Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Pathog ; 20(7): e1012382, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38991025

RESUMO

Liposomal amphotericin B is an important frontline drug for the treatment of visceral leishmaniasis, a neglected disease of poverty. The mechanism of action of amphotericin B (AmB) is thought to involve interaction with ergosterol and other ergostane sterols, resulting in disruption of the integrity and key functions of the plasma membrane. Emergence of clinically refractory isolates of Leishmania donovani and L. infantum is an ongoing issue and knowledge of potential resistance mechanisms can help to alleviate this problem. Here we report the characterisation of four independently selected L. donovani clones that are resistant to AmB. Whole genome sequencing revealed that in three of the moderately resistant clones, resistance was due solely to the deletion of a gene encoding C24-sterol methyltransferase (SMT1). The fourth, hyper-resistant resistant clone (>60-fold) was found to have a 24 bp deletion in both alleles of a gene encoding a putative cytochrome P450 reductase (P450R1). Metabolic profiling indicated these parasites were virtually devoid of ergosterol (0.2% versus 18% of total sterols in wild-type) and had a marked accumulation of 14-methylfecosterol (75% versus 0.1% of total sterols in wild-type) and other 14-alpha methylcholestanes. These are substrates for sterol 14-alpha demethylase (CYP51) suggesting that this enzyme may be a bona fide P450R specifically involved in electron transfer from NADPH to CYP51 during catalysis. Deletion of P450R1 in wild-type cells phenocopied the metabolic changes observed in our AmB hyper-resistant clone as well as in CYP51 nulls. Likewise, addition of a wild type P450R1 gene restored sterol profiles to wild type. Our studies indicate that P450R1 is essential for L. donovani amastigote viability, thus loss of this gene is unlikely to be a driver of clinical resistance. Nevertheless, investigating the mechanisms underpinning AmB resistance in these cells provided insights that refine our understanding of the L. donovani sterol biosynthetic pathway.


Assuntos
Resistência a Medicamentos , Leishmania donovani , Leishmaniose Visceral , Esterol 14-Desmetilase , Leishmania donovani/enzimologia , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/genética , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Anfotericina B/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , NADPH-Ferri-Hemoproteína Redutase/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Antiprotozoários/farmacologia , Humanos , Ergosterol/metabolismo
2.
Med Mycol ; 62(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38734886

RESUMO

Despite previous reports on the emergence of Malassezia pachydermatis strains with decreased susceptibility to azoles, there is limited information on the actual prevalence and genetic diversity of azole-resistant isolates of this yeast species. We assessed the prevalence of azole resistance in M. pachydermatis isolates from cases of dog otitis or skin disease attended in a veterinary teaching hospital during a 2-year period and analyzed the ERG11 (encoding a lanosterol 14-α demethylase, the primary target of azoles) and whole genome sequence diversity of a group of isolates that displayed reduced azole susceptibility. Susceptibility testing of 89 M. pachydermatis isolates from 54 clinical episodes (1-6 isolates/episode) revealed low minimum inhibitory concentrations (MICs) to most azoles and other antifungals, but 11 isolates from six different episodes (i.e., 12.4% of isolates and 11.1% of episodes) had decreased susceptibility to multiple azoles (fluconazole, itraconazole, ketoconazole, posaconazole, ravuconazole, and/or voriconazole). ERG11 sequencing of these 11 azole-resistant isolates identified eight DNA sequence profiles, most of which contained amino acid substitutions also found in some azole-susceptible isolates. Analysis of whole genome sequencing (WGS) results revealed that the azole-resistant isolates from the same episode of otitis, or even different episodes affecting the same animal, were more genetically related to each other than to isolates from other dogs. In conclusion, our results confirmed the remarkable ERG11 sequence variability in M. pachydermatis isolates of animal origin observed in previous studies and demonstrated the value of WGS for disentangling the epidemiology of this yeast species.


We analyzed the prevalence and diversity of azole-resistant Malassezia pachydermatis isolates in a veterinary hospital. A low prevalence of multi-azole resistance (c.10% of isolates and cases) was found. Whole genome and ERG11 sequencing of resistant isolates revealed remarkable genetic diversity.


Assuntos
Antifúngicos , Azóis , Doenças do Cão , Farmacorresistência Fúngica , Variação Genética , Malassezia , Testes de Sensibilidade Microbiana , Cães , Animais , Malassezia/genética , Malassezia/efeitos dos fármacos , Malassezia/isolamento & purificação , Malassezia/classificação , Azóis/farmacologia , Doenças do Cão/microbiologia , Doenças do Cão/epidemiologia , Antifúngicos/farmacologia , Prevalência , Otite/microbiologia , Otite/epidemiologia , Otite/veterinária , Dermatite/microbiologia , Dermatite/veterinária , Dermatite/epidemiologia , Dermatomicoses/microbiologia , Dermatomicoses/veterinária , Dermatomicoses/epidemiologia , Sequenciamento Completo do Genoma , Esterol 14-Desmetilase/genética
3.
Parasitol Res ; 123(6): 248, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904688

RESUMO

Sterol 14-demethylase (CYP51) inhibitors, encompassing new chemical entities and repurposed drugs, have emerged as promising candidates for Chagas disease treatment, based on preclinical studies reporting anti-Trypanosoma cruzi activity. Triazoles like ravuconazole (RAV) and posaconazole (POS) progressed to clinical trials. Unexpectedly, their efficacy was transient in chronic Chagas disease patients, and their activity was not superior to benznidazole (BZ) treatment. This paper aims to summarize evidence on the global activity of CYP51 inhibitors against T. cruzi by applying systematic review strategies, risk of bias assessment, and meta-analysis from in vivo studies. PubMed and Embase databases were searched for original articles, obtaining fifty-six relevant papers meeting inclusion criteria. Characteristics of animal models, parasite strain, treatment schemes, and cure rates were extracted. Primary outcomes such as maximum parasitaemia values, survival, and parasitological cure were recorded for meta-analysis, when possible. The risk of bias was uncertain in most studies. Animals treated with itraconazole, RAV, or POS survived significantly longer than the infected non-treated groups (RR = 4.85 [3.62, 6.49], P < 0.00001), and they showed no differences with animals treated with positive control drugs (RR = 1.01 [0.98, 1.04], P = 0.54). Furthermore, the overall analysis showed that RAV or POS was not likely to achieve parasitological cure when compared with BZ or NFX treatment (OD = 0.49 [0.31, 0.77], P = 0.002). This systematic review contributes to understanding why the azoles had failed in clinical trials and, more importantly, how to improve the animal models of T. cruzi infection by filling the gaps between basic, translational, and clinical research.


Assuntos
Inibidores de 14-alfa Desmetilase , Doença de Chagas , Modelos Animais de Doenças , Trypanosoma cruzi , Animais , Humanos , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Esterol 14-Desmetilase/metabolismo , Tiazóis , Resultado do Tratamento , Triazóis/uso terapêutico , Triazóis/farmacologia , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos
4.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675696

RESUMO

The present study aimed to evaluate the leishmanicidal potential of the essential oil (EO) of Micromeria (M.) nervosa and to investigate its molecular mechanism of action by qPCR. Furthermore, in silicointeraction study of the major M. nervosa EO compounds with the enzyme cytochrome P450 sterol 14α-demethylase (CYP51) was also performed. M. nervosa EO was analyzed by gas chromatography-mass spectrometry (GC-MS). Results showed that α-pinene (26.44%), t-cadinol (26.27%), caryophyllene Oxide (7.73 ± 1.04%), and α-Cadinene (3.79 ± 0.12%) are the major compounds of M. nervosa EO. However, limited antioxidant activity was observed, as this EO was ineffective in neutralizing DPPH free radicals and in inhibiting ß-carotene bleaching. Interestingly, it displayed effective leishmanicidal potential against promastigote (IC50 of 6.79 and 5.25 µg/mL) and amastigote (IC50 of 8.04 and 7.32 µg/mL) forms of leishmania (L.) infantum and L. major, respectively. Molecular mechanism investigation showed that M. nervosa EO displayed potent inhibition on the thiol regulatory pathway. Furthermore, a docking study of the main components of the EO with cytochrome P450 sterol 14α-demethylase (CYP51) enzyme revealed that t-cadinol exhibited the best binding energy values (-7.5 kcal/mol), followed by α-cadinene (-7.3 kcal/mol) and caryophyllene oxide (-7 kcal/mol). These values were notably higher than that of the conventional drug fluconazole showing weaker binding energy (-6.9 kcal/mol). These results suggest that M. nervosa EO could serve as a potent and promising candidate for the development of alternative antileishmanial agent in the treatment of leishmaniasis.


Assuntos
Antiprotozoários , Simulação de Acoplamento Molecular , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antiprotozoários/farmacologia , Antiprotozoários/química , Antioxidantes/farmacologia , Antioxidantes/química , Cromatografia Gasosa-Espectrometria de Massas , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/química , Simulação por Computador , Leishmania/efeitos dos fármacos , Leishmania/enzimologia , Monoterpenos Bicíclicos/farmacologia , Monoterpenos Bicíclicos/química
5.
J Agric Food Chem ; 72(15): 8444-8459, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574108

RESUMO

Cytochrome P450 sterol 14α-demethylase (CYP51) is a key enzyme involved in the sterol biosynthesis pathway and serves as a target for sterol demethylation inhibitors (DMIs). In this study, the 3D structures of three CPY51 paralogues from Calonectria ilicicola (C. ilicicola) were first modeled by AlphaFold2, and molecular docking results showed that CiCYP51A, CiCYP51B, or CiCYP51C proteins individually possessed two active pockets that interacted with DMIs. Our results showed that the three paralogues play important roles in development, pathogenicity, and sensitivity to DMI fungicides. Specifically, CiCYP51A primarily contributed to cell wall integrity maintenance and tolerance to abiotic stresses, and CiCYP51B was implicated in sexual reproduction and virulence, while CiCYP51C exerted negative regulatory effects on sterol 14α-demethylase activity within the ergosterol biosynthetic pathway, revealing its genus-specific function in C. ilicicola. These findings provide valuable insights into developing rational strategies for controlling soybean red crown rot caused by C. ilicicola.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hypocreales , Lanosterol , Lanosterol/metabolismo , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Esteróis , Esterol 14-Desmetilase/química
6.
Int J Biol Macromol ; 269(Pt 1): 132034, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702006

RESUMO

Parthenium hysterophorus plant has a diverse chemical profile and immense bioactive potential. It exhibits excellent pharmacological properties such as anti-cancer, anti-inflammatory, anti-malarial, microbicidal, and anti-trypanosomal. The present study aims to evaluate the anti-leishmanial potential and toxicological safety of anhydroparthenin isolated from P. hysterophorus. Anydroparthenin was extracted from the leaves of P. hysterophorus and characterized through detailed analysis of 1H, 13C NMR, and HRMS. Dye-based in vitro and ex vivo assays confirmed that anhydroparthenin significantly inhibited both promastigote and amastigote forms of the Leishmania donovani parasites. Both the cytotoxicity experiment and hemolytic assay revealed its non-toxic nature and safety index in the range of 10 to 15. Further, various mechanistic assays suggested that anhydroparthenin led to the generation of oxidative stress, intracellular ATP depletion, alterations in morphology and mitochondrial membrane potential, formation of intracellular lipid bodies, and acidic vesicles, ultimately leading to parasite death. As a dual targeting approach, computational studies and sterol quantification assays confirmed that anhydroparthenin inhibits the Sterol C-24 methyl transferase and Sterol 14-α demethylase proteins involved in the ergosterol biosynthesis in Leishmania parasites. These results suggest that anhydroparthenin could be a promising anti-leishmanial molecule and can be developed as a novel therapeutic stratagem against leishmaniasis.


Assuntos
Leishmania donovani , Metiltransferases , Esterol 14-Desmetilase , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/enzimologia , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/química , Metiltransferases/metabolismo , Metiltransferases/antagonistas & inibidores , Antiprotozoários/farmacologia , Antiprotozoários/química , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação por Computador , Animais , Humanos
7.
J Med Chem ; 67(9): 7443-7457, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38683753

RESUMO

Acanthamoeba are free-living pathogenic protozoa that cause blinding keratitis, disseminated infection, and granulomatous amebic encephalitis, which is generally fatal. The development of efficient and safe drugs is a critical unmet need. Acanthamoeba sterol 14α-demethylase (CYP51) is an essential enzyme of the sterol biosynthetic pathway. Repurposing antifungal azoles for amoebic infections has been reported, but their inhibitory effects on Acanthamoeba CYP51 enzymatic activity have not been studied. Here, we report catalytic properties, inhibition, and structural characterization of CYP51 from Acanthamoeba castellanii. The enzyme displays a 100-fold substrate preference for obtusifoliol over lanosterol, supporting the plant-like cycloartenol-based pathway in the pathogen. The strongest inhibition was observed with voriconazole (1 h IC50 0.45 µM), VT1598 (0.25 µM), and VT1161 (0.20 µM). The crystal structures of A. castellanii CYP51 with bound VT1161 (2.24 Å) and without an inhibitor (1.95 Å), presented here, can be used in the development of azole-based scaffolds to achieve optimal amoebicidal effectiveness.


Assuntos
Inibidores de 14-alfa Desmetilase , Esterol 14-Desmetilase , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/química , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/química , Inibidores de 14-alfa Desmetilase/síntese química , Relação Estrutura-Atividade , Acanthamoeba/enzimologia , Acanthamoeba/efeitos dos fármacos , Acanthamoeba castellanii/enzimologia , Acanthamoeba castellanii/efeitos dos fármacos , Cristalografia por Raios X , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Modelos Moleculares , Estrutura Molecular
8.
J Med Chem ; 67(10): 7954-7972, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38703119

RESUMO

To discover potential sterol 14α-demethylase (CYP51) inhibitors, thirty-four unreported 4H-pyrano[3,2-c]pyridine derivatives were designed and synthesized. The assay results indicated that most compounds displayed significant fungicidal activity against Sclerotinia sclerotiorum, Colletotrichum lagenarium, Botrytis cinerea, Penicillium digitatum, and Fusarium oxysporum at 16 µg/mL. The half maximal effective concentration (EC50) values of compounds 7a, 7b, and 7f against B. cinerea were 0.326, 0.530, and 0.610, respectively. Namely, they had better antifungal activity than epoxiconazole (EC50 = 0.670 µg/mL). Meanwhile, their half maximal inhibitory concentration (IC50) values against CYP51 were 0.377, 0.611, and 0.748 µg/mL, respectively, representing that they also possessed better inhibitory activities than epoxiconazole (IC50 = 0.802 µg/mL). The fluorescent quenching tests of proteins showed that 7a and 7b had similar quenching patterns to epoxiconazole. The molecular dynamics simulations indicated that the binding free energy of 7a and epoxiconazole to CYP51 was -35.4 and -27.6 kcal/mol, respectively.


Assuntos
Inibidores de 14-alfa Desmetilase , Antifúngicos , Desenho de Fármacos , Simulação de Dinâmica Molecular , Piridinas , Esterol 14-Desmetilase , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/síntese química , Inibidores de 14-alfa Desmetilase/química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Piridinas/farmacologia , Piridinas/síntese química , Piridinas/química , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/química , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Fusarium/efeitos dos fármacos , Penicillium , Ascomicetos/efeitos dos fármacos , Colletotrichum/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Estrutura Molecular , Simulação de Acoplamento Molecular
9.
J Agric Food Chem ; 72(21): 12260-12269, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38759097

RESUMO

Thirty-four new pyrido[4,3-d]pyrimidine analogs were designed, synthesized, and characterized. The crystal structures for compounds 2c and 4f were measured by means of X-ray diffraction of single crystals. The bioassay results showed that most target compounds exhibited good fungicidal activities against Pyricularia oryzae, Rhizoctonia cerealis, Sclerotinia sclerotiorum, Botrytis cinerea, and Penicillium italicum at 16 µg/mL. Compounds 2l, 2m, 4f, and 4g possessed better fungicidal activities than the commercial fungicide epoxiconazole against B. cinerea. Their half maximal effective concentration (EC50) values were 0.191, 0.487, 0.369, 0.586, and 0.670 µg/mL, respectively. Furthermore, the inhibitory activities of the bioactive compounds were determined against sterol 14α-demethylase (CYP51). The results displayed that they had prominent activities. Compounds 2l, 2m, 4f, and 4g also showed better inhibitory activities than epoxiconazole against CYP51. Their half maximal inhibitory concentration (IC50) values were 0.219, 0.602, 0.422, 0.726, and 0.802 µg/mL, respectively. The results of molecular dynamics (MD) simulations exhibited that compounds 2l and 4f possessed a stronger affinity to CYP51 than epoxiconazole.


Assuntos
Inibidores de 14-alfa Desmetilase , Ascomicetos , Desenho de Fármacos , Proteínas Fúngicas , Fungicidas Industriais , Pirimidinas , Rhizoctonia , Esterol 14-Desmetilase , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Esterol 14-Desmetilase/química , Esterol 14-Desmetilase/metabolismo , Relação Estrutura-Atividade , Rhizoctonia/efeitos dos fármacos , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/química , Inibidores de 14-alfa Desmetilase/síntese química , Proteínas Fúngicas/química , Proteínas Fúngicas/antagonistas & inibidores , Ascomicetos/efeitos dos fármacos , Ascomicetos/enzimologia , Modelos Moleculares , Botrytis/efeitos dos fármacos , Penicillium/efeitos dos fármacos , Penicillium/enzimologia , Estrutura Molecular , Simulação de Acoplamento Molecular
10.
Infect Disord Drug Targets ; 24(7): e020224226666, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305295

RESUMO

The global prevalence of fungal infections is alarming in both the pre- and post- COVID period. Due to a limited number of antifungal drugs, there are hurdles in treatment strategies for fungal infections due to toxic potential, drug interactions, and the development of fungal resistance. All the antifungal targets (existing and newer) and pipeline molecules showing promise against these targets are reviewed. The objective was to predict or repurpose phyto-based antifungal compounds based on a dual target inhibition approach (Sterol-14-α- demethylase and HSP-90) using a case study. In pursuit of repurposing the phytochemicals as antifungal agents, a team of researchers visited Aravalli Biodiversity Park (ABP), Delhi, India, to collect information on available medicinal plants. From 45 plants, a total of 1149 ligands were collected, and virtual screening was performed using Schrodinger Suite 2016 software to get 83 hits against both the target proteins: Sterol-14-α-demethylase and HSP-90. After analysis of docking results, ligands were selected based on their interaction against both the target proteins and comparison with respective standard ligands (fluconazole and ganetespib). We have selected Isocarthamidin, Quercetin and Boeravinone B based on their docking score and binding interaction against the HSP-90 (Docking Score -9.65, -9.22 and -9.21, respectively) and 14-α-demethylase (Docking Score -9.19, -10.76 and -9.74 respectively). The docking protocol was validated and MM/GBSA studies depicted better stability of selected three ligands (Isocarthamidin, Quercetin, Boeravinone B) complex as compared to standard complex. Further, MD simulation studies were performed using the Desmond (67) software package version 2018-4. All the findings are presented as a case study for the prediction of dual targets for the repurposing of certain phytochemicals as antifungal agents.


Assuntos
Antifúngicos , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos , Antifúngicos/farmacologia , Antifúngicos/química , Índia , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/química , Plantas Medicinais/química , Quercetina/farmacologia , Quercetina/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Micoses/tratamento farmacológico , Micoses/microbiologia
11.
Nat Commun ; 15(1): 3642, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684680

RESUMO

Triazole antifungals function as ergosterol biosynthesis inhibitors and are frontline therapy for invasive fungal infections, such as invasive aspergillosis. The primary mechanism of action of triazoles is through the specific inhibition of a cytochrome P450 14-α-sterol demethylase enzyme, Cyp51A/B, resulting in depletion of cellular ergosterol. Here, we uncover a clinically relevant secondary mechanism of action for triazoles within the ergosterol biosynthesis pathway. We provide evidence that triazole-mediated inhibition of Cyp51A/B activity generates sterol intermediate perturbations that are likely decoded by the sterol sensing functions of HMG-CoA reductase and Insulin-Induced Gene orthologs as increased pathway activity. This, in turn, results in negative feedback regulation of HMG-CoA reductase, the rate-limiting step of sterol biosynthesis. We also provide evidence that HMG-CoA reductase sterol sensing domain mutations previously identified as generating resistance in clinical isolates of Aspergillus fumigatus partially disrupt this triazole-induced feedback. Therefore, our data point to a secondary mechanism of action for the triazoles: induction of HMG-CoA reductase negative feedback for downregulation of ergosterol biosynthesis pathway activity. Abrogation of this feedback through acquired mutations in the HMG-CoA reductase sterol sensing domain diminishes triazole antifungal activity against fungal pathogens and underpins HMG-CoA reductase-mediated resistance.


Assuntos
Antifúngicos , Aspergillus fumigatus , Ergosterol , Proteínas Fúngicas , Hidroximetilglutaril-CoA Redutases , Triazóis , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/genética , Antifúngicos/farmacologia , Triazóis/farmacologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ergosterol/metabolismo , Ergosterol/biossíntese , Hidroximetilglutaril-CoA Redutases/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Farmacorresistência Fúngica/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Testes de Sensibilidade Microbiana , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/genética , Humanos , Mutação
12.
Nat Commun ; 15(1): 6312, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060235

RESUMO

Azole antifungals inhibit the sterol C14-demethylase (CYP51/Erg11) of the ergosterol biosynthesis pathway. Here we show that the azole-induced synthesis of fungicidal cell wall carbohydrate patches in the pathogenic mold Aspergillus fumigatus strictly correlates with the accumulation of the CYP51 substrate eburicol. A lack of other essential ergosterol biosynthesis enzymes, such as sterol C24-methyltransferase (Erg6A), squalene synthase (Erg9) or squalene epoxidase (Erg1) does not trigger comparable cell wall alterations. Partial repression of Erg6A, which converts lanosterol into eburicol, increases azole resistance. The sterol C5-desaturase (ERG3)-dependent conversion of eburicol into 14-methylergosta-8,24(28)-dien-3ß,6α-diol, the "toxic diol" responsible for the fungistatic activity against yeasts, is not required for the fungicidal effects in A. fumigatus. While ERG3-lacking yeasts are azole resistant, ERG3-lacking A. fumigatus becomes more susceptible. Mutants lacking mitochondrial complex III functionality, which are much less effectively killed, but strongly inhibited in growth by azoles, convert eburicol more efficiently into the supposedly "toxic diol". We propose that the mode of action of azoles against A. fumigatus relies on accumulation of eburicol which exerts fungicidal effects by triggering cell wall carbohydrate patch formation.


Assuntos
Antifúngicos , Aspergillus fumigatus , Azóis , Proteínas Fúngicas , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/genética , Antifúngicos/farmacologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Azóis/farmacologia , Ergosterol/metabolismo , Ergosterol/biossíntese , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Monoterpenos Bicíclicos/farmacologia , Monoterpenos Bicíclicos/metabolismo , Testes de Sensibilidade Microbiana , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Oxirredutases/metabolismo , Oxirredutases/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Esqualeno Mono-Oxigenase/metabolismo , Esqualeno Mono-Oxigenase/genética , Lanosterol/análogos & derivados
13.
J Med Chem ; 67(15): 12601-12617, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39077891

RESUMO

In our previous study, coumarin-containing CYP51 inhibitor A32 demonstrated potent antiresistance activity. However, compound A32 demonstrated unsatisfied metabolic stability, necessitating modifications to overcome these limitations. In this study, α,ß-unsaturated amides were used to replace the unstable coumarin ring, which increased metabolic stability by four times while maintaining antifungal activity, including activity against resistant strains. Subsequently, the sterol composition analysis and morphological observation experiments indicated that the target of these novel compounds is lanosterol 14α-demethylase (CYP51). Meanwhile, biofilm growth was inhibited and resistance genes (ERG11, CDR1, CDR2, and MDR1) expression was downregulated to find out how the antiresistance works. Importantly, compound C07 demonstrated the capacity to stimulate reactive oxygen species, thus displaying potent fungicidal activity. Moreover, C07 exhibited encouraging effectiveness in vivo following intraperitoneal administration. Additionally, the most potent compound C07 showed satisfactory pharmacokinetic properties and low toxicity. These α,ß-unsaturated amide derivatives, particularly C07, are potential candidates for treating azole-resistant candidiasis.


Assuntos
Amidas , Antifúngicos , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Farmacorresistência Fúngica/efeitos dos fármacos , Amidas/farmacologia , Amidas/química , Amidas/síntese química , Animais , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/química , Camundongos , Descoberta de Drogas , Relação Estrutura-Atividade , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/síntese química , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/química , Inibidores de 14-alfa Desmetilase/síntese química , Inibidores de 14-alfa Desmetilase/uso terapêutico , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA