Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(9): 3508-3517, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30755520

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic disorder caused by loss of the protein dystrophin. In humans, DMD has early onset, causes developmental delays, muscle necrosis, loss of ambulation, and death. Current animal models have been challenged by their inability to model the early onset and severity of the disease. It remains unresolved whether increased sarcoplasmic calcium observed in dystrophic muscles follows or leads the mechanical insults caused by the muscle's disrupted contractile machinery. This knowledge has important implications for patients, as potential physiotherapeutic treatments may either help or exacerbate symptoms, depending on how dystrophic muscles differ from healthy ones. Recently we showed how burrowing dystrophic (dys-1) C. elegans recapitulate many salient phenotypes of DMD, including loss of mobility and muscle necrosis. Here, we report that dys-1 worms display early pathogenesis, including dysregulated sarcoplasmic calcium and increased lethality. Sarcoplasmic calcium dysregulation in dys-1 worms precedes overt structural phenotypes (e.g., mitochondrial, and contractile machinery damage) and can be mitigated by reducing calmodulin expression. To learn how dystrophic musculature responds to altered physical activity, we cultivated dys-1 animals in environments requiring high intensity or high frequency of muscle exertion during locomotion. We find that several muscular parameters (e.g., size) improve with increased activity. However, longevity in dystrophic animals was negatively associated with muscular exertion, regardless of effort duration. The high degree of phenotypic conservation between dystrophic worms and humans provides a unique opportunity to gain insight into the pathology of the disease as well as the initial assessment of potential treatment strategies.


Assuntos
Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Condicionamento Físico Animal , Esforço Físico/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos mdx , Contração Muscular/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/fisiopatologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatologia , Esforço Físico/genética
2.
Mol Biol Rep ; 48(12): 8033-8044, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34743271

RESUMO

BACKGROUND: The imbalance of vasoconstrictor and vasodilator axes of the renin-angiotensin system (RAS) is observed in hypertension. Exercise regulates RAS level and improves vascular function. This study focused on the contribution of RAS axes in vascular function of mesenteric arteries and exercise-induced DNA methylation of the Agtr1a (AT1aR) and Mas1 (MasR) genes in hypertension. METHODS: Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats were randomized into exercise or sedentary group. Levels of plasma RAS components, vascular tone, and DNA methylation markers were measured. RESULTS: Blood pressure of SHR was markedly reduced after 12 weeks of aerobic exercise. RAS peptides in plasma were all increased with an imbalanced upregulation of Ang II and Ang-(1-7) in SHR, exercise revised the level of RAS and increased Ang-(1-7)/Ang II. The vasoconstriction response induced by Ang II was mainly via type 1 receptors (AT1R), while this contraction was inhibited by Mas receptor (MasR). mRNA and protein of AT1R and MasR were both upregulated in SHR, whereas exercise significantly suppressed this imbalanced increase and increased MasR/AT1R ratio. Exercise hypermethylated Agtr1a and Mas1 genes, associating with increased DNMT1 and DNMT3b and SAM/SAH. CONCLUSIONS: Aerobic exercise ameliorates vascular function via hypermethylation of the Agtr1a and Mas1 genes and restores the vasoconstrictor and vasodilator axes balance.


Assuntos
Proto-Oncogene Mas/metabolismo , Hipertensão Arterial Pulmonar/terapia , Receptor Tipo 1 de Angiotensina/metabolismo , Angiotensina II/metabolismo , Animais , Artérias/metabolismo , Pressão Sanguínea/efeitos dos fármacos , DNA/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Hipertensão/metabolismo , Masculino , Artérias Mesentéricas/fisiologia , Óxido Nítrico/metabolismo , Condicionamento Físico Animal/métodos , Esforço Físico/genética , Esforço Físico/fisiologia , Hipertensão Arterial Pulmonar/fisiopatologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor Tipo 1 de Angiotensina/fisiologia , Sistema Renina-Angiotensina/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
3.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477427

RESUMO

Here we describe the effects of a controlled, 30 min, high-intensity cycling test on blood rheology and the metabolic profiles of red blood cells (RBCs) and plasma from well-trained males. RBCs demonstrated decreased deformability and trended toward increased generation of microparticles after the test. Meanwhile, metabolomics and lipidomics highlighted oxidative stress and activation of membrane lipid remodeling mechanisms in order to cope with altered properties of circulation resulting from physical exertion during the cycling test. Of note, intermediates from coenzyme A (CoA) synthesis for conjugation to fatty acyl chains, in parallel with reversible conversion of carnitine and acylcarnitines, emerged as metabolites that significantly correlate with RBC deformability and the generation of microparticles during exercise. Taken together, we propose that RBC membrane remodeling and repair plays an active role in the physiologic response to exercise by altering RBC properties.


Assuntos
Eritrócitos/metabolismo , Exercício Físico/fisiologia , Lipídeos de Membrana/sangue , Esforço Físico/genética , Adulto , Contagem de Eritrócitos , Deformação Eritrocítica/genética , Humanos , Lipidômica , Masculino , Metabolômica , Consumo de Oxigênio , Esforço Físico/fisiologia
4.
Behav Genet ; 49(1): 49-59, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30324246

RESUMO

Indirect genetic effects (IGEs; the heritable influence of one organism on a conspecific) can affect the evolutionary dynamics of complex traits, including behavior. Voluntary wheel running is an important model system in quantitative genetic studies of behavior, but the possibility of IGEs on wheel running and its components (time spent running and average running speed) has not been examined. Here, we analyze a dataset from a replicated selection experiment on wheel running (11,420 control and 26,575 selected mice measured over 78 generations) in which the standard measurement protocol allowed for the possibility of IGEs occurring through odors because mice were provided with clean cages attached to a clean wheel or a wheel previously occupied by another mouse for 6 days. Overall, mice ran less on previously occupied wheels than on clean wheels, and they ran significantly less when following a male than a female. Significant interactions indicated that the reduction in running was more pronounced for females than males and for mice from selected lines than control mice. Pedigree-based "animal model" analyses revealed significant IGEs for running distance (the trait under selection), with effect sizes considerably higher for the initial/exploratory phase (i.e., first two of six test days). Our results demonstrate that IGEs can occur in mice interacting through scent only, possibly because they attempt to avoid conspecifics.


Assuntos
Atividade Motora/genética , Esforço Físico/genética , Esforço Físico/fisiologia , Animais , Epigênese Genética/genética , Epigênese Genética/fisiologia , Feminino , Masculino , Camundongos , Atividade Motora/fisiologia , Odorantes , Fenótipo , Condicionamento Físico Animal/métodos , Corrida , Seleção Genética/fisiologia , Caracteres Sexuais , Olfato/fisiologia
5.
Nature ; 481(7382): 511-5, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22258505

RESUMO

Exercise has beneficial effects on human health, including protection against metabolic disorders such as diabetes. However, the cellular mechanisms underlying these effects are incompletely understood. The lysosomal degradation pathway, autophagy, is an intracellular recycling system that functions during basal conditions in organelle and protein quality control. During stress, increased levels of autophagy permit cells to adapt to changing nutritional and energy demands through protein catabolism. Moreover, in animal models, autophagy protects against diseases such as cancer, neurodegenerative disorders, infections, inflammatory diseases, ageing and insulin resistance. Here we show that acute exercise induces autophagy in skeletal and cardiac muscle of fed mice. To investigate the role of exercise-mediated autophagy in vivo, we generated mutant mice that show normal levels of basal autophagy but are deficient in stimulus (exercise- or starvation)-induced autophagy. These mice (termed BCL2 AAA mice) contain knock-in mutations in BCL2 phosphorylation sites (Thr69Ala, Ser70Ala and Ser84Ala) that prevent stimulus-induced disruption of the BCL2-beclin-1 complex and autophagy activation. BCL2 AAA mice show decreased endurance and altered glucose metabolism during acute exercise, as well as impaired chronic exercise-mediated protection against high-fat-diet-induced glucose intolerance. Thus, exercise induces autophagy, BCL2 is a crucial regulator of exercise- (and starvation)-induced autophagy in vivo, and autophagy induction may contribute to the beneficial metabolic effects of exercise.


Assuntos
Autofagia/fisiologia , Glucose/metabolismo , Homeostase , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Condicionamento Físico Animal/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Adiponectina/sangue , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína Beclina-1 , Células Cultivadas , Gorduras na Dieta/efeitos adversos , Privação de Alimentos/fisiologia , Técnicas de Introdução de Genes , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/prevenção & controle , Teste de Tolerância a Glucose , Homeostase/efeitos dos fármacos , Leptina/sangue , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Mutação , Miocárdio/citologia , Fosforilação/genética , Resistência Física/genética , Resistência Física/fisiologia , Esforço Físico/genética , Esforço Físico/fisiologia , Ligação Proteica/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2 , Corrida/fisiologia
6.
J Cell Physiol ; 231(2): 505-11, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26201683

RESUMO

Exercise is dependent on adequate oxygen supply for mitochondrial respiration in both cardiac and locomotor muscle. To determine whether skeletal myofiber VEGF is critical for regulating exercise capacity, independent of VEGF function in the heart, ablation of the VEGF gene was targeted to skeletal myofibers (skmVEGF-/-) during embryogenesis (∼ E9.5), leaving intact VEGF expression by all other cells in muscle. In adult mice, VEGF levels were decreased in the soleus (by 65%), plantaris (94%), gastrocnemius (74%), EDL (99%) and diaphragm (64%) (P < 0.0001, each muscle). VEGF levels were unchanged in the heart. Treadmill speed (WT 86 ± 4 cm/sec, skmVEGF-/- 70 ± 5 cm/sec, P = 0.006) and endurance (WT 78 ± 24 min, skmVEGF-/- 18 ± 4 min, P = 0.0004) were severely limited in skmVEGF-/- mice in contrast to minor effect of conditional skmVEGF gene deletion in the adult. Body weight was also reduced (WT 22.8 ± 1.6 g, skmVEGF-/-, 21.1 ± 1.5, P = 0.02), but the muscle mass/body weight ratio was unchanged. The capillary/fiber ratio was lower in skmVEGF-/- plantaris (WT 1.51 ± 0.12, skmVEGF-/- 1.16 ± 0.20, P = 0.01), gastrocnemius (WT 1.61 ± 0.08, skmVEGF-/- 1.39 ± 0.08, P = 0.01), EDL (WT 1.36 ± 0.07, skmVEGF-/- 1.14 ± 0.13, P = 0.03) and diaphragm (WT 1.39 ± 0.18, skmVEGF-/- 0.79 ± 0.16, P = 0.0001) but, not in soleus. Cardiac function (heart rate, maximal pressure, maximal dP/dt, minimal dP/dt,) in response to dobutamine was not impaired in anesthetized skmVEGF-/- mice. Isolated soleus and EDL fatigue times were 16% and 20% (P < 0.02) longer, respectively, in skmVEGF-/- mice than the WT group. These data suggest that skeletal myofiber VEGF expressed during development is necessary to establish capillary networks that allow maximal exercise capacity.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Esforço Físico/fisiologia , Fator A de Crescimento do Endotélio Vascular/deficiência , Animais , Capilares/crescimento & desenvolvimento , Capilares/fisiologia , Teste de Esforço , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Fadiga Muscular/genética , Fadiga Muscular/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiologia , Esforço Físico/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/fisiologia
7.
Am J Physiol Endocrinol Metab ; 308(10): E879-90, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25783895

RESUMO

Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme mediating triacylglycerol hydrolysis in virtually all cells, including adipocytes and skeletal myocytes, and hence, plays a critical role in mobilizing fatty acids. Global ATGL deficiency promotes skeletal myopathy and exercise intolerance in mice and humans, and yet the tissue-specific contributions to these phenotypes remain unknown. The goal of this study was to determine the relative contribution of ATGL-mediated triacylglycerol hydrolysis in adipocytes vs. skeletal myocytes to acute exercise performance. To achieve this goal, we generated murine models with adipocyte- and skeletal myocyte-specific targeted deletion of ATGL. We then subjected untrained mice to acute peak and submaximal exercise interventions and assessed exercise performance and energy substrate metabolism. Impaired ATGL-mediated lipolysis within adipocytes reduced peak and submaximal exercise performance, reduced peripheral energy substrate availability, shifted energy substrate preference toward carbohydrate oxidation, and decreased HSL Ser(660) phosphorylation and mitochondrial respiration within skeletal muscle. In contrast, impaired ATGL-mediated lipolysis within skeletal myocytes was not sufficient to reduce peak and submaximal exercise performance or peripheral energy substrate availability and instead tended to enhance metabolic flexibility during peak exercise. Furthermore, the expanded intramyocellular triacylglycerol pool in these mice was reduced following exercise in association with preserved HSL phosphorylation, suggesting that HSL may compensate for impaired ATGL action in skeletal muscle during exercise. These data suggest that adipocyte rather than skeletal myocyte ATGL-mediated lipolysis plays a greater role during acute exercise in part because of compensatory mechanisms that maintain lipolysis in muscle, but not adipose tissue, when ATGL is absent.


Assuntos
Adipócitos/metabolismo , Lipase/genética , Fibras Musculares Esqueléticas/metabolismo , Condicionamento Físico Animal/fisiologia , Esforço Físico/genética , Animais , Desempenho Atlético , Tolerância ao Exercício/genética , Feminino , Deleção de Genes , Lipase/metabolismo , Lipólise/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Biochem Biophys Res Commun ; 467(1): 103-8, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26408907

RESUMO

MicroRNAs (miRNAs) have been suggested to play critical roles in skeletal muscle in response to exercise. Previous study has shown that miR-761 was involved in a novel model regulating the mitochondrial network. However, its role in mitochondrial biogenesis remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-761 on mitochondrial biogenesis in skeletal muscle. Real-time quantitative PCR analysis demonstrated that aberrantly expressed miR-761 is involved in exercise activity and miR-761 is decreased by exercise training compared with the sedentary control mice. miR-761 suppresses mitochondrial biogenesis of C2C12 myocytes by targeting the 3'-UTR of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1α). Overexpression of miR-761 was capable of inhibiting the protein expression levels of PGC-1α. Moreover, miR-761 overexpression suppressed the p38 MAPK signaling pathway and down-regulated the expression of phosphorylated MAPK-activated protein kinase-2 (P-MK2), a downstream kinase of p38 MAPK. The phosphorylation of activating transcription factors 2 (ATF2) that plays a functional role in linking the activation of the p38 MAPK pathway to enhanced transcription of the PGC-1α was also inhibited by the overexpression of miR-761. These findings revealed a novel regulation mechanism for miR-761 in skeletal myocytes, and contributed to a better understanding of the modulation of skeletal muscle in response to exercise.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Esforço Físico/genética , Esforço Físico/fisiologia , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Regulação para Baixo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/genética
9.
Physiol Genomics ; 44(19): 948-55, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22911454

RESUMO

There are large interindividual differences in exercise capacity. It is well established that there is a genetic basis for these differences. However, the genetic factors underlying this variation are undefined. Therefore, the purpose of this study was to identify novel putative quantitative trait loci (QTL) for exercise capacity by measuring exercise capacity in inbred mice and performing genome-wide association mapping. Exercise capacity, defined as run time and work, was assessed in male mice (n = 6) from 34 strains of classical and wild-derived inbred mice performing a graded treadmill test. Genome-wide association mapping was performed with an efficient mixed-model association (EMMA) algorithm to identify QTL. Exercise capacity was significantly different across strains. Run time varied by 2.7-fold between the highest running strain (C58/J) and the lowest running strain (A/J). These same strains showed a 16.5-fold difference in work. Significant associations were identified for exercise time on chromosomes 1, 2, 7, 11, and 13. The QTL interval on chromosome 2 (~168 Mb) contains one gene, Nfatc2, and overlaps with a suggestive QTL for training responsiveness in humans. These results provide phenotype data on the widest range of inbred strains tested thus far and indicate that genetic background significantly influences exercise capacity. Furthermore, the novel QTLs identified in the current study provide new targets for investigating the underlying mechanisms for variation in exercise capacity.


Assuntos
Resistência Física/genética , Esforço Físico/genética , Locos de Características Quantitativas/genética , Análise de Variância , Animais , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Camundongos Endogâmicos , Polimorfismo de Nucleotídeo Único/genética
10.
Eur J Appl Physiol ; 112(1): 183-92, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21516340

RESUMO

Physical training induces beneficial adaptations, but exhausting exercise increases reactive oxygen species, which can cause muscular injuries with consequent inflammatory processes, implying jeopardized performance and possibly overtraining. Acute strenuous exercise almost certainly exceeds the benefits of physical activity; it can compromise performance and may contribute to increased future risk of cardiovascular disease (CVD) in athletes. Polymorphisms in the muscle-type creatine kinase (CK-MM) gene may influence performance and adaptation to training, while many potentially significant genetic variants are reported as risk factors for CVD. Therefore, we investigated the influence of polymorphisms in CK-MM TaqI and NcoI, methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) and C-reactive protein (CRP G1059C) genes on exercise-induced damage and inflammation markers. Blood samples were taken immediately after a race (of at least 4 km) that took place outdoors on flat tracks, and were submitted to genotyping and biochemical evaluation of aspartate aminotransferase (AST), CK, CRP and high-sensitivity CRP (hs-CRP). CK-MM TaqI polymorphism significantly influenced results of AST, CK and hs-CRP, and an association between MTHFR C677T and A1298C with CRP level was found, although these levels did not exceed reference values. Results indicate that these polymorphisms can indirectly influence performance, contribute to higher susceptibility to exercise-induced inflammation or protection against it, and perhaps affect future risks of CVD in athletes.


Assuntos
Proteína C-Reativa/genética , Creatina Quinase Forma MM/genética , Exercício Físico/fisiologia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Esforço Físico/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Creatina Quinase Forma MM/sangue , Feminino , Humanos , Masculino , Metilenotetra-Hidrofolato Desidrogenase (NADP)/sangue , Pessoa de Meia-Idade , Corrida/fisiologia , Adulto Jovem
11.
BMC Cardiovasc Disord ; 11: 71, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22136292

RESUMO

BACKGROUND: The absence of the I allele of the angiotensin converting enzyme (ACE) gene has been associated with higher levels of circulating ACE, lower nitric oxide (NO) release and hypertension. The purposes of this study were to analyze the post-exercise salivary nitrite (NO2-) and blood pressure (BP) responses to different exercise intensities in elderly women divided according to their ACE genotype. METHODS: Participants (n = 30; II/ID = 20 and DD = 10) underwent three experimental sessions: incremental test - IT (15 watts workload increase/3 min) until exhaustion; 20 min exercise 90% anaerobic threshold (90% AT); and 20 min control session without exercise. Volunteers had their BP and NO2- measured before and after experimental sessions. RESULTS: Despite both intensities showed protective effect on preventing the increase of BP during post-exercise recovery compared to control, post-exercise hypotension and increased NO2- release was observed only for carriers of the I allele (p < 0.05). CONCLUSION: Genotypes of the ACE gene may exert a role in post-exercise NO release and BP response.


Assuntos
Exercício Físico/fisiologia , Genótipo , Hipertensão/genética , Óxido Nítrico/metabolismo , Peptidil Dipeptidase A/genética , Esforço Físico/genética , Idoso , Alelos , Pressão Sanguínea/genética , Teste de Esforço/métodos , Feminino , Humanos , Hipertensão/enzimologia , Hipertensão/terapia , Pessoa de Meia-Idade , Nitritos/análise , Saliva/química , Fatores de Tempo
12.
J Sports Med Phys Fitness ; 51(4): 683-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22212273

RESUMO

AIM: Peroxisomal proliferator-activated receptor gamma co-activator-1 alpha (PGC-1α) plays a role not only as an activator of mitochondrial biogenesis, but also as a suppressor of inflammatory cytokines, which induce chronic diseases. Therefore, increasing PGC-1α expression can be one of the important factors for preventing chronic diseases. PGC-1α expression is activated by adenosine monophosphate-activated protein kinase (AMPK) and cAMP dependent kinase. The activity of these enzymes depends on the exercise intensity. Therefore, this study compared the effects of two different exercise intensities (above lactate threshold (LT) and below LT) with an equal amount of energy expenditure on PGC-1α gene expression in human skeletal muscle. METHODS: Six young men participated in this study. They performed exercise at 120% and 80% LT intensity. The duration of the 120% LT exercise was 60 minutes and the duration of the session performed at 80% LT was calculated to yield equal energy expenditure as the 120% LT intensity exercise. Skeletal muscle was obtained after 1 hour of exercise. RESULTS: The working rate, % peak VO2 and HR during exercise were significantly higher in at 120% LT than at 80% LT. PGC-1α gene expression was not significantly different between control (0.087; 0.026-0.284 (the median; inter quartile range)) and 80% LT (0.171; 0.030-0.484). However, PGC-1α gene expression after 120% LT (0.441; 0.121-4.643) was significantly higher than in the control. CONCLUSION: The findings of this study suggest that PGC-1α gene expression depends on exercise intensity.


Assuntos
Limiar Anaeróbio , Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiologia , Músculo Esquelético/fisiologia , Esforço Físico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Adulto , Metabolismo Energético , Teste de Esforço , Frequência Cardíaca , Humanos , Masculino , Consumo de Oxigênio , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Esforço Físico/fisiologia , Adulto Jovem
13.
Life Sci ; 240: 117107, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785241

RESUMO

BACKGROUND: Toll-like receptor 4 (Tlr4) is recognized due to its role in the immune response. Also, this protein can participate in the signaling pathway of events triggered by physical exercise such as apoptosis, inflammation, and endoplasmic reticulum (ER) stress. The main objective of this study was to evaluate the role of Tlr4 in the markers of these events in the myocardium of mice submitted to acute physical exercise (APE) protocols at different intensities. METHODS: Echocardiogram, RT-qPCR, and immunoblotting technique were used to evaluate the left ventricle of wild-type (WT) and Tlr4 knockout (Tlr4 KO) submitted to APE protocols at 45, 60, and 75% of their maximal velocity. Also, we performed the bioinformatics analysis to establish the connection of heart mRNA levels of Tlr4 with heart genes of inflammation and ER stress of several isogenic strains of BXD mice. RESULTS: Under basal conditions, the Tlr4 deletion diminished the performance, and expression of inflammation and ER stress genes in the left ventricle, but increased the serum levels of CK, Il-17, and Tnf-alpha. Under the same exercise conditions, the Tlr4 deletion reduced the glycemia, serum levels of CK, Il-17, and Tnf-alpha, as well as genes and/or proteins related to apoptosis, inflammation and ER stress in the left ventricle, but increased the levels of CK-mb and LDH, as well as other genes related to apoptosis, inflammation, and ER stress in the left ventricle. CONCLUSION: Altogether, the current findings highlighted the effects of different acute exercise intensities were attenuated in the heart of Tlr4 KO mice.


Assuntos
Apoptose/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Coração/fisiologia , Inflamação , Esforço Físico/fisiologia , Receptor 4 Toll-Like/fisiologia , Animais , Apoptose/genética , Biologia Computacional , Creatina Quinase/sangue , Ecocardiografia , Estresse do Retículo Endoplasmático/genética , Coração/diagnóstico por imagem , Interleucina-17/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esforço Físico/genética , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/sangue
14.
PLoS One ; 15(1): e0227993, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31990927

RESUMO

OBJECTIVES: The regulatory mechanisms affecting the modulation of the immune system accompanying the progressive effort to exhaustion, particularly associated with T cells, are not fully understood. We analysed the impact of two progressive effort protocols on T helper (Th) cell distribution and selected cytokines. METHODS: Sixty-two male soccer players with a median age of 17 (16-29) years performed different protocols for progressive exercise until exhaustion: YO-YO (YYRL1) and Beep. Blood samples for all analyses were taken three times: at baseline, post-effort, and in recovery. RESULTS: The percentage of Th1 cells increased post-effort and in recovery. The post-effort percentage of Th1 cells was higher in the Beep group compared to the YYRL1 group. Significant post-effort increase in Th17 cells was observed in both groups. The post-effort percentage of regulatory T cells (Treg) increased in the Beep group. An increased post-effort concentration of IL-2, IL-6, IL-8 and IFN-γ in both groups was observed. Post-effort TNF-α and IL-10 levels were higher than baseline in the YYRL1 group, while the post-effort IL-17A concentration was lower than baseline only in the Beep group. The recovery IL-2, IL-4, TNF-α and IFN-γ levels were higher than baseline in the YYRL1 group. The recovery IL-4, IL-6, IL-8, TNF-α and IFN-γ values were higher than baseline in the Beep group. CONCLUSION: The molecular patterns related to cytokine secretion are not the same between different protocols for progressive effort. It seems that Treg cells are probably the key cells responsible for silencing the inflammation and enhancing anti-inflammatory pathways.


Assuntos
Esforço Físico/imunologia , Futebol/fisiologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Adolescente , Adulto , Atletas , Expressão Gênica/imunologia , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Masculino , Esforço Físico/genética , Recuperação de Função Fisiológica/imunologia , Linfócitos T Reguladores/citologia , Células Th1/citologia , Células Th17/citologia , Células Th2/citologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
15.
Nat Hum Behav ; 3(1): 48-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932047

RESUMO

Millions of people now access personal genetic risk estimates for diseases such as Alzheimer's, cancer and obesity1. While this information can be informative2-4, research on placebo and nocebo effects5-8 suggests that learning of one's genetic risk may evoke physiological changes consistent with the expected risk profile. Here we tested whether merely learning of one's genetic risk for disease alters one's actual risk by making people more likely to exhibit the expected changes in gene-related physiology, behaviour and subjective experience. Individuals were genotyped for actual genetic risk and then randomly assigned to receive either a 'high-risk' or 'protected' genetic test result for obesity via cardiorespiratory exercise capacity (experiment 1, N = 116) or physiological satiety (experiment 2, N = 107) before engaging in a task in which genetic risk was salient. Merely receiving genetic risk information changed individuals' cardiorespiratory physiology, perceived exertion and running endurance during exercise, and changed satiety physiology and perceived fullness after food consumption in a self-fulfilling manner. Effects of perceived genetic risk on outcomes were sometimes greater than the effects associated with actual genetic risk. If simply conveying genetic risk information can alter actual risk, clinicians and ethicists should wrestle with appropriate thresholds for when revealing genetic risk is warranted.


Assuntos
Aptidão Cardiorrespiratória/fisiologia , Tolerância ao Exercício/fisiologia , Predisposição Genética para Doença/psicologia , Testes Genéticos , Obesidade , Esforço Físico/fisiologia , Adulto , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Aptidão Cardiorrespiratória/psicologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Teste de Esforço , Tolerância ao Exercício/genética , Feminino , Humanos , Masculino , Obesidade/genética , Obesidade/fisiopatologia , Obesidade/psicologia , Esforço Físico/genética , Risco , Adulto Jovem
16.
Free Radic Res ; 53(5): 522-534, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31117828

RESUMO

Physical activity, particularly that, exerted by endurance athletes, impacts the immune status of the human body. Prolonged duration and high-intensity endurance training lead to increased production of reactive oxygen species (ROS) and thereby to oxidative stress. Military combat swimmers (O2-divers) are regularly exposed to hyperbaric hyperoxia (HBO) in addition to intensive endurance training intervals. They are, therefore, exposed to extreme levels of oxidative stress. Several studies support that the intensity of oxidative stress essentially determines the effect on immune status. The aim of this study was to comparatively characterise peripheral blood mononuclear cells (PBMCs) of O2-divers (military combat swimmers), endurance athletes (amateur triathletes), and healthy control volunteers with respect to DNA fragmentation, immune status and signs of inflammation. Furthermore, it was investigated how PBMCs from these groups responded acutely to exposure to HBO. We showed that DNA fragmentation was comparable in PBMCs of all three groups under basal conditions directly after HBO exposure. However, significantly higher DNA fragmentation was observed in O2-divers 18 hours after HBO, possibly indicating a slower recovery. O2-divers also exhibited a proinflammatory immune status exemplified by an elevated number of CD4+CD25+ T cells, elevated expression of proinflammatory cytokine IL-12, and diminished expression of anti-inflammatory TGF-ß1 compared to controls. Supported by a decreased basal gene expression and prolonged upregulation of anti-oxidative HO-1, these data suggest that higher oxidative stress levels, as present under intermitted hyperbaric hyperoxia, e.g. through oxygen diving, promote a higher inflammatory immune status than oxidative stress through endurance training alone.


Assuntos
Atletas , Mergulho/fisiologia , Hiperóxia/imunologia , Imunidade Inata/efeitos dos fármacos , Oxigênio/farmacologia , Resistência Física/imunologia , Adulto , Estudos de Casos e Controles , Ensaio Cometa , Fragmentação do DNA , Regulação da Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/imunologia , Humanos , Oxigenoterapia Hiperbárica/métodos , Hiperóxia/genética , Hiperóxia/fisiopatologia , Inflamação , Interleucina-12/genética , Interleucina-12/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/imunologia , Oxigênio/imunologia , Resistência Física/genética , Esforço Físico/genética , Esforço Físico/imunologia , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/imunologia
17.
Genes Brain Behav ; 16(3): 328-341, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27749013

RESUMO

Although exercise is critical for health, many lack the motivation to exercise, and it is unclear how motivation might be increased. To uncover the molecular underpinnings of increased motivation for exercise, we analyzed the transcriptome of the striatum in four mouse lines selectively bred for high voluntary wheel running and four non-selected control lines. The striatum was dissected and RNA was extracted and sequenced from four individuals of each line. We found multiple genes and gene systems with strong relationships to both selection and running history over the previous 6 days. Among these genes were Htr1b, a serotonin receptor subunit and Slc38a2, a marker for both glutamatergic and γ-aminobutyric acid (GABA)-ergic signaling. System analysis of the raw results found enrichment of transcriptional regulation and kinase genes. Further, we identified a splice variant affecting the Wnt-related Golgi signaling gene Tmed5. Using coexpression network analysis, we found a cluster of interrelated coexpression modules with relationships to running behavior. From these modules, we built a network correlated with running that predicts a mechanistic relationship between transcriptional regulation by nucleosome structure and Htr1b expression. The Library of Integrated Network-Based Cellular Signatures identified the protein kinase C δ inhibitor, rottlerin, the tyrosine kinase inhibitor, Linifanib and the delta-opioid receptor antagonist 7-benzylidenenaltrexone as potential compounds for increasing the motivation to run. Taken together, our findings support a neurobiological framework of exercise motivation where chromatin state leads to differences in dopamine signaling through modulation of both the primary neurotransmitters glutamate and GABA, and by neuromodulators such as serotonin.


Assuntos
Cromatina/genética , Corpo Estriado/fisiologia , Motivação/genética , Atividade Motora/genética , Esforço Físico/genética , Receptores de Amina Biogênica/genética , Corrida/fisiologia , Animais , Monoaminas Biogênicas/metabolismo , Cromatina/metabolismo , Corpo Estriado/metabolismo , Dopamina/genética , Dopamina/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , RNA não Traduzido/genética , Receptor 5-HT1B de Serotonina/biossíntese , Receptor 5-HT1B de Serotonina/genética , Receptores de Amina Biogênica/biossíntese , Seleção Genética , Transcriptoma
18.
Heart Rhythm ; 13(1): 199-207, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26321091

RESUMO

BACKGROUND: Endurance exercise is associated with adverse outcomes in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). Exercise recommendations for family members remain undetermined. OBJECTIVE: The purposes of this study were to determine if (1) endurance exercise (Bethesda class C) and exercise intensity (metabolic equivalent hours per year [MET-Hr/year]) increase the likelihood of fulfilling 2010 Task Force Criteria and ventricular arrhythmias/implantable cardioverter-defibrillator shock (ventricular tachycardia/ventricular fibrillation [VT/VF]), and (2) exercise restriction to the American Heart Association (AHA)-recommended minimum for healthy adults is associated with favorable outcomes of at-risk family members. METHODS: Twenty-eight family members of 10 probands inheriting a PKP2 mutation were interviewed about exercise from age 10. Exercise threshold to maintain overall health was based on the 2007 AHA guidelines of a minimum 390 to 650 MET-Hr/year. RESULTS: After adjustment for age, sex, and family membership, both participation in endurance athletics (odds ratio [OR] 7.4, P = .03) and higher-intensity exercise (OR = 4.2, P = .004) were associated with diagnosis (n = 13). Endurance athletes were also significantly more likely to develop VT/VF (n = 6, P = .02). Family members who restricted exercise at or below the upper bound of the AHA goal (≤650 MET-Hr/year) were significantly less likely to be diagnosed (OR = 0.07, P = .002) and had no VT/VF. At diagnosis and first VT/VF, family members had accumulated 2.8-fold (P = .002) and 3.5-fold (P = .03), respectively, greater MET-Hr exercise than the AHA-recommended minimum. Those who developed VT/VF had performed particularly high-intensity exercise in adolescence compared to unaffected family members (age 10-14: P = .04; age 14-19: P = .02). CONCLUSION: The results of this study suggest restricting unaffected desmosomal mutation carriers from endurance and high-intensity athletics but potentially not from AHA-recommended minimum levels of exercise for healthy adults.


Assuntos
Displasia Arritmogênica Ventricular Direita , Desmossomos/genética , Exercício Físico/fisiologia , Resistência Física/fisiologia , Placofilinas/genética , Taquicardia Ventricular , Adulto , American Heart Association , Displasia Arritmogênica Ventricular Direita/complicações , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/fisiopatologia , Família , Feminino , Heterozigoto , Humanos , Funções Verossimilhança , Masculino , Pessoa de Meia-Idade , Esforço Físico/genética , Serviços Preventivos de Saúde/métodos , Medição de Risco/métodos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/prevenção & controle , Estados Unidos
19.
Genes Brain Behav ; 15(5): 474-90, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27063791

RESUMO

Hedonic substitution, where wheel running reduces voluntary ethanol consumption, has been observed in prior studies. Here, we replicate and expand on previous work showing that mice decrease voluntary ethanol consumption and preference when given access to a running wheel. While earlier work has been limited mainly to behavioral studies, here we assess the underlying molecular mechanisms that may account for this interaction. From four groups of female C57BL/6J mice (control, access to two-bottle choice ethanol, access to a running wheel, and access to both two-bottle choice ethanol and a running wheel), mRNA-sequencing of the striatum identified differential gene expression. Many genes in ethanol preference quantitative trait loci were differentially expressed due to running. Furthermore, we conducted Weighted Gene Co-expression Network Analysis and identified gene networks corresponding to each effect behavioral group. Candidate genes for mediating the behavioral interaction between ethanol consumption and wheel running include multiple potassium channel genes, Oprm1, Prkcg, Stxbp1, Crhr1, Gabra3, Slc6a13, Stx1b, Pomc, Rassf5 and Camta2. After observing an overlap of many genes and functional groups previously identified in studies of initial sensitivity to ethanol, we hypothesized that wheel running may induce a change in sensitivity, thereby affecting ethanol consumption. A behavioral study examining Loss of Righting Reflex to ethanol following exercise trended toward supporting this hypothesis. These data provide a rich resource for future studies that may better characterize the observed transcriptional changes in gene networks in response to ethanol consumption and wheel running.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Corpo Estriado/metabolismo , Redes Reguladoras de Genes , Esforço Físico/genética , Transcriptoma , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Ligação a Calmodulina/metabolismo , Corpo Estriado/fisiologia , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Corrida , Sintaxina 1/genética , Sintaxina 1/metabolismo , Transativadores/metabolismo
20.
PLoS One ; 10(12): e0145741, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26710100

RESUMO

Genetic factors determining exercise capacity and the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with exercise training in mice. Based on marked differences in training responses in inbred NZW (-0.65 ± 1.73 min) and 129S1 (6.18 ± 3.81 min) mice, a reciprocal intercross breeding scheme was used to generate 285 F2 mice. All F2 mice completed an exercise performance test before and after a 4-week treadmill running program, resulting in an increase in exercise capacity of 1.54 ± 3.69 min (range = -10 to +12 min). Genome-wide linkage scans were performed for pre-training, post-training, and change in run time. For pre-training exercise time, suggestive QTL were identified on Chromosomes 5 (57.4 cM, 2.5 LOD) and 6 (47.8 cM, 2.9 LOD). A significant QTL for post-training exercise capacity was identified on Chromosome 5 (43.4 cM, 4.1 LOD) and a suggestive QTL on Chromosomes 1 (55.7 cM, 2.3 LOD) and 8 (66.1 cM, 2.2 LOD). A suggestive QTL for the change in run time was identified on Chromosome 6 (37.8 cM, 2.7 LOD). To identify shared QTL, this data set was combined with data from a previous F2 cross between B6 and FVB strains. In the combined cross analysis, significant novel QTL for pre-training exercise time and change in exercise time were identified on Chromosome 12 (54.0 cM, 3.6 LOD) and Chromosome 6 (28.0 cM, 3.7 LOD), respectively. Collectively, these data suggest that combined cross analysis can be used to identify novel QTL and narrow the confidence interval of QTL for exercise capacity and responses to training. Furthermore, these data support the use of larger and more diverse mapping populations to identify the genetic basis for exercise capacity and responses to training.


Assuntos
Condicionamento Físico Animal/fisiologia , Esforço Físico/genética , Animais , Mapeamento Cromossômico , Cruzamentos Genéticos , Feminino , Genótipo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos , Locos de Características Quantitativas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA