RESUMO
CAG-repeat expansions in at least eight different genes cause neurodegeneration. The length of the extended polyglutamine stretches in the corresponding proteins is proportionally related to their aggregation propensity. Although these proteins are ubiquitously expressed, they predominantly cause toxicity to neurons. To understand this neuronal hypersensitivity, we generated induced pluripotent stem cell (iPSC) lines of spinocerebellar ataxia type 3 and Huntington's disease patients. iPSC generation and neuronal differentiation are unaffected by polyglutamine proteins and show no spontaneous aggregate formation. However, upon glutamate treatment, aggregates form in neurons but not in patient-derived neural progenitors. During differentiation, the chaperone network is drastically rewired, including loss of expression of the anti-amyloidogenic chaperone DNAJB6. Upregulation of DNAJB6 in neurons antagonizes glutamate-induced aggregation, while knockdown of DNAJB6 in progenitors results in spontaneous polyglutamine aggregation. Loss of DNAJB6 expression upon differentiation is confirmed in vivo, explaining why stem cells are intrinsically protected against amyloidogenesis and protein aggregates are dominantly present in neurons.
Assuntos
Proteínas Amiloidogênicas/genética , Diferenciação Celular/genética , Proteínas de Choque Térmico HSP40/genética , Chaperonas Moleculares/genética , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Regulação da Expressão Gênica/genética , Técnicas de Inativação de Genes , Ácido Glutâmico/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Neurônios/patologia , Agregados Proteicos/genética , Expansão das Repetições de Trinucleotídeos/genéticaRESUMO
Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant hereditary disorder, caused by an expansion of polyglutamine in the ataxin-3 protein. SCA3 symptoms include progressive motor decline caused by an atrophy of the cerebellum and brainstem. However, it was recently reported that SCA3 patients also suffer from the cerebellar cognitive affective syndrome. The majority of SCA3 patients exhibit cognitive decline and approximately half of them suffer from depression and anxiety. The necessity to find a combined therapy for both motor and cognitive deficits in a SCA3 mouse model is required for the development of SCA3 treatment. Here, we demonstrated that the SCA3-84Q transgenic mice exhibited anxiety over the novel brightly illuminated environment in the open field, novelty suppressed feeding, and light-dark place preference tests. Moreover, SCA3-84Q mice also suffered from a decline in recognition memory during the novel object recognition test. SCA3-84Q mice also demonstrated floating behavior during the Morris water maze that can be interpreted as a sign of low mood and aversion to activity, i.e. depressive-like state. SCA3-84Q mice also spent more time immobile during the forced swimming and tail suspension tests which is also evidence for depressive-like behavior. Therefore, the SCA3-84Q mouse model may be used as a model system to test the possible treatments for both ataxia and non-motor symptoms including depression, anxiety, and memory loss.
Assuntos
Doença de Machado-Joseph , Humanos , Camundongos , Animais , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Depressão/genética , Cerebelo/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Camundongos Transgênicos , Ansiedade/genéticaRESUMO
Spinocerebellar ataxia type 3 (SCA3) is the most common dominantly inherited ataxia. Currently, no preventive or disease-modifying treatments exist for this progressive neurodegenerative disorder, although efforts using gene silencing approaches are under clinical trial investigation. The disease is caused by a CAG repeat expansion in the mutant gene, ATXN3, producing an enlarged polyglutamine tract in the mutant protein. Similar to other paradigmatic neurodegenerative diseases, studies evaluating the pathogenic mechanism focus primarily on neuronal implications. Consequently, therapeutic interventions often overlook non-neuronal contributions to disease. Our lab recently reported that oligodendrocytes display some of the earliest and most progressive dysfunction in SCA3 mice. Evidence of disease-associated oligodendrocyte signatures has also been reported in other neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Here, we assess the effects of anti-ATXN3 antisense oligonucleotide (ASO) treatment on oligodendrocyte dysfunction in premanifest and symptomatic SCA3 mice. We report a severe, but modifiable, deficit in oligodendrocyte maturation caused by the toxic gain-of-function of mutant ATXN3 early in SCA3 disease that is transcriptionally, biochemically, and functionally rescued with anti-ATXN3 ASO. Our results highlight the promising use of an ASO therapy across neurodegenerative diseases that requires glial targeting in addition to affected neuronal populations.
Assuntos
Ataxina-3 , Modelos Animais de Doenças , Doença de Machado-Joseph , Oligodendroglia , Oligonucleotídeos Antissenso , Animais , Oligodendroglia/metabolismo , Camundongos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/terapia , Doença de Machado-Joseph/patologia , Doença de Machado-Joseph/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Humanos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Camundongos TransgênicosRESUMO
Machado-Joseph disease (MJD) is a devastating and incurable neurodegenerative disease characterised by progressive ataxia, difficulty speaking and swallowing. Consequently, affected individuals ultimately become wheelchair dependent, require constant care, and face a shortened life expectancy. The monogenic cause of MJD is expansion of a trinucleotide (CAG) repeat region within the ATXN3 gene, which results in polyglutamine (polyQ) expansion within the resultant ataxin-3 protein. While it is well established that the ataxin-3 protein functions as a deubiquitinating (DUB) enzyme and is therefore critically involved in proteostasis, several unanswered questions remain regarding the impact of polyQ expansion in ataxin-3 on its DUB function. Here we review the current literature surrounding ataxin-3's DUB function, its DUB targets, and what is known regarding the impact of polyQ expansion on ataxin-3's DUB function. We also consider the potential neuroprotective effects of ataxin-3's DUB function, and the intersection of ataxin-3's role as a DUB enzyme and regulator of gene transcription. Ataxin-3 is the principal pathogenic protein in MJD and also appears to be involved in cancer. As aberrant deubiquitination has been linked to both neurodegeneration and cancer, a comprehensive understanding of ataxin-3's DUB function is important for elucidating potential therapeutic targets in these complex conditions. In this review, we aim to consolidate knowledge of ataxin-3 as a DUB and unveil areas for future research to aid therapeutic targeting of ataxin-3's DUB function for the treatment of MJD and other diseases.
Assuntos
Doença de Machado-Joseph , Neoplasias , Doenças Neurodegenerativas , Humanos , Ataxina-3/genética , Ataxina-3/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Doenças Neurodegenerativas/genéticaRESUMO
Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD) is a heritable proteinopathy disorder, whose causative gene, ATXN3, undergoes alternative splicing. Ataxin-3 protein isoforms differ in their toxicity, suggesting that certain ATXN3 splice variants may be crucial in driving the selective toxicity in SCA3. Using RNA-seq datasets we identified and determined the abundance of annotated ATXN3 transcripts in blood (n = 60) and cerebellum (n = 12) of SCA3 subjects and controls. The reference transcript (ATXN3-251), translating into an ataxin-3 isoform harbouring three ubiquitin-interacting motifs (UIMs), showed the highest abundance in blood, while the most abundant transcript in the cerebellum (ATXN3-208) was of unclear function. Noteworthy, two of the four transcripts that encode full-length ataxin-3 isoforms but differ in the C-terminus were strongly related with tissue expression specificity: ATXN3-251 (3UIM) was expressed in blood 50-fold more than in the cerebellum, whereas ATXN3-214 (2UIM) was expressed in the cerebellum 20-fold more than in the blood. These findings shed light on ATXN3 alternative splicing, aiding in the comprehension of SCA3 pathogenesis and providing guidance in the design of future ATXN3 mRNA-lowering therapies.
Assuntos
Doença de Machado-Joseph , Humanos , Doença de Machado-Joseph/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Cerebelo/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismoRESUMO
ATXN3 is a ubiquitin hydrolase (or deubiquitinase, DUB), product of the ATXN3 gene, ubiquitously expressed in various cell types including peripheral and neuronal tissues and involved in several cellular pathways. Importantly, the expansion of the CAG trinucleotides within the ATXN3 gene leads to an expanded polyglutamine domain in the encoded protein, which has been associated with the onset of the spinocerebellar ataxia type 3, also known as Machado-Joseph disease, the most common dominantly inherited ataxia worldwide. ATXN3 has therefore been under intensive investigation for decades. In this review, we summarize the main functions of ATXN3 in proteostasis, DNA repair and transcriptional regulation, as well as the emerging role in regulating chromatin structure. The mentioned molecular functions of ATXN3 are also reviewed in the context of the pathological expanded form of ATXN3.
Assuntos
Ataxina-3 , Doença de Machado-Joseph , Peptídeos , Humanos , Ataxina-3/metabolismo , Ataxina-3/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Peptídeos/metabolismo , Peptídeos/genética , Animais , Reparo do DNA , Regulação da Expressão Gênica , Proteostase , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Expansão das Repetições de TrinucleotídeosRESUMO
Aggregation of aberrant proteins is a common pathological hallmark in neurodegeneration such as polyglutamine (polyQ) and other repeat-expansion diseases. Here through overexpression of ataxin3 C-terminal polyQ expansion in Drosophila gut enterocytes, we generated an intestinal obstruction model of spinocerebellar ataxia type3 (SCA3) and reported a new role of nuclear-associated endosomes (NAEs)-the delivery of polyQ to the nucleoplasm. In this model, accompanied by the prominently increased RAB5-positive NAEs are abundant nucleoplasmic reticulum enriched with polyQ, abnormal nuclear envelope invagination, significantly reduced endoplasmic reticulum, indicating dysfunctional nucleocytoplasmic trafficking and impaired endomembrane organization. Consistently, Rab5 but not Rab7 RNAi further decreased polyQ-related NAEs, inhibited endomembrane disorganization, and alleviated disease model. Interestingly, autophagic proteins were enriched in polyQ-related NAEs and played non-canonical autophagic roles as genetic manipulation of autophagic molecules exhibited differential impacts on NAEs and SCA3 toxicity. Namely, the down-regulation of Atg1 or Atg12 mitigated while Atg5 RNAi aggravated the disease phenotypes both in Drosophila intestines and compound eyes. Our findings, therefore, provide new mechanistic insights and underscore the fundamental roles of endosome-centered nucleocytoplasmic trafficking and homeostatic endomembrane allocation in the pathogenesis of polyQ diseases.
Assuntos
Autofagia , Endossomos , Peptídeos , Animais , Peptídeos/metabolismo , Endossomos/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Transporte Ativo do Núcleo Celular , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Enterócitos/metabolismo , Modelos Animais de Doenças , Ataxina-3/metabolismo , Ataxina-3/genética , Drosophila/metabolismoRESUMO
Spinocerebellar ataxia 3 (SCA3) is an incurable, neurodegenerative genetic disorder that leads to progressive cerebellar ataxia and other parkinsonian-like pathologies because of loss of cerebellar neurons. The role of an expanded polyglutamine aggregate on neural progenitor cells is unknown. Here, we show that SCA3 patient-specific induced neural progenitor cells (iNPCs) exhibit proliferative defects. Moreover, SCA3 iNPCs have reduced autophagic expression compared to control. Furthermore, although SCA3 iNPCs continue to proliferate, they do not survive subsequent passages compared to control iNPCs, indicating the likelihood that SCA3 iNPCs undergo rapid senescence. Exposure to interleukin-4 (IL-4), a type 2 cytokine produced by immune cells, resulted in an observed increase in expression of autophagic programs and a reduction in the proliferation defect observed in SCA3 iNPCs. Our results indicate a previously unobserved role of SCA3 disease ontology on the neural stem cell pool and a potential therapeutic strategy using IL-4 to ameliorate or delay disease pathology in the SCA3 neural progenitor cell population.
Assuntos
Doença de Machado-Joseph , Células-Tronco Neurais , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Interleucina-4 , Citocinas/metabolismo , Fator de Transcrição STAT6/metabolismoRESUMO
Aberrant O-GlcNAcylation, a protein posttranslational modification defined by the O-linked attachment of the monosaccharide N-acetylglucosamine (O-GlcNAc), has been implicated in neurodegenerative diseases. However, although many neuronal proteins are substrates for O-GlcNAcylation, this process has not been extensively investigated in polyglutamine disorders. We aimed to evaluate the enzyme O-GlcNAc transferase (OGT), which attaches O-GlcNAc to target proteins, in Machado-Joseph disease (MJD). MJD is a neurodegenerative condition characterized by ataxia and caused by the expansion of a polyglutamine stretch within the deubiquitinase ataxin-3, which then present increased propensity to aggregate. By analyzing MJD cell and animal models, we provide evidence that OGT is dysregulated in MJD, therefore compromising the O-GlcNAc cycle. Moreover, we demonstrate that wild-type ataxin-3 modulates OGT protein levels in a proteasome-dependent manner, and we present OGT as a substrate for ataxin-3. Targeting OGT levels and activity reduced ataxin-3 aggregates, improved protein clearance and cell viability, and alleviated motor impairment reminiscent of ataxia of MJD patients in zebrafish model of the disease. Taken together, our results point to a direct interaction between OGT and ataxin-3 in health and disease and propose the O-GlcNAc cycle as a promising target for the development of therapeutics in the yet incurable MJD.
Assuntos
Ataxina-3/metabolismo , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , N-Acetilglucosaminiltransferases/metabolismo , Animais , Ataxina-3/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Peptídeos , Complexo de Endopeptidases do Proteassoma , Peixe-Zebra/metabolismoRESUMO
Polyglutamine diseases are neurodegenerative diseases caused by the expansion of polyglutamine (polyQ) tracts within different proteins. Although multiple pathways have been found to modulate aggregation of the expanded polyQ proteins, the mechanisms by which polyQ tracts induced neuronal cell death remain unknown. We conducted a genome-wide genetic screen to identify genes that suppress polyQ-induced neurodegeneration when mutated. Loss of the scaffold protein RACK1 alleviated cell death associated with the expression of polyQ tracts alone, as well as in models of Machado-Joseph disease (MJD) and Huntington's disease (HD), without affecting proteostasis of polyQ proteins. A genome-wide RNAi screen for modifiers of this rack1 suppression phenotype revealed that knockdown of the E3 ubiquitin ligase, POE (Purity of essence), further suppressed polyQ-induced cell death, resulting in nearly wild-type looking eyes. Biochemical analyses demonstrated that RACK1 interacts with POE and ERK to promote ERK degradation. These results suggest that RACK1 plays a key role in polyQ pathogenesis by promoting POE-dependent degradation of ERK, and implicate RACK1/POE/ERK as potent drug targets for treatment of polyQ diseases.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Doenças Neurodegenerativas/metabolismo , Peptídeos/efeitos adversos , Peptídeos/metabolismo , Proteólise , Receptores de Quinase C Ativada/metabolismo , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Feminino , Doença de Machado-Joseph/enzimologia , Doença de Machado-Joseph/metabolismo , Masculino , Doenças Neurodegenerativas/enzimologia , Células Fotorreceptoras de Invertebrados/metabolismo , Agregados Proteicos , Interferência de RNA , Receptores de Quinase C Ativada/deficiência , Receptores de Quinase C Ativada/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Spinocerebellar ataxia type 3 (SCA3) is the most common type of disease related to poly-glutamine (polyQ) repeats. Its hallmark pathology is related to the abnormal accumulation of ataxin 3 with a longer polyQ tract (polyQ-ATXN3). However, there are other mechanisms related to SCA3 progression that require identifying trait and state biomarkers for a more accurate diagnosis and prognosis. Moreover, the identification of potential pharmacodynamic targets and assessment of therapeutic efficacy necessitates valid biomarker profiles. The aim of this review was to identify potential trait and state biomarkers and their potential value in clinical trials. Our results show that, in SCA3, there are different fluid biomarkers involved in neurodegeneration, oxidative stress, metabolism, miRNA and novel genes. However, neurofilament light chain NfL and polyQ-ATXN3 stand out as the most prevalent in body fluids and SCA3 stages. A heterogeneity analysis of NfL revealed that it may be a valuable state biomarker, particularly when measured in plasma. Nonetheless, since it could be a more beneficial approach to tracking SCA3 progression and clinical trial efficacy, it is more convenient to perform a biomarker profile evaluation than to rely on only one.
Assuntos
Biomarcadores , Doença de Machado-Joseph , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas de Neurofilamentos/metabolismo , Peptídeos/metabolismo , Progressão da Doença , Estresse OxidativoRESUMO
We aimed to produce a mouse model of spinocerebellar ataxia type 3 (SCA3) using the mouse blood-brain barrier (BBB)-penetrating adeno-associated virus (AAV)-PHP.B. Four-to-five-week-old C57BL/6 mice received injections of high-dose (2.0 × 1011 vg/mouse) or low-dose (5.0 × 1010 vg/mouse) AAV-PHP.B encoding a SCA3 causative gene containing abnormally long 89 CAG repeats [ATXN3(Q89)] under the control of the ubiquitous chicken ß-actin hybrid (CBh) promoter. Control mice received high doses of AAV-PHP.B encoding ATXN3 with non-pathogenic 15 CAG repeats [ATXN3(Q15)] or phosphate-buffered saline (PBS) alone. More than half of the mice injected with high doses of AAV-PHP.B encoding ATXN3(Q89) died within 4 weeks after the injection. No mice in other groups died during the 12-week observation period. Mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89) exhibited progressive motor uncoordination starting 4 weeks and a shorter stride in footprint analysis performed at 12 weeks post-AAV injection. Immunohistochemistry showed thinning of the molecular layer and the formation of nuclear inclusions in Purkinje cells from mice injected with low doses of AAV-PHP.B encoding ATXN3(Q89). Moreover, ATXN3(Q89) expression significantly reduced the number of large projection neurons in the cerebellar nuclei to one third of that observed in mice expressing ATXN3(Q15). This AAV-based approach is superior to conventional methods in that the required number of model mice can be created simply by injecting AAV, and the expression levels of the responsible gene can be adjusted by changing the amount of AAV injected. Moreover, this method may be applied to produce SCA3 models in non-human primates.
Assuntos
Ataxina-3 , Dependovirus , Modelos Animais de Doenças , Vetores Genéticos , Doença de Machado-Joseph , Camundongos Endogâmicos C57BL , Animais , Dependovirus/genética , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/terapia , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Camundongos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Ataxina-3/genética , Ataxina-3/metabolismo , Injeções Intravenosas , Barreira Hematoencefálica/metabolismo , Regiões Promotoras GenéticasRESUMO
Spinocerebellar ataxia Type 3 (SCA3), the most common dominantly inherited ataxia, is a polyglutamine neurodegenerative disease for which there is no disease-modifying therapy. The polyglutamine-encoding CAG repeat expansion in the ATXN3 gene results in expression of a mutant form of the ATXN3 protein, a deubiquitinase that causes selective neurodegeneration despite being widely expressed. The mechanisms driving neurodegeneration in SCA3 are unclear. Research to date, however, has focused almost exclusively on neurons. Here, using equal male and female age-matched transgenic mice expressing full-length human mutant ATXN3, we identified early and robust transcriptional changes in selectively vulnerable brain regions that implicate oligodendrocytes in disease pathogenesis. We mapped transcriptional changes across early, mid, and late stages of disease in two selectively vulnerable brain regions: the cerebellum and brainstem. The most significant disease-associated module through weighted gene coexpression network analysis revealed dysfunction in SCA3 oligodendrocyte maturation. These results reflect a toxic gain-of-function mechanism, as ATXN3 KO mice do not exhibit any impairments in oligodendrocyte maturation. Genetic crosses to reporter mice revealed a marked reduction in mature oligodendrocytes in SCA3-disease vulnerable brain regions, and ultrastructural microscopy confirmed abnormalities in axonal myelination. Further study of isolated oligodendrocyte precursor cells from SCA3 mice established that this impairment in oligodendrocyte maturation is a cell-autonomous process. We conclude that SCA3 is not simply a disease of neurons, and the search for therapeutic strategies and disease biomarkers will need to account for non-neuronal involvement in SCA3 pathogenesis.SIGNIFICANCE STATEMENT Despite advances in spinocerebellar ataxia Type 3 (SCA3) disease understanding, much remains unknown about how the disease gene causes brain dysfunction ultimately leading to cell death. We completed a longitudinal transcriptomic analysis of vulnerable brain regions in SCA3 mice to define the earliest and most robust changes across disease progression. Through gene network analyses followed up with biochemical and histologic studies in SCA3 mice, we provide evidence for severe dysfunction in oligodendrocyte maturation early in SCA3 pathogenesis. Our results advance understanding of SCA3 disease mechanisms, identify additional routes for therapeutic intervention, and may provide broader insight into polyglutamine diseases beyond SCA3.
Assuntos
Doença de Machado-Joseph , Doenças Neurodegenerativas , Oligodendroglia , Animais , Ataxina-3/genética , Ataxina-3/metabolismo , Feminino , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Masculino , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologiaRESUMO
Untranslated regions are involved in the regulation of transcriptional and post-transcriptional processes. Characterization of these regions remains poorly explored for ATXN3, the causative gene of Machado-Joseph disease (MJD). Although a few genetic modifiers have been identified for MJD age at onset (AO), they only explain a small fraction of the AO variance. Our aim was to analyse variation at the 3'UTR of ATXN3 in MJD patients, analyse its impact on AO and attempt to build haplotypes that might discriminate between normal and expanded alleles.After assessing ATXN3 3'UTR variants in molecularly confirmed MJD patients, an in silico analysis was conducted to predict their functional impact (e.g. their effect on miRNA-binding sites). Alleles in cis with the expanded (CAG)n were inferred from family data, and haplotypes were built. The effect of the alternative alleles on the AO and on SARA and NESSCA ataxia scales was tested.Nine variants, all previously described, were found. For eight variants, in silico analyses predicted (a) deleterious effects (rs10151135; rs55966267); (b) changes on miRNA-binding sites (rs11628764; rs55966267; rs709930) and (c) alterations of RNA-binding protein (RBP)-binding sites (rs1055996; rs910369; rs709930; rs10151135; rs3092822; rs7158733). Patients harbouring the alternative allele at rs10151135 had significantly higher SARA Axial subscores (p = 0.023), comparatively with those homozygous for the reference allele. Ten different haplotypes were obtained, one of which was exclusively found in cis with the expanded and four with the normal allele. These findings, which are relevant for the design of allele-specific therapies, warrant further investigation in independent MJD cohorts.
Assuntos
Doença de Machado-Joseph , MicroRNAs , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Ataxina-3/genética , Regiões 3' não Traduzidas/genética , MicroRNAs/genética , Variação Genética , Proteínas Repressoras/genéticaRESUMO
Machado-Joseph disease (MJD) is a fatal neurodegenerative disorder clinically characterized by prominent ataxia. It is caused by an expansion of a CAG trinucleotide in ATXN3, translating into an expanded polyglutamine (polyQ) tract in the ATXN3 protein, that becomes prone to misfolding and aggregation. The pathogenesis of the disease has been associated with the dysfunction of several cellular mechanisms, including autophagy and transcription regulation. In this study, we investigated the transcriptional modifications of the autophagy pathway in models of MJD and assessed whether modulating the levels of the affected autophagy-associated transcripts (AATs) would alleviate MJD-associated pathology. Our results show that autophagy is impaired at the transcriptional level in MJD, affecting multiple AATs, including Unc-51 like autophagy activating kinase 1 and 2 (ULK1 and ULK2), two homologs involved in autophagy induction. Reinstating ULK1/2 levels by adeno-associated virus (AAV)-mediated gene transfer significantly improved motor performance while preventing neuropathology in two in vivo models of MJD. Moreover, in vitro studies showed that the observed positive effects may be mainly attributed to ULK1 activity. This study provides strong evidence of the beneficial effect of overexpression of ULK homologs, suggesting these as promising instruments for the treatment of MJD and other neurodegenerative disorders.
Assuntos
Doença de Machado-Joseph , Animais , Ataxina-3/genética , Ataxina-3/metabolismo , Autofagia , Dependovirus/metabolismo , Modelos Animais de Doenças , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/terapia , CamundongosRESUMO
Machado-Joseph disease (MJD) is characterized by a pathological expansion of the polyglutamine (polyQ) tract within the ataxin-3 protein. Despite its primarily cytoplasmic localization, polyQ-expanded ataxin-3 accumulates in the nucleus and forms intranuclear aggregates in the affected neurons. Due to these histopathological hallmarks, the nucleocytoplasmic transport machinery has garnered attention as an important disease relevant mechanism. Here, we report on MJD cell model-based analysis of the nuclear transport receptor karyopherin subunit beta-1 (KPNB1) and its implications in the molecular pathogenesis of MJD. Although directly interacting with both wild-type and polyQ-expanded ataxin-3, modulating KPNB1 did not alter the intracellular localization of ataxin-3. Instead, overexpression of KPNB1 reduced ataxin-3 protein levels and the aggregate load, thereby improving cell viability. On the other hand, its knockdown and inhibition resulted in the accumulation of soluble and insoluble ataxin-3. Interestingly, the reduction of ataxin-3 was apparently based on protein fragmentation independent of the classical MJD-associated proteolytic pathways. Label-free quantitative proteomics and knockdown experiments identified mitochondrial protease CLPP as a potential mediator of the ataxin-3-degrading effect induced by KPNB1. We confirmed reduction of KPNB1 protein levels in MJD by analyzing two MJD transgenic mouse models and induced pluripotent stem cells (iPSCs) derived from MJD patients. Our results reveal a yet undescribed regulatory function of KPNB1 in controlling the turnover of ataxin-3, thereby highlighting a new potential target of therapeutic value for MJD.
Assuntos
Ataxina-3 , Endopeptidase Clp , Doença de Machado-Joseph , Mitocôndrias , beta Carioferinas , Animais , Ataxina-3/genética , Ataxina-3/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Camundongos , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismoRESUMO
Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by CAG (encoding glutamine) repeat expansion in the Ataxin-3 (ATXN3) gene. We have shown previously that ATXN3-depleted or pathogenic ATXN3-expressing cells abrogate polynucleotide kinase 3'-phosphatase (PNKP) activity. Here, we report that ATXN3 associates with RNA polymerase II (RNAP II) and the classical nonhomologous end-joining (C-NHEJ) proteins, including PNKP, along with nascent RNAs under physiological conditions. Notably, ATXN3 depletion significantly decreased global transcription, repair of transcribed genes, and error-free double-strand break repair of a 3'-phosphate-containing terminally gapped, linearized reporter plasmid. The missing sequence at the terminal break site was restored in the recircularized plasmid in control cells by using the endogenous homologous transcript as a template, indicating ATXN3's role in PNKP-mediated error-free C-NHEJ. Furthermore, brain extracts from SCA3 patients and mice show significantly lower PNKP activity, elevated p53BP1 level, more abundant strand-breaks in the transcribed genes, and degradation of RNAP II relative to controls. A similar RNAP II degradation is also evident in mutant ATXN3-expressing Drosophila larval brains and eyes. Importantly, SCA3 phenotype in Drosophila was completely amenable to PNKP complementation. Hence, salvaging PNKP's activity can be a promising therapeutic strategy for SCA3.
Assuntos
Ataxina-3/genética , Reparo do DNA por Junção de Extremidades , Enzimas Reparadoras do DNA/metabolismo , Doença de Machado-Joseph/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Polimerase II/metabolismo , Proteínas Repressoras/genética , Idoso de 80 Anos ou mais , Animais , Animais Geneticamente Modificados , Ataxina-3/metabolismo , Encéfalo/patologia , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Modelos Animais de Doenças , Drosophila , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Peptídeos/genética , RNA Interferente Pequeno/metabolismoRESUMO
Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by an abnormal polyglutamine expansion within the ataxin-3 protein (ATXN3). This leads to neurodegeneration of specific brain and spinal cord regions, resulting in a progressive loss of motor function. Despite neuronal death, non-neuronal cells, including astrocytes, are also involved in SCA3 pathogenesis. Astrogliosis is a common pathological feature in SCA3 patients and animal models of the disease. However, the contribution of astrocytes to SCA3 is not clearly defined. Inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is the predominant IP3R in mediating astrocyte somatic calcium signals, and genetically ablation of IP3R2 has been widely used to study astrocyte function. Here, we aimed to investigate the relevance of IP3R2 in the onset and progression of SCA3. For this, we tested whether IP3R2 depletion and the consecutive suppression of global astrocytic calcium signalling would lead to marked changes in the behavioral phenotype of a SCA3 mouse model, the CMVMJD135 transgenic line. This was achieved by crossing IP3R2 null mice with the CMVMJD135 mouse model and performing a longitudinal behavioral characterization of these mice using well-established motor-related function tests. Our results demonstrate that IP3R2 deletion in astrocytes does not modify SCA3 progression.
Assuntos
Doença de Machado-Joseph , Doenças Neurodegenerativas , Camundongos , Animais , Doença de Machado-Joseph/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos Transgênicos , Cálcio/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Progressão da DoençaRESUMO
Machado-Joseph disease (MJD) or spinocerebellar ataxia 3 (SCA3) is a rare, inherited, monogenic, neurodegenerative disease, and the most common SCA worldwide. MJD/SCA3 causative mutation is an abnormal expansion of the triplet CAG at exon 10 within the ATXN3 gene. The gene encodes for ataxin-3, which is a deubiquitinating protein that is also involved in transcriptional regulation. In normal conditions, the ataxin-3 protein polyglutamine stretch has between 13 and 49 glutamines. However, in MJD/SCA3 patients, the size of the stretch increases from 55 to 87, contributing to abnormal protein conformation, insolubility, and aggregation. The formation of aggregates, which is a hallmark of MJD/SCA3, compromises different cell pathways, leading to an impairment of cell clearance mechanisms, such as autophagy. MJD/SCA3 patients display several signals and symptoms in which the most prominent is ataxia. Neuropathologically, the regions most affected are the cerebellum and the pons. Currently, there are no disease-modifying therapies, and patients rely only on supportive and symptomatic treatments. Due to these facts, there is a huge research effort to develop therapeutic strategies for this incurable disease. This review aims to bring together current state-of-the-art strategies regarding the autophagy pathway in MJD/SCA3, focusing on evidence for its impairment in the disease context and, importantly, its targeting for the development of pharmacological and gene-based therapies.
Assuntos
Doença de Machado-Joseph , Doenças Neurodegenerativas , Humanos , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/terapia , Doença de Machado-Joseph/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Proteínas , Autofagia/genéticaRESUMO
Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant neurodegenerative disorder caused by expansion of a polyglutamine (polyQ)-encoding CAG repeat in the ATXN3 gene. Because the ATXN3 protein regulates photoreceptor ciliogenesis and phagocytosis, we aimed to explore whether expanded polyQ ATXN3 impacts retinal function and integrity in SCA3 patients and transgenic mice. We evaluated the retinal structure and function in five patients with SCA3 and in a transgenic mouse model of this disease (YACMJD84.2, Q84) using optical coherence tomography (OCT) and electroretinogram (ERG). In the transgenic mice, we further: a) determined the retinal expression pattern of ATXN3 and the distribution of cones and rods using immunofluorescence (IF); and b) assessed the retinal ultrastructure using transmission electron microscopy (TEM). Some patients with SCA3 in our cohort revealed: i) reduced central macular thickness indirectly correlated with disease duration; ii) decreased thickness of the macula and the ganglion cell layer, and reduced macula volume inversely correlated with disease severity (SARA score); and iii) electrophysiological dysfunction of cones, rods, and inner retinal cells. Transgenic mice replicated the human OCT and ERG findings with aged homozygous Q84/Q84 mice showing a stronger phenotype accompanied by further thinning of the outer nuclear layer and photoreceptor layer and highly reduced cone and rod activities, thus supporting severe retinal dysfunction in these mice. In addition, Q84 mice showed progressive accumulation of ATXN3-positive aggregates throughout several retinal layers and depletion of cones alongside the disease course. TEM analysis of aged Q84/Q84 mouse retinas supported the ATXN3 aggregation findings by revealing the presence of high number of negative electron dense puncta in ganglion cells, inner plexiform and inner nuclear layers, and showed further thinning of the outer plexiform layer, thickening of the retinal pigment epithelium and elongation of apical microvilli. Our results indicate that retinal alterations detected by non-invasive eye examination using OCT and ERG could represent a biological marker of disease progression and severity in patients with SCA3.