento
8.
Immunopharmacol Immunotoxicol ; 41(4): 490-496, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31303072

RESUMO

Background: Immunotherapy utilizing T cells genetically modified to express chimeric antigen receptors (CARs) is rapidly emerging as a promising novel treatment for hematological and nonhematological malignancies. In order to target the TKI-insensitive leukemia stem cells (LSCs) in chronic myeloid leukemia (CML) by CAR T cells, we chose CD26 as a cell surface tumor-associated antigen due to preferentially expression on LSCs. Additionally, CD26 has also been suggested to be a multipurpose therapeutic target for other cancer. Therefore, developing the CD26-targeting CAR T cells may be a promising therapy for not only LSCs but also other CD26+ cancer cells. Methods: We designed the second-generation CD26-targeting CAR utilizing 4-1BB (CD137) as costimulatory domain, and transduced T cells with CD26-CAR containing lentiviral. Then we evaluated the transduction efficiency and expansion ability, and demonstrated the existence of self-antigen-driven fratricide by cytokine assay and cytotoxicity assay. Results: Anti-CD26-4-1BB-CAR T cells exhibited poor viability, multiple cytokine secretion, down-regulation of CD26 and direct cytotoxicity against themselves, indicating self-antigen-driven fratricide. Conclusion: Eradicating CML-LSCs via anti-CD26-4-1BB-CAR T cells is not applicable, and optimized design or alternative target is needed.


Assuntos
Dipeptidil Peptidase 4/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Citocinas/imunologia , Citotoxicidade Imunológica/imunologia , Regulação para Baixo/imunologia , Humanos , Imunoterapia/métodos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
9.
Biochem Biophys Res Commun ; 495(1): 223-229, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29113797

RESUMO

We previously reported that inhibition of dipeptidyl peptidase (DPP)-4, the catalytic site of CD26, prevents atherosclerosis in animal models through suppression of inflammation; however, the underlying molecular mechanisms have not been fully elucidated. Caveolin-1 (Cav-1), a major structural protein of caveolae located on the surface of the cellular membrane, has been reported to modulate inflammatory responses by binding to CD26 in T cells. In this study, we investigated the role of Cav-1 in the suppression of inflammation mediated by the DPP-4 inhibitor, teneligliptin, using mouse and human macrophages. Mouse peritoneal macrophages were isolated from Cav-1+/+ and Cav-1-/- mice after stimulation with 3% thioglycolate. Inflammation was induced by the toll-like receptor (TLR)4 agonist, lipopolysaccharide (LPS), isolated from Escherichia coli. The expression of pro-inflammatory cytokines was determined using reverse transcription-polymerase chain reaction. Co-expression of Cav-1 and CD26 was detected using immunohistochemistry in both mouse and human macrophages. Teneligliptin treatment (10 nmol/L) suppressed the LPS-induced expression of interleukin (IL)-6 (70%) and tumor necrosis factor-α (37%) in peritoneal macrophages isolated from Cav-1+/+ mice. However, teneligliptin did not have any effect on the macrophages from Cav-1-/- mice. In human monocyte/macrophage U937 cells, teneligliptin treatment suppressed LPS-induced expression of pro-inflammatory cytokines in a dose-dependent manner (1-10 nmol/L). These anti-inflammatory effects of teneligliptin were mimicked by gene knockdown of Cav-1 or CD26 using small interfering RNA transfection. Furthermore, neutralization of these molecules using an antibody against CD26 or Cav-1 also showed similar suppression. Teneligliptin treatment specifically inhibited TLR4 and TLR5 agonist-mediated inflammatory responses, and suppressed LPS-induced phosphorylation of IL-1 receptor-associated kinase 4, a downstream molecule of TLR4. Next, we determined whether teneligliptin could directly inhibit the physical interaction between Cav-1 and CD26 using the Biacore system. Binding of CD26 to Cav-1 protein was detected. Unexpectedly, teneligliptin also bound to Cav-1, but did not interfere with CD26-Cav-1 binding, suggesting that teneligliptin competes with CD26 for binding to Cav-1. In conclusion, we demonstrated that Cav-1 is a target molecule for DPP-4 inhibitors in the suppression of TLR4-mediated inflammation in mouse and human macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Caveolina 1/imunologia , Dipeptidil Peptidase 4/imunologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Macrófagos/efeitos dos fármacos , Pirazóis/farmacologia , Tiazolidinas/farmacologia , Animais , Feminino , Humanos , Mediadores da Inflamação/imunologia , Macrófagos/imunologia , Camundongos , Receptor 4 Toll-Like/imunologia , Receptor 5 Toll-Like/imunologia
10.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795425

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) binds to cellular receptor dipeptidyl peptidase 4 (DPP4) via the spike (S) protein receptor-binding domain (RBD). The RBD contains critical neutralizing epitopes and serves as an important vaccine target. Since RBD mutations occur in different MERS-CoV isolates and antibody escape mutants, cross-neutralization of divergent MERS-CoV strains by RBD-induced antibodies remains unknown. Here, we constructed four recombinant RBD (rRBD) proteins with single or multiple mutations detected in representative human MERS-CoV strains from the 2012, 2013, 2014, and 2015 outbreaks, respectively, and one rRBD protein with multiple changes derived from camel MERS-CoV strains. Like the RBD of prototype EMC2012 (EMC-RBD), all five RBDs maintained good antigenicity and functionality, the ability to bind RBD-specific neutralizing monoclonal antibodies (MAbs) and the DPP4 receptor, and high immunogenicity, able to elicit S-specific antibodies. They induced potent neutralizing antibodies cross-neutralizing 17 MERS pseudoviruses expressing S proteins of representative human and camel MERS-CoV strains identified during the 2012-2015 outbreaks, 5 MAb escape MERS-CoV mutants, and 2 live human MERS-CoV strains. We then constructed two RBDs mutated in multiple key residues in the receptor-binding motif (RBM) of RBD and demonstrated their strong cross-reactivity with anti-EMC-RBD antibodies. These RBD mutants with diminished DPP4 binding also led to virus attenuation, suggesting that immunoevasion after RBD immunization is accompanied by loss of viral fitness. Therefore, this study demonstrates that MERS-CoV RBD is an important vaccine target able to induce highly potent and broad-spectrum neutralizing antibodies against infection by divergent circulating human and camel MERS-CoV strains. IMPORTANCE: MERS-CoV was first identified in June 2012 and has since spread in humans and camels. Mutations in its spike (S) protein receptor-binding domain (RBD), a key vaccine target, have been identified, raising concerns over the efficacy of RBD-based MERS vaccines against circulating human and camel MERS-CoV strains. Here, we constructed five vaccine candidates, designated 2012-RBD, 2013-RBD, 2014-RBD, 2015-RBD, and Camel-RBD, containing single or multiple mutations in the RBD of representative human and camel MERS-CoV strains during the 2012-2015 outbreaks. These RBD-based vaccine candidates maintained good functionality, antigenicity, and immunogenicity, and they induced strong cross-neutralizing antibodies against infection by divergent pseudotyped and live MERS-CoV strains, as well as antibody escape MERS-CoV mutants. This study provides impetus for further development of a safe, highly effective, and broad-spectrum RBD-based subunit vaccine to prevent MERS-CoV infection.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Infecções por Coronavirus/prevenção & controle , Dipeptidil Peptidase 4/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/administração & dosagem , Animais , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Sítios de Ligação , Camelus , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Reações Cruzadas , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/genética , Feminino , Expressão Gênica , Humanos , Evasão da Resposta Imune , Camundongos , Camundongos Endogâmicos BALB C , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Modelos Moleculares , Mutação , Testes de Neutralização , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas Virais/biossíntese
11.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795435

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is an important emerging pathogen that was first described in 2012. While the cell surface receptor for MERS-CoV has been identified as dipeptidyl peptidase 4 (DPP4), the mouse DPP4 homologue does not allow virus entry into cells. Therefore, development of mouse models of MERS-CoV has been hampered by the fact that MERS-CoV does not replicate in commonly available mouse strains. We have previously described a mouse model in which mDPP4 was replaced with hDPP4 such that hDPP4 is expressed under the endogenous mDPP4 promoter. In this study, we used this mouse model to analyze the host response to MERS-CoV infection using immunological assays and transcriptome analysis. Depletion of CD4+ T cells, CD8+ T cells, or macrophages has no effect on MERS-CoV replication in the lungs of infected mice. However, we found that depletion of CD8+ T cells protects and depletion of macrophages exacerbates MERS-CoV-induced pathology and clinical symptoms of disease. Overall, we demonstrate an important role for the inflammatory response in regulating MERS-CoV pathogenesis in vivo IMPORTANCE: The Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic respiratory virus that emerged from zoonotic sources in 2012. Human infections are still occurring throughout Saudi Arabia at a 38% case fatality rate, with the potential for worldwide spread via air travel. In this work, we identify the host response to the virus and identify inflammatory pathways and cell populations that are critical for protection from severe lung disease. By understanding the immune response to MERS-CoV we can develop targeted therapies to inhibit pathogenesis in the future.


Assuntos
Linfócitos T CD8-Positivos/virologia , Infecções por Coronavirus/imunologia , Dipeptidil Peptidase 4/genética , Macrófagos/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Receptores Virais/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/imunologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Pulmão/imunologia , Pulmão/virologia , Depleção Linfocítica , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Regiões Promotoras Genéticas , Receptores Virais/imunologia , Transcriptoma , Transgenes , Internalização do Vírus , Replicação Viral
12.
J Investig Allergol Clin Immunol ; 28(2): 113-125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29297467

RESUMO

BACKGROUND AND OBJETIVE: The pathogenesis of asthma is dependent on the balance between regulatory and effector T cells, which display differential expression of CD25 and CD26. Therefore, alteration of circulating levels of sCD25 and sCD26 during allergic asthma could be conditioned by changes in leukocyte phenotype. Objectives: To analyze expression of CD25 and CD26 on T lymphocytes and their soluble derivatives (sCD25, sCD26) during stable phases of moderate-severe allergic asthma. METHODS: Cross-sectional study with 2 adult cohorts of allergic asthmatics. Clinical, anthropometric, pulmonary, hematological, and biochemical parameters were measured. Phenotyping was performed with flow cytometry in both circulating and cultured leukocytes. Dipeptidyl peptidase 4 (DPP4) activity was assayed in culture supernatants. RESULTS: In vitro studies revealed upregulation of CD26 on human T lymphocytes upon activation, especially under TH17-favoring conditions, and a correlation with soluble DPP4 activity (rs=0.641; P<.001). CD26 expression on lymphocytes was higher in asthmatics, while serum sCD26 was lower in women and patients. The latter finding could be associated with an expanded CD25low/CD26low/CD127low subset of effector CD4+ T cells in allergic asthma, with no changes in Treg percentages. However, women showed an increased Teff/Treg ratio, which could explain their greater susceptibility to asthma. CONCLUSIONS: Allergic asthma causes an increment in CD25lowCD26low helper T cells detected in stable stages. These changes are mirrored in serum and should be considered in the light of the downmodulating role of CD26 in major chemokines related to the pathogenesis of asthma such as CCL11 (eotaxin), CCL5 (RANTES), and CXCL12a (SDF-1α).


Assuntos
Asma/imunologia , Linfócitos T CD4-Positivos/imunologia , Dipeptidil Peptidase 4/imunologia , Hipersensibilidade/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Adulto , Quimiocina CCL11/imunologia , Quimiocina CCL5/imunologia , Quimiocina CXCL12/imunologia , Estudos Transversais , Regulação para Baixo/imunologia , Feminino , Citometria de Fluxo/métodos , Humanos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Masculino , Pessoa de Meia-Idade , Regulação para Cima/imunologia , Adulto Jovem
13.
J Infect Dis ; 215(12): 1807-1815, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28472421

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) infection in humans is highly lethal, with a fatality rate of 35%. New prophylactic and therapeutic strategies to combat human infections are urgently needed. We isolated a fully human neutralizing antibody, MCA1, from a human survivor. The antibody recognizes the receptor-binding domain of MERS-CoV S glycoprotein and interferes with the interaction between viral S and the human cellular receptor human dipeptidyl peptidase 4 (DPP4). To our knowledge, this study is the first to report a human neutralizing monoclonal antibody that completely inhibits MERS-CoV replication in common marmosets. Monotherapy with MCA1 represents a potential alternative treatment for human infections with MERS-CoV worthy of evaluation in clinical settings.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/imunologia , Infecções por Coronavirus/imunologia , Dipeptidil Peptidase 4/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Replicação Viral/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/imunologia , Callithrix , Modelos Animais de Doenças , Humanos , Masculino , Distribuição Aleatória
14.
Br J Cancer ; 116(9): 1126-1134, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28291776

RESUMO

BACKGROUND: YS110 is a humanised IgG1 monoclonal antibody with high affinity to the CD26 antigen. YS110 demonstrated preclinical anti-tumour effects without significant side effects. METHODS: This FIH study was designed to determine the maximal tolerated dose (MTD) and recommended phase 2 dose (RP2D) to assess the tolerance, pharmacokinetics (PK) and pharmacodynamics profiles of YS110 and preliminary efficacy. YS110 were initially administered intravenously once every 2 weeks (Q2W) for three doses and then, based on PK data, once every week (Q1W) for five doses in patients with CD26-expressing solid tumours. RESULTS: Thirty-three patients (22 mesothelioma) received a median of 3 (range 1-30) YS110 infusions across six dose levels (0.1-6 mg kg-1). MTD was not reached and two dose-limiting toxicities (infusion hypersensitivity reactions) led to the institution of a systemic premedication. Low-grade asthenia (30.3%), hypersensitivity (27.3%), nausea (15.2%), flushing (15.2%), chills (12.1%) and pyrexia (12.1%) were reported as ADRs. Pharmacokinetic parameters (AUC and Cmax) increased in proportion with the dose. sCD26/DPPIV assays indicated CD26 modulation. Prolonged stable diseases were observed in 13 out of 26 evaluable patients. CONCLUSIONS: YS110 is well tolerated up to 6 mg kg-1 Q1W, which has been defined as the RP2D, with encouraging prolonged disease stabilisations observed in a number of patients with advanced/refractory mesothelioma.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Dipeptidil Peptidase 4/sangue , Imunoglobulina G/administração & dosagem , Mesotelioma/tratamento farmacológico , Adulto , Idoso , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Dipeptidil Peptidase 4/efeitos dos fármacos , Dipeptidil Peptidase 4/imunologia , Relação Dose-Resposta a Droga , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/sangue , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoglobulina G/imunologia , Masculino , Dose Máxima Tolerável , Mesotelioma/sangue , Mesotelioma/imunologia , Mesotelioma/patologia , Pessoa de Meia-Idade
15.
Am J Pathol ; 186(3): 652-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26857507

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) infection causes an acute respiratory illness and is associated with a high case fatality rate; however, the pathogenesis of severe and fatal MERS-CoV infection is unknown. We describe the histopathologic, immunohistochemical, and ultrastructural findings from the first autopsy performed on a fatal case of MERS-CoV in the world, which was related to a hospital outbreak in the United Arab Emirates in April 2014. The main histopathologic finding in the lungs was diffuse alveolar damage. Evidence of chronic disease, including severe peripheral vascular disease, patchy cardiac fibrosis, and hepatic steatosis, was noted in the other organs. Double staining immunoassays that used anti-MERS-CoV antibodies paired with immunohistochemistry for cytokeratin and surfactant identified pneumocytes and epithelial syncytial cells as important targets of MERS-CoV antigen; double immunostaining with dipeptidyl peptidase 4 showed colocalization in scattered pneumocytes and syncytial cells. No evidence of extrapulmonary MERS-CoV antigens were detected, including the kidney. These results provide critical insights into the pathogenesis of MERS-CoV in humans.


Assuntos
Infecções por Coronavirus/patologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Dipeptidil Peptidase 4/imunologia , Evolução Fatal , Humanos , Imuno-Histoquímica , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pulmão/ultraestrutura , Masculino , Pessoa de Meia-Idade , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Radiografia , Emirados Árabes Unidos
16.
J Immunol ; 194(8): 3808-19, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25769922

RESUMO

Differential display of the integrins CD103 and CD11b are widely used to distinguish two major dendritic cell (DC) subsets in nonlymphoid tissues. CD103(+) DCs arise from FLT3-dependent DC precursors (preDCs), whereas CD11b(hi) DCs can arise either from preDCs or FLT3-independent monocytes. Functional characterization of these two lineages of CD11b(hi) DCs has been hindered by the lack of a widely applicable method to distinguish between them. We performed gene expression analysis of fractionated lung DCs from C57BL/6 mice and found that monocyte-derived DCs (moDCs), including CD11b(hi)Ly-6C(lo) tissue-resident and CD11b(hi)Ly-6C(hi) inflammatory moDCs, express the complement 5a receptor 1/CD88, whereas preDC-derived conventional DCs (cDCs), including CD103(+) and CD11b(hi) cDCs, express dipeptidyl peptidase-4/CD26. Flow cytometric analysis of multiple organs, including the kidney, liver, lung, lymph nodes, small intestine, and spleen, confirmed that reciprocal display of CD88 and CD26 can reliably distinguish FLT3-independent moDCs from FLT3-dependent cDCs in C57BL/6 mice. Similar results were obtained when DCs from BALB/c mice were analyzed. Using this novel approach to study DCs in mediastinal lymph nodes, we observed that most blood-derived lymph node-resident DCs, as well as tissue-derived migratory DCs, are cDCs. Furthermore, cDCs, but not moDCs, stimulated naive T cell proliferation. We anticipate that the use of Abs against CD88 and CD26 to distinguish moDCs and cDCs in multiple organs and mouse strains will facilitate studies aimed at assigning specific functions to distinct DC lineages in immune responses.


Assuntos
Proliferação de Células/fisiologia , Células Dendríticas/imunologia , Dipeptidil Peptidase 4/imunologia , Regulação da Expressão Gênica/imunologia , Monócitos/imunologia , Receptor da Anafilatoxina C5a/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Células Dendríticas/citologia , Dipeptidil Peptidase 4/genética , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Monócitos/citologia , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Receptor da Anafilatoxina C5a/genética , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/imunologia
17.
J Immunol ; 194(8): 3697-712, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25786689

RESUMO

Obliterative bronchiolitis is a potentially life-threatening noninfectious pulmonary complication after allogeneic hematopoietic stem cell transplantation and the only pathognomonic manifestation of pulmonary chronic graft-versus-host disease (cGVHD). In the current study, we identified a novel effect of IL-26 on transplant-related obliterative bronchiolitis. Sublethally irradiated NOD/Shi-scidIL2rγ(null) mice transplanted with human umbilical cord blood (HuCB mice) gradually developed clinical signs of graft-versus-host disease (GVHD) such as loss of weight, ruffled fur, and alopecia. Histologically, lung of HuCB mice exhibited obliterative bronchiolitis with increased collagen deposition and predominant infiltration with human IL-26(+)CD26(+)CD4 T cells. Concomitantly, skin manifested fat loss and sclerosis of the reticular dermis in the presence of apoptosis of the basilar keratinocytes, whereas the liver exhibited portal fibrosis and cholestasis. Moreover, although IL-26 is absent from rodents, we showed that IL-26 increased collagen synthesis in fibroblasts and promoted lung fibrosis in a murine GVHD model using IL-26 transgenic mice. In vitro analysis demonstrated a significant increase in IL-26 production by HuCB CD4 T cells following CD26 costimulation, whereas Ig Fc domain fused with the N-terminal of caveolin-1 (Cav-Ig), the ligand for CD26, effectively inhibited production of IL-26. Administration of Cav-Ig before or after onset of GVHD impeded the development of clinical and histologic features of GVHD without interrupting engraftment of donor-derived human cells, with preservation of the graft-versus-leukemia effect. These results therefore provide proof of principle that cGVHD of the lungs is caused in part by IL-26(+)CD26(+)CD4 T cells, and that treatment with Cav-Ig could be beneficial for cGVHD prevention and therapy.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Dipeptidil Peptidase 4/imunologia , Doença Enxerto-Hospedeiro/imunologia , Interleucinas/imunologia , Pneumopatias/imunologia , Pulmão/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Caveolina 1/genética , Caveolina 1/farmacologia , Derme/imunologia , Derme/patologia , Dipeptidil Peptidase 4/genética , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Efeito Enxerto vs Leucemia/genética , Humanos , Interleucinas/genética , Pulmão/patologia , Pneumopatias/genética , Pneumopatias/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Células NIH 3T3 , Receptores Fc/genética , Receptores Fc/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia
18.
Proc Natl Acad Sci U S A ; 111(19): E2018-26, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24778221

RESUMO

The newly emerging Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes a Severe Acute Respiratory Syndrome-like disease with ∼43% mortality. Given the recent detection of virus in dromedary camels, zoonotic transfer of MERS-CoV to humans is suspected. In addition, little is known about the role of human neutralizing Ab (nAb) pressure as a driving force in MERS-CoV adaptive evolution. Here, we used a well-characterized nonimmune human Ab-phage library and a panning strategy with proteoliposomes and cells to identify seven human nAbs against the receptor-binding domain (RBD) of the MERS-CoV Spike protein. These nAbs bind to three different epitopes in the RBD and human dipeptidyl peptidase 4 (hDPP4) interface with subnanomolar/nanomolar binding affinities and block the binding of MERS-CoV Spike protein with its hDPP4 receptor. Escape mutant assays identified five amino acid residues that are critical for neutralization escape. Despite the close proximity of the three epitopes on the RBD interface, escape from one epitope did not have a major impact on neutralization with Abs directed to a different epitope. Importantly, the majority of escape mutations had negative impacts on hDPP4 receptor binding and viral fitness. To our knowledge, these results provide the first report on human nAbs against MERS-CoV that may contribute to MERS-CoV clearance and evolution. Moreover, in the absence of a licensed vaccine or antiviral for MERS, this panel of nAbs offers the possibility of developing human mAb-based immunotherapy, especially for health-care workers.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Infecções por Coronavirus/imunologia , Coronavirus/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antivirais/imunologia , Antivirais/isolamento & purificação , Evolução Biológica , Doenças Transmissíveis Emergentes/tratamento farmacológico , Doenças Transmissíveis Emergentes/imunologia , Doenças Transmissíveis Emergentes/mortalidade , Coronavirus/genética , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/mortalidade , Dipeptidil Peptidase 4/imunologia , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Dados de Sequência Molecular , Filogenia , Glicoproteína da Espícula de Coronavírus/genética , Zoonoses/tratamento farmacológico , Zoonoses/imunologia , Zoonoses/mortalidade
19.
Proc Natl Acad Sci U S A ; 111(13): E1256-63, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639549

RESUMO

The increasing prevalence of type 2 diabetes mellitus is associated with a significant economic burden. We developed a dipeptidyl peptidase 4 (DPP4)-targeted immune therapy to increase glucagon-like peptide 1 hormone levels and improve insulin sensitivity for the prevention and treatment of type 2 diabetes mellitus. Immunization with the DPP4 vaccine in C57BL/6J mice successfully increased DPP4 titer, inhibited plasma DPP4 activity, and induced an increase in the plasma glucagon-like peptide 1 level. Moreover, this elevated titer was sustained for 3 mo. In mice fed a high-fat diet, DPP4 vaccination resulted in improved postprandial glucose excursions and insulin sensitivity and, in the diabetic KK-A(y) and db/db mice strains, DPP4 vaccination significantly reduced glucose excursions and increased both plasma insulin and pancreatic insulin content. Importantly, T cells were not activated following challenge with DPP4 itself, which suggests that this vaccine does not induce cell-mediated autoimmunity. Additionally, no significant immune-mediated damage was detected in cells and tissues where DPP4 is expressed. Thus, this DPP4 vaccine may provide a therapeutic alternative for patients with diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidase 4/imunologia , Glucose/metabolismo , Vacinas/imunologia , Vacinas/uso terapêutico , Sequência de Aminoácidos , Animais , Antígenos/química , Antígenos/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/prevenção & controle , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/prevenção & controle , Dieta Hiperlipídica , Modelos Animais de Doenças , Resistência à Insulina/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Peptídeos/imunologia , Linfócitos T/imunologia , Resultado do Tratamento , Vacinação
20.
J Virol ; 89(18): 9616-30, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26178986

RESUMO

UNLABELLED: The role of the adenosine (ADO) pathway in human immunodeficiency virus type 1/simian immunodeficiency virus (HIV-1/SIV) infection remains unclear. We compared SIVsab-induced changes of markers related to ADO production (CD39 and CD73) and breakdown (CD26 and adenosine deaminase) on T cells from blood, lymph nodes, and intestine collected from pigtailed macaques (PTMs) and African green monkeys (AGMs) that experience different SIVsab infection outcomes. We also measured ADO and inosine (INO) levels in tissues by mass spectrometry. Finally, we assessed the suppressive effect of ADO on proinflammatory cytokine production after T cell receptor stimulation. The baseline level of both CD39 and CD73 coexpression on regulatory T cells and ADO levels were higher in AGMs than in PTMs. Conversely, high INO levels associated with dramatic increases in CD26 expression and adenosine deaminase activity were observed in PTMs during chronic SIV infection. Immune activation and inflammation markers in the gut and periphery inversely correlated with ADO and directly correlated with INO. Ex vivo administration of ADO significantly suppressed proinflammatory cytokine production by T cells in both species. In conclusion, the opposite dynamics of ADO pathway-related markers and contrasting ADO/INO levels in species with divergent proinflammatory responses to SIV infection support a key role of ADO in controlling immune activation/inflammation in nonprogressive SIV infections. Changes in ADO levels predominately occurred in the gut, suggesting that the ADO pathway may be involved in sparing natural hosts of SIVs from developing SIV-related gut dysfunction. Focusing studies of the ADO pathway on mucosal sites of viral replication is warranted. IMPORTANCE: The mechanisms responsible for the severe gut dysfunction characteristic of progressive HIV and SIV infection in humans and macaques are not completely elucidated. We report that ADO may play a key role in controlling immune activation/inflammation in nonprogressive SIV infections by limiting SIV-related gut inflammation. Conversely, in progressive SIV infection, significant degradation of ADO occurs, possibly due to an early increase of ADO deaminase complexing protein 2 (CD26) and adenosine deaminase. Our study supports therapeutic interventions to offset alterations of this pathway during progressive HIV/SIV infections. These potential approaches to control chronic immune activation and inflammation during pathogenic SIV infection may prevent HIV disease progression.


Assuntos
5'-Nucleotidase/imunologia , Adenosina/imunologia , Antígenos CD/imunologia , Apirase/imunologia , Dipeptidil Peptidase 4/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T/imunologia , Animais , Chlorocebus aethiops , Doença Crônica , Citocinas/imunologia , Humanos , Macaca nemestrina , Masculino , Receptores de Antígenos de Linfócitos T/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA