Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Physiol Rev ; 100(2): 603-632, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31600121

RESUMO

Despite anti-retroviral therapy (ART), human immunodeficiency virus-1 (HIV)-related pulmonary disease continues to be a major cause of morbidity and mortality for people living with HIV (PLWH). The spectrum of lung diseases has changed from acute opportunistic infections resulting in death to chronic lung diseases for those with access to ART. Chronic immune activation and suppression can result in impairment of innate immunity and progressive loss of T cell and B cell functionality with aberrant cytokine and chemokine responses systemically as well as in the lung. HIV can be detected in the lungs of PLWH and has profound effects on cellular immune functions. In addition, HIV-related lung injury and disease can occur secondary to a number of mechanisms including altered pulmonary and systemic inflammatory pathways, viral persistence in the lung, oxidative stress with additive effects of smoke exposure, microbial translocation, and alterations in the lung and gut microbiome. Although ART has had profound effects on systemic viral suppression in HIV, the impact of ART on lung immunology still needs to be fully elucidated. Understanding of the mechanisms by which HIV-related lung diseases continue to occur is critical to the development of new preventive and therapeutic strategies to improve lung health in PLWH.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/imunologia , Asma/imunologia , Infecções por HIV/imunologia , HIV/imunologia , Hipertensão Pulmonar/imunologia , Neoplasias Pulmonares/imunologia , Pulmão/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Infecções Respiratórias/imunologia , Infecções Oportunistas Relacionadas com a AIDS/tratamento farmacológico , Infecções Oportunistas Relacionadas com a AIDS/microbiologia , Infecções Oportunistas Relacionadas com a AIDS/virologia , Animais , Fármacos Anti-HIV/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Asma/virologia , Modelos Animais de Doenças , HIV/efeitos dos fármacos , HIV/patogenicidade , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/virologia , Hospedeiro Imunocomprometido , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/virologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/virologia , Prognóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/virologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Fatores de Risco
2.
Respir Res ; 25(1): 228, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811970

RESUMO

BACKGROUND: Respiratory viral infections are major drivers of chronic obstructive pulmonary disease (COPD) exacerbations. Interferon-ß is naturally produced in response to viral infection, limiting replication. This exploratory study aimed to demonstrate proof-of-mechanism, and evaluate the efficacy and safety of inhaled recombinant interferon-ß1a (SNG001) in COPD. Part 1 assessed the effects of SNG001 on induced sputum antiviral interferon-stimulated gene expression, sputum differential cell count, and respiratory function. Part 2 compared SNG001 and placebo on clinical efficacy, sputum and serum biomarkers, and viral clearance. METHODS: In Part 1, patients (N = 13) with stable COPD were randomised 4:1 to SNG001 or placebo once-daily for three days. In Part 2, patients (N = 109) with worsening symptoms and a positive respiratory viral test were randomised 1:1 to SNG001 or placebo once-daily for 14 days in two Groups: A (no moderate exacerbation); B (moderate COPD exacerbation [i.e., acute worsening of respiratory symptoms treated with antibiotics and/or oral corticosteroids]). RESULTS: In Part 1, SNG001 upregulated sputum interferon gene expression. In Part 2, there were minimal SNG001-placebo differences in the efficacy endpoints; however, whereas gene expression was initially upregulated by viral infection, then declined on placebo, levels were maintained with SNG001. Furthermore, the proportion of patients with detectable rhinovirus (the most common virus) on Day 7 was lower with SNG001. In Group B, serum C-reactive protein and the proportion of patients with purulent sputum increased with placebo (suggesting bacterial infection), but not with SNG001. The overall adverse event incidence was similar with both treatments. CONCLUSIONS: Overall, SNG001 was well-tolerated in patients with COPD, and upregulated lung antiviral defences to accelerate viral clearance. These findings warrant further investigation in a larger study. TRIAL REGISTRATION: EU clinical trials register (2017-003679-75), 6 October 2017.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/virologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Administração por Inalação , Método Duplo-Cego , Nebulizadores e Vaporizadores , Escarro/virologia , Escarro/metabolismo , Resultado do Tratamento , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Progressão da Doença , Interferon beta/administração & dosagem
3.
Respir Res ; 25(1): 186, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678295

RESUMO

BACKGROUND: Influenza A viruses (IAV) are extremely common respiratory viruses for the acute exacerbation of chronic obstructive pulmonary disease (AECOPD), in which IAV infection may further evoke abnormal macrophage polarization, amplify cytokine storms. Melatonin exerts potential effects of anti-inflammation and anti-IAV infection, while its effects on IAV infection-induced AECOPD are poorly understood. METHODS: COPD mice models were established through cigarette smoke exposure for consecutive 24 weeks, evaluated by the detection of lung function. AECOPD mice models were established through the intratracheal atomization of influenza A/H3N2 stocks in COPD mice, and were injected intraperitoneally with melatonin (Mel). Then, The polarization of alveolar macrophages (AMs) was assayed by flow cytometry of bronchoalveolar lavage (BAL) cells. In vitro, the effects of melatonin on macrophage polarization were analyzed in IAV-infected Cigarette smoking extract (CSE)-stimulated Raw264.7 macrophages. Moreover, the roles of the melatonin receptors (MTs) in regulating macrophage polarization and apoptosis were determined using MTs antagonist luzindole. RESULTS: The present results demonstrated that IAV/H3N2 infection deteriorated lung function (reduced FEV20,50/FVC), exacerbated lung damages in COPD mice with higher dual polarization of AMs. Melatonin therapy improved airflow limitation and lung damages of AECOPD mice by decreasing IAV nucleoprotein (IAV-NP) protein levels and the M1 polarization of pulmonary macrophages. Furthermore, in CSE-stimulated Raw264.7 cells, IAV infection further promoted the dual polarization of macrophages accompanied with decreased MT1 expression. Melatonin decreased STAT1 phosphorylation, the levels of M1 markers and IAV-NP via MTs reflected by the addition of luzindole. Recombinant IL-1ß attenuated the inhibitory effects of melatonin on IAV infection and STAT1-driven M1 polarization, while its converting enzyme inhibitor VX765 potentiated the inhibitory effects of melatonin on them. Moreover, melatonin inhibited IAV infection-induced apoptosis by suppressing IL-1ß/STAT1 signaling via MTs. CONCLUSIONS: These findings suggested that melatonin inhibited IAV infection, improved lung function and lung damages of AECOPD via suppressing IL-1ß/STAT1-driven macrophage M1 polarization and apoptosis in a MTs-dependent manner. Melatonin may be considered as a potential therapeutic agent for influenza virus infection-induced AECOPD.


Assuntos
Apoptose , Vírus da Influenza A Subtipo H3N2 , Melatonina , Doença Pulmonar Obstrutiva Crônica , Animais , Melatonina/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/virologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Camundongos , Apoptose/efeitos dos fármacos , Células RAW 264.7 , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/imunologia , Camundongos Endogâmicos C57BL , Masculino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Progressão da Doença , Polaridade Celular/efeitos dos fármacos , Modelos Animais de Doenças , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia
4.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125624

RESUMO

This study explores the role of inflammation and oxidative stress, hallmarks of COVID-19, in accelerating cellular biological aging. We investigated early molecular markers-DNA methylation age (DNAmAge) and telomere length (TL)-in blood leukocytes, nasal cells (NCs), and induced sputum (IS) one year post-infection in pauci- and asymptomatic healthcare workers (HCWs) infected during the first pandemic wave (February-May 2020), compared to COPD patients, model for "aged lung". Data from questionnaires, Work Ability Index (WAI), blood analyses, autonomic cardiac balance assessments, heart rate variability (HRV), and pulmonary function tests were collected. Elevated leukocyte DNAmAge significantly correlated with advancing age, male sex, daytime work, and an aged phenotype characterized by chronic diseases, elevated LDL and glycemia levels, medications affecting HRV, and declines in lung function, WAI, lymphocyte count, hemoglobin levels, and HRV (p < 0.05). Increasing age, LDL levels, job positions involving intensive patient contact, and higher leukocyte counts collectively contributed to shortened leukocyte TL (p < 0.05). Notably, HCWs exhibited accelerated biological aging in IS cells compared to both blood leukocytes (p ≤ 0.05) and NCs (p < 0.001) and were biologically older than COPD patients (p < 0.05). These findings suggest the need to monitor aging in pauci- and asymptomatic COVID-19 survivors, who represent the majority of the general population.


Assuntos
COVID-19 , Pessoal de Saúde , SARS-CoV-2 , Humanos , COVID-19/virologia , COVID-19/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , SARS-CoV-2/isolamento & purificação , Envelhecimento , Estresse Oxidativo , Leucócitos/metabolismo , Doença Pulmonar Obstrutiva Crônica/virologia , Senescência Celular
5.
Medicina (Kaunas) ; 58(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35056429

RESUMO

COPD is a chronic lung disorder characterized by a progressive and irreversible airflow obstruction, and persistent pulmonary inflammation. It has become a global epidemic affecting 10% of the population, and is the third leading cause of death worldwide. Respiratory viruses are a primary cause of COPD exacerbations, often leading to secondary bacterial infections in the lower respiratory tract. COPD patients are more susceptible to viral infections and associated severe disease, leading to accelerated lung function deterioration, hospitalization, and an increased risk of mortality. The airway epithelium plays an essential role in maintaining immune homeostasis, and orchestrates the innate and adaptive responses of the lung against inhaled and pathogen insults. A healthy airway epithelium acts as the first line of host defense by maintaining barrier integrity and the mucociliary escalator, secreting an array of inflammatory mediators, and initiating an antiviral state through the interferon (IFN) response. The airway epithelium is a major site of viral infection, and the interaction between respiratory viruses and airway epithelial cells activates host defense mechanisms, resulting in rapid virus clearance. As such, the production of IFNs and the activation of IFN signaling cascades directly contributes to host defense against viral infections and subsequent innate and adaptive immunity. However, the COPD airway epithelium exhibits an altered antiviral response, leading to enhanced susceptibility to severe disease and impaired IFN signaling. Despite decades of research, there is no effective antiviral therapy for COPD patients. Herein, we review current insights into understanding the mechanisms of viral evasion and host IFN antiviral defense signaling impairment in COPD airway epithelium. Understanding how antiviral mechanisms operate in COPD exacerbations will facilitate the discovery of potential therapeutic interventions to reduce COPD hospitalization and disease severity.


Assuntos
Interferons/imunologia , Doença Pulmonar Obstrutiva Crônica , Mucosa Respiratória/imunologia , Vírus , Epitélio , Humanos , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/virologia , Mucosa Respiratória/virologia
6.
Thorax ; 76(5): 448-455, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443234

RESUMO

INTRODUCTION: People living with HIV (PLWH) suffer from age-related comorbidities such as COPD. The processes responsible for reduced lung function in PLWH are largely unknown. We performed an epigenome-wide association study to investigate whether blood DNA methylation is associated with impaired lung function in PLWH. METHODS: Using blood DNA methylation profiles from 161 PLWH, we tested the effect of methylation on FEV1, FEV1/FVC ratio and FEV1 decline over a median of 5 years. We evaluated the global methylation of PLWH with airflow obstruction by testing the differential methylation of transposable elements Alu and LINE-1, a well-described marker of epigenetic ageing. RESULTS: Airflow obstruction as defined by a FEV1/FVC<0.70 was associated with 1393 differentially methylated positions (DMPs), while 4676 were associated with airflow obstruction based on the FEV1/FVC

Assuntos
Metilação de DNA , Infecções por HIV/genética , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/virologia , Testes de Função Respiratória
7.
Am J Pathol ; 190(3): 543-553, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31866346

RESUMO

Chronic obstructive pulmonary disease (COPD) and asthma remain prevalent human lung diseases. Variability in epithelial and inflammatory components that results in pathologic heterogeneity complicates the development of treatments for these diseases. Early childhood infection with parainfluenza virus or respiratory syncytial virus is strongly associated with the development of asthma and COPD later in life, and exacerbations of these diseases correlate with the presence of viral RNA in the lung. Well-characterized animal models of postviral chronic lung diseases are necessary to study the underlying mechanisms of viral-related COPD and asthma and to develop appropriate therapies. In this study, we cross-analyzed chronic lung disease caused by infection with Sendai virus (SeV) or influenza A virus in mice. Differences were observed in lesion composition and inflammatory profiles between SeV- and influenza A virus-induced long-term lung disease. In addition, a primary SeV infection led to worsened pathologic findings on secondary heterologous viral challenge, whereas the reversed infection scheme protected against disease in response to a secondary viral challenge >1 month after the primary infection. These data demonstrate the differential effect of primary viral infections in the susceptibility to disease exacerbation in response to a different secondary viral infection and highlight the usefulness of these viral models as tools to understand the underlying mechanisms that mediate distinct chronic postviral lung diseases.


Assuntos
Asma/patologia , Vírus da Influenza A/fisiologia , Influenza Humana/patologia , Infecções por Paramyxoviridae/patologia , Paramyxoviridae/fisiologia , Doença Pulmonar Obstrutiva Crônica/virologia , Superinfecção/patologia , Animais , Asma/virologia , Doença Crônica , Progressão da Doença , Feminino , Humanos , Influenza Humana/virologia , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Paramyxoviridae/virologia , Superinfecção/virologia
8.
Respir Res ; 22(1): 133, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926483

RESUMO

Nutritional immunity is the sequestration of bioavailable trace metals such as iron, zinc and copper by the host to limit pathogenicity by invading microorganisms. As one of the most conserved activities of the innate immune system, limiting the availability of free trace metals by cells of the immune system serves not only to conceal these vital nutrients from invading bacteria but also operates to tightly regulate host immune cell responses and function. In the setting of chronic lung disease, the regulation of trace metals by the host is often disrupted, leading to the altered availability of these nutrients to commensal and invading opportunistic pathogenic microbes. Similarly, alterations in the uptake, secretion, turnover and redox activity of these vitally important metals has significant repercussions for immune cell function including the response to and resolution of infection. This review will discuss the intricate role of nutritional immunity in host immune cells of the lung and how changes in this fundamental process as a result of chronic lung disease may alter the airway microbiome, disease progression and the response to infection.


Assuntos
Imunidade Adaptativa , Asma/imunologia , Doenças Transmissíveis/imunologia , Imunidade Inata , Pulmão/imunologia , Metais/imunologia , Microbiota , Estado Nutricional , Doença Pulmonar Obstrutiva Crônica/imunologia , Animais , Asma/microbiologia , Asma/fisiopatologia , Asma/virologia , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/fisiopatologia , Doenças Transmissíveis/virologia , Interações Hospedeiro-Patógeno , Humanos , Pulmão/microbiologia , Pulmão/fisiopatologia , Pulmão/virologia , Metais/metabolismo , Prognóstico , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/virologia
9.
Med Sci Monit ; 27: e928051, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33651771

RESUMO

BACKGROUND This study assessed the role of different immune phenotypes of T cells in virus-induced acute exacerbation of chronic obstructive pulmonary disease (AECOPD). MATERIAL AND METHODS The study involved 103 participants, including individuals with virus-induced AECOPD (n=32), non-virus-induced AECOPD (n=31), and stable COPD (n=20) and individuals who were healthy smokers (n=20). The immune phenotypes of T cells in peripheral blood were evaluated via flow cytometry analysis, and the differences were analyzed. RESULTS Patients with virus-induced AECOPD (virus group) had a higher COPD assessment test score on admission than those in the group with non-virus-induced AECOPD (nonvirus group; 25.6±3.8 vs 21.9±4.8, P=0.045). A lower CD4⁺ human leukocyte antigen-DR (HLA-DR)+ frequency was found in the peripheral blood of the virus group compared with the nonvirus group (2.2 vs 4.2, P=0.015), and the frequency of CD4⁺ CD25high CD127low HLA-DR⁺ in CD4⁺ in the virus group was lower than in the nonvirus group (1.1 vs 3.6, P=0.011). The CD3⁺, CD4⁺, CD8⁺, CD4⁺ central memory T cell, CD4⁺ effector memory T cell (Tem), CD4⁺ end-stage T cell, and CD8⁺ Tem levels in lymphocytes of peripheral blood were lower in exacerbation groups relative to those in the stable COPD and healthy smoking groups, but similar between exacerbation groups. Similar frequencies and levels of T cells between different stagings of COPD were also identified. CONCLUSIONS The expression of HLA-DR on the cell surface of CD4⁺ regulatory T cells (Tregs) was lower in the peripheral blood of patients with virus-induced AECOPD. The expression of HLA-DR in CD4⁺ Tregs suggested the effect of respiratory viruses on adaptive immunity of patients with AECOPD to some extent.


Assuntos
Antígenos HLA-DR/metabolismo , Doença Pulmonar Obstrutiva Crônica/imunologia , Linfócitos T Reguladores/imunologia , Imunidade Adaptativa , Idoso , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , China , Feminino , Citometria de Fluxo , Expressão Gênica/genética , Antígenos HLA-DR/análise , Antígenos HLA-DR/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/virologia , Fumar/imunologia , Vírus
10.
Am J Respir Crit Care Med ; 201(1): 83-94, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461630

RESUMO

Rationale: Viral infections are major drivers of exacerbations and clinical burden in patients with asthma and chronic obstructive pulmonary disease (COPD). IFN-ß is a key component of the innate immune response to viral infection. To date, studies of inhaled IFN-ß treatment have not demonstrated a significant effect on asthma exacerbations.Objectives: The dynamics of exogenous IFN-ß activity were investigated to inform on future clinical indications for this potential antiviral therapy.Methods: Monocyte-derived macrophages (MDMs), alveolar macrophages, and primary bronchial epithelial cells (PBECs) were isolated from healthy control subjects and patients with COPD and infected with influenza virus either prior to or after IFN-ß stimulation. Infection levels were measured by the percentage of nucleoprotein 1-positive cells using flow cytometry. Viral RNA shedding and IFN-stimulated gene expression were measured by quantitative PCR. Production of inflammatory cytokines was measured using MSD.Measurements and Main Results: Adding IFN-ß to MDMs, alveolar macrophages, and PBECs prior to, but not after, infection reduced the percentage of nucleoprotein 1-positive cells by 85, 56, and 66%, respectively (P < 0.05). Inhibition of infection lasted for 24 hours after removal of IFN-ß and was maintained albeit reduced up to 1 week in MDMs and 72 hours in PBECs; this was similar between healthy control subjects and patients with COPD. IFN-ß did not induce inflammatory cytokine production by MDMs or PBECs but reduced influenza-induced IL-1ß production by PBECs.Conclusions:In vitro modeling of IFN-ß dynamics highlights the potential for intermittent prophylactic doses of exogenous IFN-ß to modulate viral infection. This provides important insights to aid the future design of clinical trials of IFN-ß in asthma and COPD.


Assuntos
Antivirais/uso terapêutico , Asma/tratamento farmacológico , Interferon beta/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Viroses/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Asma/imunologia , Asma/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/virologia , Viroses/imunologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-32071044

RESUMO

Chronic obstructive pulmonary disease (COPD) is an inflammatory lung condition, causing progressive decline in lung function leading to premature death. Acute exacerbations in COPD patients are predominantly associated with respiratory viruses. Ribavirin is a generic broad-spectrum antiviral agent that could be used for treatment of viral respiratory infections in COPD. Using the Particle Replication In Nonwetting Templates (PRINT) technology, which produces dry-powder particles of uniform shape and size, two new inhaled formulations of ribavirin (ribavirin-PRINT-CFI and ribavirin-PRINT-IP) were developed for efficient delivery to the lung and to minimize bystander exposure. Ribavirin-PRINT-CFI was well tolerated in healthy participants after single dosing and ribavirin-PRINT-IP was well tolerated in healthy and COPD participants after single and repeat dosing. Ribavirin-PRINT-CFI was replaced with ribavirin-PRINT-IP since the latter formulation was found to have improved physicochemical properties and it had a higher ratio of active drug to excipient per unit dose. Ribavirin concentrations were measured in lung epithelial lining fluid in both healthy and COPD participants and achieved target concentrations. Both formulations were rapidly absorbed with approximately dose proportional pharmacokinetics in plasma. Exposure to bystanders was negligible based on both the plasma and airborne ribavirin concentrations with the ribavirin-PRINT-IP formulation. Thus, ribavirin-PRINT-IP allowed for an efficient and convenient delivery of ribavirin to the lungs while minimizing systemic exposure. Further clinical investigations would be required to demonstrate ribavirin-PRINT-IP antiviral characteristics and impact on COPD viral-induced exacerbations. (The clinical trials discussed in this study have been registered at ClinicalTrials.gov under identifiers NCT03243760 and NCT03235726.).


Assuntos
Antivirais/administração & dosagem , Inaladores de Pó Seco , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Ribavirina/administração & dosagem , Administração por Inalação , Adulto , Idoso , Antivirais/farmacocinética , Antivirais/uso terapêutico , Método Duplo-Cego , Sistemas de Liberação de Medicamentos , Inaladores de Pó Seco/efeitos adversos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/virologia , Mucosa Respiratória/metabolismo , Ribavirina/farmacocinética , Ribavirina/uso terapêutico , Adulto Jovem
12.
Respir Res ; 21(1): 77, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228581

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by frequent exacerbation phenotypes independent of disease stage. Increasing evidence shows that the microbiota plays a role in disease progression and severity, but long-term and international multicenter assessment of the variations in viral and bacterial communities as drivers of exacerbations are lacking. METHODS: Two-hundred severe COPD patients from Europe and North America were followed longitudinally for 3 years. We performed nucleic acid detection for 20 respiratory viruses and 16S ribosomal RNA gene sequencing to evaluate the bacterial microbiota in 1179 sputum samples collected at stable, acute exacerbation and follow-up visits. RESULTS: Similar viral and bacterial taxa were found in patients from the USA compared to Bulgaria and Czech Republic but their microbiome diversity was significantly different (P < 0.001) and did not impact exacerbation rates. Virus infection was strongly associated with exacerbation events (P < 5E-20). Human rhinovirus (13.1%), coronavirus (5.1%) and influenza virus (3.6%) constitute the top viral pathogens in triggering exacerbation. Moraxella and Haemophilus were 5-fold and 1.6-fold more likely to be the dominating microbiota during an exacerbation event. Presence of Proteobacteria such as Pseudomonas or Staphylococcus amongst others, were associated with exacerbation events (OR > 0.17; P < 0.02) but more strongly associated with exacerbation frequency (OR > 0.39; P < 4E-10), as confirmed by longitudinal variations and biotyping of the bacterial microbiota, and suggesting a role of the microbiota in sensitizing the lung. CONCLUSIONS: This study highlights bacterial taxa in lung sensitization and viral triggers in COPD exacerbations. It provides a global overview of the diverse targets for drug development and explores new microbiome analysis methods to guide future patient management applications.


Assuntos
Bactérias/isolamento & purificação , Pulmão/microbiologia , Pulmão/virologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/virologia , Vírus/isolamento & purificação , Idoso , Idoso de 80 Anos ou mais , Bactérias/genética , Carga Bacteriana , Progressão da Doença , Europa (Continente)/epidemiologia , Feminino , Humanos , Incidência , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Escarro/microbiologia , Escarro/virologia , Fatores de Tempo , Estados Unidos/epidemiologia , Carga Viral , Vírus/genética
13.
Exp Cell Res ; 384(1): 111545, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31470016

RESUMO

Cigarette smoke (CS) is the primary risk factor for chronic obstructive pulmonary disease (COPD) and dampens antiviral response, which increases viral infections and leads to COPD acute exacerbation (AECOPD). Adenovirus, a nonenveloped DNA virus, is linked with AECOPD, whose DNAs trigger innate immune response via interacting with pattern recognition receptors (PRRs). Stimulator of interferon genes (STING), as a cytosolic DNA sensor, participates in adenovirus-induced interferon ß (IFNß)-dependent antiviral response. STING is involved in various pulmonary diseases, but role of STING in pathogenesis of AECOPD is not well documented. In the present study, we explored relationship between STING and AECOPD induced by recombinant adenovirus vectors (rAdVs) and CS in wild type (WT) and STING-/- mice; and also characterized the inhibition of STING- IFNß pathway in pulmonary epithelium exposed to cigarette smoke extract (CSE). We found that CS or CSE exposure alone dramatically inhibited STING expression, but not significantly effected IFNß production. Moreover, CS or CSE-exposed significantly suppressed activation of STING-IFNß pathway induced by rAdVs and suppressed clearance of rAdVs DNA. Inflammation, fibrosis and emphysema of lung tissues were exaggerated when treated with CS plus rAdVs, which further deteriorate in absences of STING. In A549 cells with knockdown of STING, we also observed enhancing apoptosis related to emphysema, especially CSE and adenovirus vectors in combination. Therefore, STING may play a protective role in preventing the progress of COPD.


Assuntos
Infecções por Adenoviridae/genética , Vetores Genéticos/genética , Interferon beta/genética , Doença Pulmonar Obstrutiva Crônica/genética , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Células A549 , Adenoviridae/efeitos dos fármacos , Infecções por Adenoviridae/tratamento farmacológico , Animais , Linhagem Celular , Linhagem Celular Tumoral , Vetores Genéticos/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Pulmão/efeitos dos fármacos , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/virologia , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/genética , Enfisema Pulmonar/virologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fumar/efeitos adversos
14.
Am J Respir Crit Care Med ; 199(12): 1496-1507, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30562053

RESUMO

Rationale: Human rhinovirus (HRV) is a common cause of chronic obstructive pulmonary disease (COPD) exacerbations. Secondary bacterial infection is associated with more severe symptoms and delayed recovery. Alveolar macrophages clear bacteria from the lung and maintain lung homeostasis through cytokine secretion. These processes are defective in COPD. The effect of HRV on macrophage function is unknown. Objectives: To investigate the effect of HRV on phagocytosis and cytokine response to bacteria by alveolar macrophages and monocyte-derived macrophages (MDM) in COPD and healthy control subjects. Methods: Alveolar macrophages were obtained by bronchoscopy and MDM by adherence. Macrophages were exposed to HRV16 (multiplicity of infection 5), polyinosinic:polycytidylic acid (poly I:C) 30 µg/ml, IFN-ß 10 µg/ml, IFN-γ 10 µg/ml, or medium control for 24 hours. Phagocytosis of fluorescently labeled Haemophilus influenzae or Streptococcus pneumoniae was assessed by fluorimetry. CXCL8 (IL-8), IL-6, TNF-α (tumor necrosis factor-α), and IL-10 release was measured by ELISA. Measurements and Main Results: HRV significantly impaired phagocytosis of H. influenzae by 23% in MDM (n = 37; P = 0.004) and 18% in alveolar macrophages (n = 20; P < 0.0001) in COPD. HRV also significantly reduced phagocytosis of S. pneumoniae by 33% in COPD MDM (n = 20; P = 0.0192). There was no effect in healthy control subjects. Phagocytosis of H. influenzae was also impaired by poly I:C but not IFN-ß or IFN-γ in COPD MDM. HRV significantly reduced cytokine responses to H. influenzae. The IL-10 response to H. influenzae was significantly impaired by poly I:C, IFN-ß, and IFN-γ in COPD cells. Conclusions: HRV impairs phagocytosis of bacteria in COPD, which may lead to an outgrowth of bacteria. HRV also impairs cytokine responses to bacteria via the TLR3/IFN pathway, which may prevent resolution of inflammation leading to prolonged exacerbations in COPD.


Assuntos
Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Fagocitose/imunologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/virologia , Rhinovirus/patogenicidade , Feminino , Humanos , Imunidade Inata , Londres , Masculino , Pessoa de Meia-Idade
15.
Zhonghua Nei Ke Za Zhi ; 59(7): 540-545, 2020 Jul 01.
Artigo em Zh | MEDLINE | ID: mdl-32594688

RESUMO

Objective: To explore how influenza A virus (IAV) regulates airway inflammation via activating Toll-like receptor 7(TLR7)/nuclear factor of κB (NF-κB) signaling pathway in patients with acute exacerbation of chronic obstructive pulmonary disease (COPD). Methods: Primary bronchial epithelial cells were isolated and cultured from normal controls and COPD patients. Samples were divided into 6 groups according to different in vitro treatment, including normal epithelial cell group (A), normal cells+IAV group (B), COPD epithelial cell group (C), COPD cells+IAV group (D), normal cells+TLR7 small interference RNA (si-RNA) group (E), COPD cells+TLR7 siRNA group (F). Protein expressions of TLR7 and NF-κB were detected by Western blot after 24h co-culture with IAV and TLR7 siRNA. Interleukin-6 (IL-6) and tumor necrosis factor α (TNF α) were detected by enzyme-linked immunosorbent assay (ELISA). Results: (1) Compared with group A [0.350±0.075 and 0.470±0.034, (53.000±6.532)pg/ml and (17.000±1.625)pg/ml],TLR7, NF-κB protein expression and IL-6, TNF α levels were significantly increased in group B[0.950±0.075 and 1.090±0.078,(185.000±7.874)pg/ml and (32.000±0.838)pg/ml], group C[0.780±0.056 and 0.910±0.045,(138.000±5.100)pg/ml and 29.000±1.323)pg/ml) and group D[1.280±0.031 and 1.540±0.051,(432.000±5.734)pg/ml and (52.000±3.453)pg/ml] (all P<0.01). Compared with group C TLR7, NF-κB protein expression and IL-6, TNF α levels were significantly increased in group D (P<0.01). (2) Compared with the group A[0.530±0.023 and 0.800±0.046,(51.000±0.327)pg/ml and (14.000±0.314)pg/ml], TLR7, NF-κB protein expression and IL-6, TNF α levels were significantly decreased in the group E[0.350±0.047 and 0.510±0.067,(26.000±1.081)pg/ml and(8.000±0.526)pg/ml] (P<0.05). Compared with group C[1.080±0.078 and 1.280±0.034,(125.000±2.249)pg/ml and (28.000±1.010)pg/ml], TLR7, NF-κB protein expression and IL-6, TNF α levels decreased in the group F[0.880±0.056 and 1.040±0.029,(83.000±1.125)pg/ml and (21.000±0.429)pg/ml] (P<0.05). Conclusion: Influenza viruses activate TLR7/NF-κB signaling pathway to regulate airway inflammation storms in patients with acute exacerbation of COPD. New therapeutic targets of acute exacerbation COPD may be studied based on these inflammation responses to influenza viruses.


Assuntos
Vírus da Influenza A/patogenicidade , NF-kappa B , Orthomyxoviridae , Doença Pulmonar Obstrutiva Crônica , Receptor 7 Toll-Like , Humanos , Inflamação , NF-kappa B/metabolismo , Orthomyxoviridae/metabolismo , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/virologia , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa
16.
Am J Physiol Lung Cell Mol Physiol ; 317(6): L893-L903, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31513433

RESUMO

Patients with frequent exacerbations represent a chronic obstructive pulmonary disease (COPD) subgroup requiring better treatment options. The aim of this study was to determine the innate immune mechanisms that underlie susceptibility to frequent exacerbations in COPD. We measured sputum expression of immune mediators and bacterial loads in samples from patients with COPD at stable state and during virus-associated exacerbations. In vitro immune responses to rhinovirus infection in differentiated primary bronchial epithelial cells (BECs) sampled from patients with COPD were additionally evaluated. Patients were stratified as frequent exacerbators (≥2 exacerbations in the preceding year) or infrequent exacerbators (<2 exacerbations in the preceding year) with comparisons made between these groups. Frequent exacerbators had reduced sputum cell mRNA expression of the antiviral immune mediators type I and III interferons and reduced interferon-stimulated gene (ISG) expression when clinically stable and during virus-associated exacerbation. A role for epithelial cell-intrinsic innate immune dysregulation was identified: induction of interferons and ISGs during in vitro rhinovirus (RV) infection was also impaired in differentiated BECs from frequent exacerbators. Frequent exacerbators additionally had increased sputum bacterial loads at 2 wk following virus-associated exacerbation onset. These data implicate deficient airway innate immunity involving epithelial cells in the increased propensity to exacerbations observed in some patients with COPD. Therapeutic approaches to boost innate antimicrobial immunity in the lung could be a viable strategy for prevention and treatment of frequent exacerbations.


Assuntos
Brônquios/imunologia , Imunidade Inata/imunologia , Infecções por Picornaviridae/complicações , Doença Pulmonar Obstrutiva Crônica/imunologia , Insuficiência Respiratória/complicações , Rhinovirus/imunologia , Escarro/imunologia , Idoso , Brônquios/patologia , Brônquios/virologia , Progressão da Doença , Feminino , Volume Expiratório Forçado , Humanos , Estudos Longitudinais , Medidas de Volume Pulmonar , Masculino , Pessoa de Meia-Idade , Fenótipo , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/virologia , Escarro/virologia
17.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1127-L1140, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30908937

RESUMO

Host cell proteases are involved in influenza pathogenesis. We examined the role of tissue kallikrein 1 (KLK1) by comparing wild-type (WT) and KLK1-deficient mice infected with influenza H3N2 virus. The levels of KLK1 in lung tissue and in bronchoalveolar lavage (BAL) fluid increased substantially during infection. KLK1 did not promote virus infectivity despite its trypsin-like activity, but it did decrease the initial virus load. We examined two cell types involved in the early control of pathogen infections, alveolar macrophages (AMs) and natural killer (NK) cells to learn more about the antiviral action of KLK1. Inactivating the Klk1 gene or treating WT mice with an anti-KLK1 monoclonal antibody to remove KLK1 activity accelerated the initial virus-induced apoptotic depletion of AMs. Intranasal instillation of deficient mice with recombinant KLK1 (rKLK1) reversed the phenotype. The levels of granulocyte-macrophage colony-stimulating factor in infected BAL fluid were significantly lower in KLK1-deficient mice than in WT mice. Treating lung epithelial cells with rKLK1 increased secretion of this factor known to enhance AM resistance to pathogen-induced apoptosis. The recruitment of NK cells to the air spaces peaked 3 days after infection in WT mice but not in KLK1-deficient mice, as did increases in several NK-attracting chemokines (CCL2, CCL3, CCL5, and CXCL10) in BAL. Chronic obstructive pulmonary disease (COPD) patients are highly susceptible to viral infection, and we observed that the KLK1 mRNA levels decreased with increasing COPD severity. Our findings indicate that KLK1 intervenes early in the antiviral defense modulating the severity of influenza infection. Decreased KLK1 expression in COPD patients could contribute to the worsening of influenza.


Assuntos
Apoptose/fisiologia , Macrófagos Alveolares/patologia , Infecções por Orthomyxoviridae/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Calicreínas Teciduais/metabolismo , Células A549 , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/virologia , Animais , Linhagem Celular , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Cães , Fator Estimulador de Colônias de Granulócitos e Macrófagos/análise , Humanos , Vírus da Influenza A Subtipo H3N2 , Células Matadoras Naturais/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/imunologia , Doença Pulmonar Obstrutiva Crônica/virologia , Mucosa Respiratória/metabolismo , Calicreínas Teciduais/antagonistas & inibidores , Calicreínas Teciduais/genética
18.
PLoS Pathog ; 13(1): e1006138, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28046097

RESUMO

Asthma and chronic obstructive pulmonary disease (COPD) exacerbations are commonly associated with respiratory syncytial virus (RSV), rhinovirus (RV) and influenza A virus (IAV) infection. The ensuing airway inflammation is resistant to the anti-inflammatory actions of glucocorticoids (GCs). Viral infection elicits transforming growth factor-ß (TGF-ß) activity, a growth factor we have previously shown to impair GC action in human airway epithelial cells through the activation of activin-like kinase 5 (ALK5), the type 1 receptor of TGF-ß. In the current study, we examine the contribution of TGF-ß activity to the GC-resistance caused by viral infection. We demonstrate that viral infection of human bronchial epithelial cells with RSV, RV or IAV impairs GC anti-inflammatory action. Poly(I:C), a synthetic analog of double-stranded RNA, also impairs GC activity. Both viral infection and poly(I:C) increase TGF-ß expression and activity. Importantly, the GC impairment was attenuated by the selective ALK5 (TGFßRI) inhibitor, SB431542 and prevented by the therapeutic agent, tranilast, which reduced TGF-ß activity associated with viral infection. This study shows for the first time that viral-induced glucocorticoid-insensitivity is partially mediated by activation of endogenous TGF-ß.


Assuntos
Anti-Inflamatórios/farmacologia , Asma/patologia , Glucocorticoides/farmacologia , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/virologia , Fator de Crescimento Transformador beta/metabolismo , Antivirais/farmacologia , Asma/virologia , Benzamidas/farmacologia , Linhagem Celular , Dioxóis/farmacologia , Farmacorresistência Viral/fisiologia , Ativação Enzimática , Células Epiteliais/virologia , Humanos , Vírus da Influenza A , Influenza Humana/virologia , Infecções por Picornaviridae/virologia , Poli I-C/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Doença Pulmonar Obstrutiva Crônica/virologia , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios , Rhinovirus , ortoaminobenzoatos/farmacologia
19.
Respir Res ; 20(1): 210, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519188

RESUMO

BACKGROUND: Acute exacerbations of chronic obstructive pulmonary disease (AECOPD) and asthma are associated with a variety of precipitating factors including infection. This study assessed the infective viral etiologies by real-time multiplex polymerase chain reaction of patients hospitalized with AECOPD and asthma exacerbations. In addition, infective etiologies were assessed for association with the clinical outcome of the patients. METHODS: Adults admitted with AECOPD and asthma exacerbations between August 2016 and July 2017 were recruited. Nasopharyngeal aspirate (NPA) samples were obtained from the patients within 1-2 days of admission and subjected to pathogen detection and human rhinovirus (HRV) typing. RESULTS: Altogether 402 patients with AECOPD, 80 stable COPD, 100 asthma exacerbation and 21 stable asthma subjects were recruited. Among those admitted for AECOPD and asthma exacerbations, 141(35.1%) and 45(45.0%) respectively had pathogens identified in the NPA specimens. The commonest virus identified was influenza A followed by HRV. HRV typing identified HRV-A and HRV-C as the more common HRV with a wide variety of genotypes. Identification of pathogens in NPA or HRV typing otherwise did not affect clinical outcomes including the hospital length of stay, readmission rates and mortality except that identification of pathogens in asthma exacerbation was associated with a lower rate of readmissions at 30 and 60 days. CONCLUSIONS: Many respiratory viruses were associated with AECOPD and asthma exacerbation. HRV-A and HRV-C were the more common HRV associated with exacerbations. Identification of pathogens in NPA was associated with less readmissions for asthma patients at 30 and 60 days. TRIAL REGISTRATION: ClinicalTrials.gov NCT02866357 .


Assuntos
Asma/microbiologia , Asma/virologia , Bactérias/química , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/virologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Rhinovirus/química , Idoso , Idoso de 80 Anos ou mais , Feminino , Hospitalização , Humanos , Vírus da Influenza A , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Readmissão do Paciente/estatística & dados numéricos , Testes de Função Respiratória , Resultado do Tratamento
20.
Clin Sci (Lond) ; 133(8): 983-996, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30952808

RESUMO

Rhinovirus (RV), which is associated with acute exacerbations, also causes persistent lung inflammation in patients with chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are not well-known. Recently, we demonstrated that RV causes persistent lung inflammation with accumulation of a subset of macrophages (CD11b+/CD11c+), and CD8+ T cells, and progression of emphysema. In the present study, we examined the mechanisms underlying the RV-induced persistent inflammation and progression of emphysema in mice with COPD phenotype. Our results demonstrate that at 14 days post-RV infection, in addition to sustained increase in CCL3, CXCL-10 and IFN-γ expression as previously observed, levels of interleukin-33 (IL-33), a ligand for ST2 receptor, and matrix metalloproteinase (MMP)12 are also elevated in mice with COPD phenotype, but not in normal mice. Further, MMP12 was primarily expressed in CD11b+/CD11c+ macrophages. Neutralization of ST2, reduced the expression of CXCL-10 and IFN-γ and attenuated accumulation of CD11b+/CD11c+ macrophages, neutrophils and CD8+ T cells in COPD mice. Neutralization of IFN-γ, or ST2 attenuated MMP12 expression and prevented progression of emphysema in these mice. Taken together, our results indicate that RV may stimulate expression of CXCL-10 and IFN-γ via activation of ST2/IL-33 signaling axis, which in turn promote accumulation of CD11b+/CD11c+ macrophages and CD8+ T cells. Furthermore, RV-induced IFN-γ stimulates MMP12 expression particularly in CD11b+/CD11c+ macrophages, which may degrade alveolar walls thus leading to progression of emphysema in these mice. In conclusion, our data suggest an important role for ST2/IL-33 signaling axis in RV-induced pathological changes in COPD mice.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Interleucina-33/imunologia , Infecções por Picornaviridae/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Rhinovirus/fisiologia , Animais , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Interleucina-33/genética , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/patologia , Infecções por Picornaviridae/virologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA