Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 64, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123400

RESUMO

BACKGROUND: Arbuscular mycorrhizal fungi (AMF) are a group of important symbiotic microorganisms found in ecosystems. Maize is the second most produced food crop globally. To investigate the mechanisms by which mycorrhizal symbiosis improves maize yields, the effects of mycorrhizal symbiosis on root vigor, nutrient accumulation in various tissues, and root exudates were investigated. We propose the following hypothesis: The secretion of organic acids in root exudates has antagonistic or synergistic effects, which are related to the rhizosphere environment. AMF symbiosis will enhance this effect. RESULT: Rhizophagus aggreatus, Claroideoglomus etunicatum, and Funneliformis mosseae were used to inoculate maize plants separately; meanwhile, maize was inoculated with the above three fungi together for another processing. The plant tissues were sampled at five growth stages: V12 (twelve-leaf), VT (Tassel), R1 (Silking), R2 (Blister), and R4 (Dough stage). The root vigor, and nutrient content in different maize organs and organic acids in root exudates were determined in these stages. The results show that mycorrhizal symbiosis significantly improved the root vigor of maize, especially for plants inoculated with F. mosseae. AMF symbiosis significantly increased N, P, and K accumulation. Mixed inoculation with arbuscular mycorrhizal fungi significantly promoted the accumulation of N and K in maize. P accumulation was significantly promoted by C. etunicatum inoculation. Mycorrhizal symbiosis reduced the levels of protocatechuic, vanillic, citric, and ferulic acid in maize root exudates and increased the levels of p-hydroxybenzoic and caffeic acid. Except for syringic, chlorogenic and succinic acid, the levels of other organic acids in root exudates were higher in plants inoculated with F. mosseae than in other treatments. CONCLUSION: This study demonstrates that mycorrhizal symbiosis improves root vigor and promotes nutrient accumulation at various sites; in addition, mycorrhizal symbiosis affects the content of organic acids in root exudates.


Assuntos
Micorrizas/crescimento & desenvolvimento , Exsudatos de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Simbiose/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Raízes de Plantas/microbiologia
2.
PLoS Pathog ; 15(2): e1007503, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30707749

RESUMO

Plant parasitic nematodes must be able to locate and feed from their host in order to survive. Here we show that Pratylenchus coffeae regulates the expression of selected cell-wall degrading enzyme genes relative to the abundance of substrate in root exudates, thereby tailoring gene expression for root entry of the immediate host. The concentration of cellulose or xylan within the exudate determined the level of ß-1,4-endoglucanase (Pc-eng-1) and ß-1,4-endoxylanase (Pc-xyl) upregulation respectively. Treatment of P. coffeae with cellulose or xylan or with root exudates deficient in cellulose or xylan conferred a specific gene expression response of Pc-eng-1 or Pc-xyl respectively with no effect on expression of another cell wall degrading enzyme gene, a pectate lyase (Pc-pel). RNA interference confirmed the importance of regulating these genes as lowered transcript levels reduced root penetration by the nematode. Gene expression in this plant parasitic nematode is therefore influenced, in a host-specific manner, by cell wall components that are either secreted by the plant or released by degradation of root tissue. Transcriptional plasticity may have evolved as an adaptation for host recognition and increased root invasion by this polyphagous species.


Assuntos
Nematoides/genética , Exsudatos de Plantas/fisiologia , Animais , Celulase/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Interações Hospedeiro-Parasita/genética , Nematoides/metabolismo , Infecções por Nematoides/genética , Doenças das Plantas/genética , Exsudatos de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas , Polissacarídeo-Liases , Regulação para Cima
3.
New Phytol ; 225(4): 1461-1469, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31454421

RESUMO

Plants produce a wide array of secretions both above and below ground. Known as mucilages or exudates, they are secreted by seeds, roots, leaves and stems and fulfil a variety of functions including adhesion, protection, nutrient acquisition and infection. Mucilages are generally polysaccharide-rich and often occur in the form of viscoelastic gels and in many cases have adhesive properties. In some cases, progress is being made in understanding the structure-function relationships of mucilages such as for the secretions that allow growing ivy to attach to substrates and the biosynthesis and secretion of the mucilage compounds of the Arabidopsis seed coat. Work is just beginning towards understanding root mucilage and the proposed adhesive polymers involved in the formation of rhizosheaths at root surfaces and for the secretions involved in host plant infection by parasitic plants. In this article, we summarise knowledge on plant exudates and mucilages within the concept of their functions in microenvironmental design, focusing in particular on their bioadhesive functions and the molecules responsible for them. We draw attention to areas of future knowledge need, including the microstructure of mucilages and their compositional and regulatory dynamics.


Assuntos
Biotecnologia , Exsudatos de Plantas/química , Exsudatos de Plantas/fisiologia , Mucilagem Vegetal/química , Mucilagem Vegetal/fisiologia , Materiais Biocompatíveis
4.
Plant J ; 93(4): 747-770, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29232012

RESUMO

Despite the importance of plant-plant interactions on crop yield and plant community dynamics, our understanding of the genetic and molecular bases underlying natural variation of plant-plant interactions is largely limited in comparison with other types of biotic interactions. By listing 63 quantitative trait loci (QTL) mapping and global gene expression studies based on plants directly challenged by other plants, we explored whether the genetic architecture and the function of the candidate genes underlying natural plant-plant interactions depend on the type of interactions between two plants (competition versus commensalism versus reciprocal helping versus asymmetry). The 16 transcriptomic studies are unevenly distributed between competitive interactions (n = 12) and asymmetric interactions (n = 4, all focusing on response to parasitic plants). By contrast, 17 and 30 QTL studies were identified for competitive interactions and asymmetric interactions (either weed suppressive ability or response to parasitic plants), respectively. Surprisingly, no studies have been carried out on the identification of genetic and molecular bases underlying natural variation in positive interactions. The candidate genes underlying natural plant-plant interactions can be classified into seven categories of plant function that have been identified in artificial environments simulating plant-plant interactions either frequently (photosynthesis, hormones), only recently (cell wall modification and degradation, defense pathways against pathogens) or rarely (ABC transporters, histone modification and meristem identity/life history traits). Finally, we introduce several avenues that need to be explored in the future to obtain a thorough understanding of the genetic and molecular bases underlying plant-plant interactions within the context of realistic community complexity.


Assuntos
Exsudatos de Plantas/fisiologia , Fenômenos Fisiológicos Vegetais/genética , Locos de Características Quantitativas , Variação Genética , Luz , Microbiota/genética , Fotossíntese , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Compostos Orgânicos Voláteis/metabolismo
5.
Plant Physiol ; 175(3): 1135-1143, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28982780

RESUMO

The surface tension (γ) of xylem sap plays a key role in stabilizing air-water interfaces at the pits between water- and gas-filled conduits to avoid air seeding at low water potentials. We studied seasonal changes in xylem sap γ in Picea abies and Pinus mugo growing at the alpine timberline. We analyzed their vulnerability to drought-induced embolism using solutions of different γ and estimated the potential effect of seasonal changes in γ on hydraulic vulnerability. In both species, xylem sap γ showed distinct seasonal courses between about 50 and 68 mn m-1 Solutions with low γ caused higher vulnerability to drought-induced xylem embolism. The water potential at 50% loss of hydraulic conductivity in P. abies and P. mugo was -3.35 and -3.86 MPa at γ of 74 mn m-1 but -2.11 and -2.09 MPa at 45 mn m-1 This indicates up to about 1 MPa seasonal variation in 50% loss of hydraulic conductivity. The results revealed pronounced effects of changes in xylem sap γ on the hydraulic safety of trees in situ. These effects also are relevant in vulnerability analyses, where the use of standard solutions with high γ overestimates hydraulic safety. Thus, γ should be considered carefully in hydraulic studies.


Assuntos
Pinus/fisiologia , Exsudatos de Plantas/fisiologia , Água/fisiologia , Xilema/fisiologia , Secas , Concentração Osmolar , Perfusão , Estações do Ano , Soluções , Tensão Superficial
6.
Phytopathology ; 107(9): 1047-1054, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28560894

RESUMO

As Verticillium stem striping of oilseed rape (OSR), a vascular disease caused by Verticillium longisporum, is extending into new geographic regions and no control with fungicides exists, the demand for understanding mechanisms of quantitative resistance increases. Because V. longisporum is strictly limited to the xylem and resistance is expressed in the systemic stage post root invasion, we investigated a potential antifungal role of soluble constituents and nutritional conditions in xylem sap as determinants of cultivar resistance of OSR to V. longisporum. Assessment of biometric and molecular genetic parameters applied to describe V. longisporum resistance (net area under disease progress curve, stunting, stem thickness, plant biomass, and V. longisporum DNA content) showed consistent susceptibility of cultivar 'Falcon' in contrast to two resistant genotypes, 'SEM' and 'Aviso'. Spectrophotometric analysis revealed a consistently stronger in vitro growth of V. longisporum in xylem sap extracted from OSR compared with the water control. Further comparisons of fungal growth in xylem sap of different cultivars revealed the absence of constitutive or V. longisporum induced antifungal activity in the xylem sap of resistant versus susceptible genotypes. The similar growth of V. longisporum in xylem sap, irrespective of cultivar, infection with V. longisporum and xylem sap filtration, was correlated with about equal amounts of total soluble proteins in xylem sap from these treatments. Interestingly, compared with younger plants, xylem sap from older plants induced significantly stronger fungal growth. Growth enhancement of V. longisporum in xylem sap of aging plants was reflected by increased contents of carbohydrates, which was consistent in mock or V. longisporum-infected plants and independent from cultivar resistance. The improved nutritional conditions in the xylem of more mature plants may explain the late appearance of disease symptoms, which are observed only in late maturity stages of plants in the field. While falsifying the presence of antifungal activity in xylem sap of resistant cultivars, this study strengthens previous findings that indicated a significant role of physical cell wall bound resistance factors involved in quantitative, cultivar-related resistance of B. napus to V. longisporum.


Assuntos
Brassica napus/microbiologia , Exsudatos de Plantas/fisiologia , Verticillium/fisiologia , Xilema/fisiologia , Brassica napus/metabolismo , Fatores de Tempo
7.
J Plant Res ; 129(5): 841-851, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27262588

RESUMO

A better understanding of the sap flow characteristics of maize plants is critical for improving irrigation water-use efficiency, especially for regions facing water resource shortages. In this study, sap flow rates, related soil-physics and plant-growth parameters, and meteorological factors, were simultaneously monitored in a maize field in two consecutive years, 2011 and 2012, and the sap flow rates of the maize plants were extensively analyzed based on the monitored data. Seasonal and daily variational characteristics were identified at different growth stages and under different weather conditions, respectively. The analyses on the relationships between sap flow rate and reference evapotranspiration (ET0), as well as several plant-growth parameters, indicate that the irrigation schedule can exert an influence on sap flow, and can consequently affect crop yield. The ranking of the main meteorological factors affecting the sap flow rate was: net radiation > air temperature > vapor pressure deficit > wind speed. For a quick estimation of sap flow rates, an empirical formula based on the two top influencing factors was put forward and verified to be reliable. The sap flow rate appeared to show little response to irrigation when the water content was relatively high, implying that some of the irrigation in recent years may have been wasted. These results may help to reveal the bio-physical processes of maize plants related to plant transpiration, which could be beneficial for establishing an efficient irrigation management system in this region and also for providing a reference for other maize-planting regions.


Assuntos
Exsudatos de Plantas/fisiologia , Rios , Zea mays/fisiologia , Irrigação Agrícola , China , Clima , Luz , Folhas de Planta/anatomia & histologia , Caules de Planta/anatomia & histologia , Transpiração Vegetal/fisiologia , Estações do Ano , Solo/química , Temperatura , Água , Zea mays/anatomia & histologia , Zea mays/crescimento & desenvolvimento
8.
Mol Plant Microbe Interact ; 28(9): 1049-58, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26035128

RESUMO

Jasmonic acid (JA) is an essential hormone in plant development and defense responses in Arabidopsis thaliana. Exogenous treatment with JA has recently been shown to alter root exudate profiles and the composition of root-associated bacterial communities. However, it is currently unknown whether disruptions of the JA in the rhizosphere affect root exudation profiles and the relative abundance of bacteria and archaea in the rhizosphere. In the present study, two Arabidopsis mutants that are disrupted in different branches of the jasmonate pathway, namely myc2 and med25, were cultivated in nutrient solution and soil to profile root exudates and bacterial and archaeal communities, respectively. Compared with the wild type, both mutants showed distinct exudation patterns, including lower amounts of asparagine, ornithine, and tryptophan, as well as distinct bacterial and archaeal community composition, as illustrated by an increased abundance of Streptomyces, Bacillus, and Lysinibacillus taxa in the med25 rhizosphere and an Enterobacteriaceae population in myc2. Alternatively, the Clostridiales population was less abundant in the rhizosphere of both mutants. Similarities between plant genotypes were highly correlated, as determined by operational taxonomic units in the rhizosphere and metabolites in root exudates. This strongly suggests that root exudates play a major role in modulating changes in microbial community composition upon plant defense responses.


Assuntos
Arabidopsis/fisiologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Exsudatos de Plantas/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Transdução de Sinais/fisiologia , Consórcios Microbianos , Microbiologia do Solo
9.
Planta ; 239(3): 591-603, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24271005

RESUMO

Plants can stimulate bacterial nitrogen (N) removal by secretion of root exudates that may serve as carbon sources as well as non-nutrient signals for denitrification. However, there is a lack of knowledge about the specific non-nutrient compounds involved in this stimulation. Here, we use a continuous root exudate-trapping system in two common aquatic duckweed species, Spirodela polyrrhiza (HZ1) and Lemna minor (WX3), under natural and aseptic conditions. An activity-guided bioassay using denitrifying bacterium Pseudomonas fluorescens showed that crude root exudates of the two species strongly enhanced the nitrogen-removal efficiency (NRE) of P. fluorescens (P < 0.05) under both conditions. Water-insoluble fractions (F) obtained under natural conditions stimulated NRE to a significant extent, promoting rates by about 30%. Among acidic, neutral and basic fractions, a pronounced stimulatory effect was also observed for the neutral fractions from HZ1 and WX3 under both conditions, whereas the acidic fractions from WX3 displayed an inhibitory effect. Analysis of the active fractions using gas chromatography/mass spectrometry (GC/MS) revealed that duckweed released fatty acid methyl esters and fatty acid amides, specifically: methyl hexadecanoate, methyl (Z)-7-hexadecenoate, methyl dodecanoate, methyl-12-hydroxystearate, oleamide, and erucamide. Methyl (Z)-7-hexadecenoate and erucamide emerged as the effective N-removal stimulants (maximum stimulation of 25.9 and 33.4%, respectively), while none of the other tested compounds showed stimulatory effects. These findings provide the first evidence for a function of fatty acid methyl esters and fatty acid amides in stimulating N removal of denitrifying bacteria, affording insight into the "crosstalk" between aquatic plants and bacteria in the rhizosphere.


Assuntos
Desnitrificação , Magnoliopsida/fisiologia , Exsudatos de Plantas/isolamento & purificação , Raízes de Plantas/fisiologia , Pseudomonas fluorescens/metabolismo , Nitrogênio/metabolismo , Exsudatos de Plantas/química , Exsudatos de Plantas/fisiologia
10.
Plant Cell Environ ; 37(12): 2679-90, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25041417

RESUMO

The significance of xylem function and metabolic scaling theory begins from the idea that water transport is strongly coupled to growth rate. At the same time, coordination of water transport and growth seemingly should differ between plant functional types. We evaluated the relationships between water transport, growth and species stature in six species of co-occurring trees and shrubs. Within species, a strong proportionality between plant hydraulic conductance (K), sap flow (Q) and shoot biomass growth (G) was generally supported. Across species, however, trees grew more for a given K or Q than shrubs, indicating greater growth-based water-use efficiency (WUE) in trees. Trees also showed slower decline in relative growth rate (RGR) than shrubs, equivalent to a steeper G by mass (M) scaling exponent in trees (0.77-0.98). The K and Q by M scaling exponents were common across all species (0.80, 0.82), suggesting that the steeper G scaling in trees reflects a size-dependent increase in their growth-based WUE. The common K and Q by M exponents were statistically consistent with the 0.75 of ideal scaling theory. A model based upon xylem anatomy and branching architecture consistently predicted the observed K by M scaling exponents but only when deviations from ideal symmetric branching were incorporated.


Assuntos
Biomassa , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Água/fisiologia , Transporte Biológico , Meio Ambiente , Análise dos Mínimos Quadrados , Modelos Biológicos , Exsudatos de Plantas/fisiologia , Especificidade da Espécie , Árvores/anatomia & histologia , Utah
11.
Physiol Plant ; 152(2): 301-15, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24547765

RESUMO

Southwest Australian Banksia woodlands are highly diverse plant communities that are threatened by drought- or temperature-induced mortality due to the region's changing climate. We examined water relations in dominant Banksia menziesii R. Br. trees using magnetic leaf patch clamp pressure (ZIM-) probes that allow continuous, real-time monitoring of leaf water status. Multiple ZIM-probes across the crown were complemented by traditional ecophysiological measurements. During summer, early stomatal downregulation of transpiration prevented midday balancing pressures from exceeding 2.5 MPa. Diurnal patterns of ZIM-probe and pressure chamber readings agreed reasonably well, however, ZIM-probes recorded short-term dynamics, which are impossible to capture using a pressure chamber. Simultaneous recordings of three ZIM-probes evenly spaced along leaf laminas revealed intrafoliar turgor gradients, which, however, did not develop in a strictly basi- or acropetal fashion and varied with cardinal direction. Drought stress manifested as increasing daily signal amplitude (low leaf water status) and occasionally as rising baseline at night (delayed rehydration). These symptoms occurred more often locally than across the entire crown. Microclimate effects on leaf water status were strongest in crown regions experiencing peak morning radiation (East and North). Extreme spring temperatures preceded the sudden death of B. menziesii trees, suggesting a temperature- or humidity-related tipping point causing rapid hydraulic failure as evidenced by collapsing ZIM-probe readings from an affected tree. In a warmer and drier future, increased frequency of B. menziesii mortality will result in significantly altered community structure and ecosystem function.


Assuntos
Secas , Proteaceae/fisiologia , Análise Espaço-Temporal , Árvores/fisiologia , Água/fisiologia , Austrália , Ritmo Circadiano/fisiologia , Exsudatos de Plantas/fisiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Reologia , Temperatura , Pressão de Vapor
12.
Science ; 384(6693): 272-273, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38635697

RESUMO

Root exudation could be harnessed for ecological and applied research.


Assuntos
Exsudatos de Plantas , Raízes de Plantas , Plantas , Raízes de Plantas/fisiologia , Exsudatos de Plantas/fisiologia
13.
Plant Cell Physiol ; 53(3): 495-504, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22257489

RESUMO

Previous studies demonstrated that ammonium nutrition results in higher water uptake rate than does nitrate nutrition under water stress, and thus enhances the tolerance of rice plants to water stress. However, the process by which water uptake is related to nitrogen form under water stress remains unknown. A hydroponic experiment with simulated water stress induced by polyethylene glycol (PEG6000) was conducted in a greenhouse to study the relationship between root aerenchyma formation and water uptake rate, such as xylem sap flow rate and hydraulic conductance, in two different rice cultivars (cv. 'Shanyou 63' hybrid indica and cv. 'Yangdao 6' indica, China). The results showed that root aerenchyma tissue increased in water-stressed plants of both cultivars fed by nitrate. No significant difference was found in root hydraulic conductivity and/or xylem sap flow rate between the two rice cultivars fed by ammonium regardless of water status, whereas these parameters decreased significantly in water-stressed plants fed by nitrate. It was concluded that aerenchyma that formed in the root cortex impeded the radial transport of water in the root cylinder and decreased water uptake in water-stressed rice plants fed by nitrate. Water transport occurred mainly through Hg-sensitive water channels in rice roots supplied with ammonium.


Assuntos
Secas , Nitratos/farmacologia , Oryza/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Plântula/fisiologia , Água/metabolismo , Transporte Biológico/efeitos dos fármacos , Biomassa , Desidratação , Nitrogênio/farmacologia , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/ultraestrutura , Exsudatos de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/ultraestrutura , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Porosidade/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/genética , Xilema/efeitos dos fármacos , Xilema/fisiologia
14.
J Exp Bot ; 63(8): 2833-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22407648

RESUMO

Heat-pulse methods to determine sap flux density in trees are founded on the theory of heat conduction and heat convection in an isotropic medium. However, sapwood is clearly anisotropic, implying a difference in thermal conductivity along and across the grain, and hence necessitates the theory for an anisotropic medium. This difference in thermal conductivities, which can be up to 50%, is, however, not taken into account in the key equation leading to the currently available heat-pulse methods. Despite this major flaw, the methods remain theoretically correct as they are based on derivations of the key equation, ruling out any anisotropic aspects. The importance of specifying the thermal characteristics of the sapwood according to axial, tangential or radial direction is revealed as well as referring to and using the proper anisotropic theory in order to avoid confusion and misinterpretation of thermal properties when dealing with sap flux density measurements or erroneous results when modelling heat transport in sapwood.


Assuntos
Convecção , Temperatura Alta , Modelos Biológicos , Exsudatos de Plantas/fisiologia , Reologia/métodos , Condutividade Térmica , Madeira/fisiologia , Anisotropia , Difusão
15.
Sensors (Basel) ; 12(1): 954-71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22368504

RESUMO

This work provides a design for two types of sensors, based on the thermal dissipation and heat ratio methods of sap flow calculation, for moderate to large scale deployments for the purpose of monitoring tree transpiration. These designs include a procedure for making these sensors, a quality control method for the final products, and a complete list of components with vendors and pricing information. Both sensor designs were field tested alongside a commercial sap flow sensor to assess their performance and show the importance for quality controlling the sensor outputs. Results show that for roughly 2% of the cost of commercial sensors, self-made sap flow sensors can provide acceptable estimates of the sap flow measurements compared to the commercial sensors.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/normas , Exsudatos de Plantas/fisiologia , Acer/fisiologia , Técnicas Biossensoriais/economia , Calibragem , Eletricidade , Desenho de Equipamento/economia , Modelos Lineares , Controle de Qualidade , Temperatura
16.
New Phytol ; 184(2): 399-411, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19659660

RESUMO

* Here, nitrogen (N) uptake and metabolism, and related gene expression, were analyzed in germinating spores of Glomus intraradices to examine the mechanisms and the regulation of N handling during presymbiotic growth. * The uptake and incorporation of organic and inorganic N sources into free amino acids were analyzed using stable and radioactive isotope labeling followed by high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS) and liquid scintillation counting and the fungal gene expression was measured by quantitative polymerase chain reaction (Q-PCR). * Quiescent spores store Asp, Ala and Arg and can use these internal N resources during germination. Although not required for presymbiotic growth, exogenous N can also be utilized for the de novo biosynthesis of amino acids. Ammonium and urea are more rapidly assimilated than nitrate and amino acids. Root exudates do not stimulate the uptake and utilization of exogenous ammonium, but the expression of genes encoding a putative glutamate dehydrogenase (GDH), a urease accessory protein (UAP) and an ornithine aminotransferase (OAT) were stimulated by root exudates. The transcript levels of an ammonium transporter (AMT) and a glutamine synthetase (GS) were not affected. * Germinating spores can make effective use of different N sources and the ability to synthesize amino acids does not limit presymbiotic growth of arbuscular mycorrhizal (AM) spores.


Assuntos
Aminoácidos/biossíntese , Genes Fúngicos , Glomeromycota/metabolismo , Micorrizas/metabolismo , Nitrogênio/metabolismo , Esporos Fúngicos/metabolismo , Transporte Biológico , Cromatografia Gasosa-Espectrometria de Massas , Regulação Fúngica da Expressão Gênica , Glomeromycota/genética , Glomeromycota/crescimento & desenvolvimento , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Micorrizas/crescimento & desenvolvimento , Nitratos/metabolismo , Ornitina-Oxo-Ácido Transaminase/genética , Ornitina-Oxo-Ácido Transaminase/metabolismo , Exsudatos de Plantas/fisiologia , Raízes de Plantas , Compostos de Amônio Quaternário/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Ureia/metabolismo
17.
J Integr Plant Biol ; 51(7): 675-88, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19566646

RESUMO

Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.


Assuntos
Agricultura/métodos , Gases/metabolismo , Glycine max/crescimento & desenvolvimento , Gossypium/crescimento & desenvolvimento , Salinidade , Tolerância ao Sal/fisiologia , Biomassa , Eletrólitos/metabolismo , Gossypium/fisiologia , Gossypium/efeitos da radiação , Luz , Exsudatos de Plantas/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos da radiação , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação , Tolerância ao Sal/efeitos da radiação , Estações do Ano , Solo , Glycine max/fisiologia , Glycine max/efeitos da radiação , Água
18.
New Phytol ; 178(4): 798-807, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18346105

RESUMO

* In the apple tree (Malus domestica), shoot architecture - the distribution of lateral bud types and growth along the parent shoot - has been extensively investigated. The distal zone of a shoot is characterized by a high proportion of vegetative or floral axillary branches mixed with latent buds and aborted laterals. The hypothesis tested here was that bud development was related to hydraulic conductance of the sap pathway to the bud, independently of an acrotonic (proximal vs distal) effect. * The distal zone of 1-yr-old shoots was studied on five cultivars for bud size and composition (number of appendages) and hydraulic conductance before bud burst. * Bud size, composition and hydraulic conductance were highly variable for all cultivars. A positive correlation was demonstrated between both the number of cataphylls and green-leaf primordia, and hydraulic conductance. Cultivar and bud size affected the intercept of these relationships more than the slope, suggesting similar scaling between these variables, but different hydraulic efficiencies. A great proportion of small buds were also characterized by null values of hydraulic conductance. * This study suggests that hydraulically mediated competition exists between adjacent buds within the same branching zone, prefiguring the variability of lateral types in the following growing season. It is hypothesized that this developmental patterning is driven by hydraulic characteristics of the whole metamer, including the subtending leaf, during bud development.


Assuntos
Flores/anatomia & histologia , Malus/fisiologia , Brotos de Planta/fisiologia , Tamanho do Órgão , Exsudatos de Plantas/fisiologia , Folhas de Planta/fisiologia , Xilema/fisiologia
19.
Trends Plant Sci ; 11(12): 574-80, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17092763

RESUMO

Ecologists have long searched for an explanation as to why some plant invaders become much more dominant in their naturalized range than in their native range, and, accordingly, several non-exclusive ecological hypotheses have been proposed. Recently, a biochemical explanation was proposed--the "novel weapons hypothesis"--based on findings that Centaurea diffusa and Centaurea maculosa produce bioactive compounds (weapons) that are more active against naïve plant species in the introduced range than against co-evolved species in the native range. In this Opinion article, we revise and expand this biochemical hypothesis and discuss experimental and conceptual advances and limitations.


Assuntos
Adaptação Fisiológica , Centaurea/fisiologia , Ecossistema , Evolução Biológica , Catequina/metabolismo , Catequina/fisiologia , Centaurea/química , Centaurea/crescimento & desenvolvimento , Exsudatos de Plantas/química , Exsudatos de Plantas/fisiologia , Dinâmica Populacional , Microbiologia do Solo
20.
Trends Plant Sci ; 23(1): 25-41, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29050989

RESUMO

Plant health in natural environments depends on interactions with complex and dynamic communities comprising macro- and microorganisms. While many studies have provided insights into the composition of rhizosphere microbiomes (rhizobiomes), little is known about whether plants shape their rhizobiomes. Here, we discuss physiological factors of plants that may govern plant-microbe interactions, focusing on root physiology and the role of root exudates. Given that only a few plant transport proteins are known to be involved in root metabolite export, we suggest novel families putatively involved in this process. Finally, building off of the features discussed in this review, and in analogy to well-known symbioses, we elaborate on a possible sequence of events governing rhizobiome assembly.


Assuntos
Microbiota , Exsudatos de Plantas/fisiologia , Raízes de Plantas/microbiologia , Transporte Biológico , Células Vegetais/microbiologia , Raízes de Plantas/fisiologia , Rizosfera , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA