RESUMO
The liver is the main gateway from the gut, and the unidirectional sinusoidal flow from portal to central veins constitutes heterogenous zones, including the periportal vein (PV) and the pericentral vein zones1-5. However, functional differences in the immune system in each zone remain poorly understood. Here intravital imaging revealed that inflammatory responses are suppressed in PV zones. Zone-specific single-cell transcriptomics detected a subset of immunosuppressive macrophages enriched in PV zones that express high levels of interleukin-10 and Marco, a scavenger receptor that sequesters pro-inflammatory pathogen-associated molecular patterns and damage-associated molecular patterns, and consequently suppress immune responses. Induction of Marco+ immunosuppressive macrophages depended on gut microbiota. In particular, a specific bacterial family, Odoribacteraceae, was identified to induce this macrophage subset through its postbiotic isoallolithocholic acid. Intestinal barrier leakage resulted in inflammation in PV zones, which was markedly augmented in Marco-deficient conditions. Chronic liver inflammatory diseases such as primary sclerosing cholangitis (PSC) and non-alcoholic steatohepatitis (NASH) showed decreased numbers of Marco+ macrophages. Functional ablation of Marco+ macrophages led to PSC-like inflammatory phenotypes related to colitis and exacerbated steatosis in NASH in animal experimental models. Collectively, commensal bacteria induce Marco+ immunosuppressive macrophages, which consequently limit excessive inflammation at the gateway of the liver. Failure of this self-limiting system promotes hepatic inflammatory disorders such as PSC and NASH.
Assuntos
Colangite Esclerosante , Microbioma Gastrointestinal , Inflamação , Fígado , Macrófagos , Hepatopatia Gordurosa não Alcoólica , Simbiose , Animais , Feminino , Humanos , Masculino , Camundongos , Bacteroidetes/metabolismo , Colangite Esclerosante/imunologia , Colangite Esclerosante/microbiologia , Colangite Esclerosante/patologia , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Perfilação da Expressão Gênica , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Fígado/imunologia , Fígado/patologia , Fígado/microbiologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/microbiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Veia Porta , Receptores Imunológicos/deficiência , Receptores Imunológicos/metabolismo , Análise de Célula Única , Simbiose/imunologiaRESUMO
Gut commensal bacteria with the ability to translocate across the intestinal barrier can drive the development of diverse immune-mediated diseases1-4. However, the key factors that dictate bacterial translocation remain unclear. Recent studies have revealed that gut microbiota strains can adapt and evolve throughout the lifetime of the host5-9, raising the possibility that changes in individual commensal bacteria themselves over time may affect their propensity to elicit inflammatory disease. Here we show that within-host evolution of the model gut pathobiont Enterococcus gallinarum facilitates bacterial translocation and initiation of inflammation. Using a combination of in vivo experimental evolution and comparative genomics, we found that E. gallinarum diverges into independent lineages adapted to colonize either luminal or mucosal niches in the gut. Compared with ancestral and luminal E. gallinarum, mucosally adapted strains evade detection and clearance by the immune system, exhibit increased translocation to and survival within the mesenteric lymph nodes and liver, and induce increased intestinal and hepatic inflammation. Mechanistically, these changes in bacterial behaviour are associated with non-synonymous mutations or insertion-deletions in defined regulatory genes in E. gallinarum, altered microbial gene expression programs and remodelled cell wall structures. Lactobacillus reuteri also exhibited broadly similar patterns of divergent evolution and enhanced immune evasion in a monocolonization-based model of within-host evolution. Overall, these studies define within-host evolution as a critical regulator of commensal pathogenicity that provides a unique source of stochasticity in the development and progression of microbiota-driven disease.
Assuntos
Bactérias , Translocação Bacteriana , Evolução Biológica , Microbioma Gastrointestinal , Fígado , Bactérias/genética , Bactérias/imunologia , Bactérias/patogenicidade , Translocação Bacteriana/genética , Parede Celular/genética , Enterococcus/genética , Enterococcus/imunologia , Microbioma Gastrointestinal/genética , Genômica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/microbiologia , Inflamação/patologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/imunologia , Fígado/microbiologia , Fígado/patologia , Linfonodos/microbiologia , Mutação , Processos Estocásticos , Simbiose/genética , Simbiose/imunologiaRESUMO
The liver connects the intestinal portal vasculature with the general circulation, using a diverse array of immune cells to protect from pathogens that translocate from the gut1. In liver lobules, blood flows from portal triads that are situated in periportal lobular regions to the central vein via a polarized sinusoidal network. Despite this asymmetry, resident immune cells in the liver are considered to be broadly dispersed across the lobule. This differs from lymphoid organs, in which immune cells adopt spatially biased positions to promote effective host defence2,3. Here we used quantitative multiplex imaging, genetic perturbations, transcriptomics, infection-based assays and mathematical modelling to reassess the relationship between the localization of immune cells in the liver and host protection. We found that myeloid and lymphoid resident immune cells concentrate around periportal regions. This asymmetric localization was not developmentally controlled, but resulted from sustained MYD88-dependent signalling induced by commensal bacteria in liver sinusoidal endothelial cells, which in turn regulated the composition of the pericellular matrix involved in the formation of chemokine gradients. In vivo experiments and modelling showed that this immune spatial polarization was more efficient than a uniform distribution in protecting against systemic bacterial dissemination. Together, these data reveal that liver sinusoidal endothelial cells sense the microbiome, actively orchestrating the localization of immune cells, to optimize host defence.
Assuntos
Microbioma Gastrointestinal/imunologia , Fígado/imunologia , Fígado/microbiologia , Simbiose/imunologia , Animais , Bactérias/imunologia , Bactérias/isolamento & purificação , Separação Celular , Quimiocina CXCL9/imunologia , Células Endoteliais/citologia , Células Endoteliais/imunologia , Feminino , Humanos , Células de Kupffer/citologia , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Fígado/irrigação sanguínea , Fígado/citologia , Linfócitos/imunologia , Masculino , Camundongos , Modelos Imunológicos , Imagem Molecular , Células Mieloides/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Simbiose/genética , TranscriptomaRESUMO
The liver is positioned at the interface between two routes traversed by pathogens in disseminating infection. Whereas blood-borne pathogens are efficiently cleared in hepatic sinusoids by Kupffer cells (KCs), it is unknown how the liver prevents dissemination of peritoneal pathogens accessing its outer membrane. We report here that the hepatic capsule harbors a contiguous cellular network of liver-resident macrophages phenotypically distinct from KCs. These liver capsular macrophages (LCMs) were replenished in the steady state from blood monocytes, unlike KCs that are embryonically derived and self-renewing. LCM numbers increased after weaning in a microbiota-dependent process. LCMs sensed peritoneal bacteria and promoted neutrophil recruitment to the capsule, and their specific ablation resulted in decreased neutrophil recruitment and increased intrahepatic bacterial burden. Thus, the liver contains two separate and non-overlapping niches occupied by distinct resident macrophage populations mediating immunosurveillance at these two pathogen entry points to the liver.
Assuntos
Células de Kupffer/fisiologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Fígado/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Peritônio/microbiologia , Animais , Comunicação Celular , Autorrenovação Celular , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Células de Kupffer/microbiologia , Fígado/microbiologia , Fígado/patologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Infiltração de Neutrófilos , Peritônio/patologiaRESUMO
Through the use of intravital imaging of the liver, we demonstrate a collaborative role for platelets with Kupffer cells (KCs) in eradicating blood-borne bacterial infection. Under basal conditions, platelets, via the platelet-adhesion receptor GPIb, formed transient 'touch-and-go' interactions with von Willebrand factor (vWF) constitutively expressed on KCs. Bacteria such as Bacillus cereus and methicillin-resistant Staphylococcus aureus (MRSA) were rapidly caught by KCs and triggered platelets to switch from 'touch-and-go' adhesion to sustained GPIIb-mediated adhesion on the KC surface to encase the bacterium. Infected GPIbα-deficient mice had more endothelial and KC damage than did their wild-type counterparts, which led to more fluid leakage, substantial polycythemia and rapid mortality. Our study identifies a previously unknown surveillance mechanism by which platelets survey macrophages that rapidly converts to a critical host response to blood-borne bacteria.
Assuntos
Bacillus cereus/imunologia , Plaquetas/microbiologia , Células de Kupffer/microbiologia , Fígado/microbiologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Ativação Plaquetária/imunologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/imunologia , Animais , Plaquetas/imunologia , Imunidade Inata/imunologia , Células de Kupffer/imunologia , Fígado/citologia , Fígado/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Adesividade Plaquetária/imunologia , Organismos Livres de Patógenos EspecíficosRESUMO
Helicobacter pylori infection has been thought to be associated with liver diseases, although the exact mechanisms remain elusive. This study identified H. pylori-induced liver inflammation and tissue damage in infected mice and examined the exosome-mediated mechanism underlying H. pylori infection's impact on liver injury. Exosomes were isolated from H. pylori-infected gastric epithelial GES-1 cells (Hp-GES-EVs), and the crucial virulence factor CagA was identified within these exosomes. Fluorescent labeling demonstrated that Hp-GES-EVs can be absorbed by liver cells. Treatment with Hp-GES-EVs enhanced the proliferation, migration, and invasion of Hep G2 and Hep 3B cells. Additionally, exposure to Hp-GES-EVs activated NF-κB and PI3K/AKT signaling pathways, which provides a reasonable explanation for the liver inflammation and neoplastic traits. Using a mouse model established via tail vein injection of Hp-GES-EVs, exosome-driven liver injury was evidenced by slight hepatocellular erosion around the central hepatic vein and elevated serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and IL-6. Administering the exosome inhibitor GW4869 via intraperitoneal injection in mice resulted in a reduction of liver damage caused by H. pylori infection. These findings illuminate the exosome-mediated pathogenesis of H. pylori-induced liver injury and offer valuable insights into the extra-gastrointestinal manifestations of H. pylori infection.
Assuntos
Antígenos de Bactérias , Proteínas de Bactérias , Modelos Animais de Doenças , Exossomos , Infecções por Helicobacter , Helicobacter pylori , Fígado , Transdução de Sinais , Exossomos/metabolismo , Animais , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/metabolismo , Helicobacter pylori/patogenicidade , Camundongos , Humanos , Proteínas de Bactérias/metabolismo , Fígado/patologia , Fígado/metabolismo , Fígado/microbiologia , Antígenos de Bactérias/metabolismo , Compostos de Benzilideno/farmacologia , Compostos de Anilina/farmacologia , NF-kappa B/metabolismo , Células Hep G2 , Aspartato Aminotransferases/sangue , Interleucina-6/metabolismo , Alanina Transaminase/sangue , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Movimento Celular , Linhagem Celular , Masculino , Fatores de Virulência/metabolismoRESUMO
Kupffer cells, the phagocytes of fetal origin that line the liver sinusoids, are key contributors of host defense against enteroinvasive bacteria. Here, we found that infection by Listeria monocytogenes induced the early necroptotic death of Kupffer cells, which was followed by monocyte recruitment and an anti-bacterial type 1 inflammatory response. Kupffer cell death also triggered a type 2 response that involved the hepatocyte-derived alarmin interleukin-33 (IL-33) and basophil-derived interleukin-4 (IL-4). This led to the alternative activation of the monocyte-derived macrophages recruited to the liver, which thereby replaced ablated Kupffer cells and restored liver homeostasis. Kupffer cell death is therefore a key signal orchestrating type 1 microbicidal inflammation and type-2-mediated liver repair upon infection. This indicates that beyond the classical dichotomy of type 1 and type 2 responses, these responses can develop sequentially in the context of a bacterial infection and act interdependently, orchestrating liver immune responses and return to homeostasis, respectively.
Assuntos
Células de Kupffer/fisiologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Fígado/patologia , Monócitos/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Via Alternativa do Complemento , Homeostase , Inflamação/microbiologia , Interleucina-33 , Interleucina-4/metabolismo , Interleucinas/metabolismo , Células de Kupffer/microbiologia , Fígado/microbiologia , Camundongos , Camundongos Endogâmicos , Monócitos/microbiologia , Necrose , Fagocitose , CicatrizaçãoRESUMO
A taxogenomic study of three strains (3986T, 51.81, and JF 2415) isolated from rabbits between 1972 and 2000 led to the description of a new Neisseria species. The highest sequence similarity of the 16S rRNA gene was found to Neisseria animalis NCTC 10212T (96.7â%). The 16S rRNA gene similarity above 99â% and average nucleotide identity (ANI) values above 96â% among the strains, indicated that they belong to the same species. At the same time, the strains shared ANI values below 81â% and dDDH values below 24â% with all described Neisseria species. In the bac120 gene phylogenetic tree, the three strains clustered near Neisseria elongata and Neisseria bacilliformis in the Neisseria clade. However, the Neisseria clade is not monophyletic, and includes the type strains of Morococcus cerebrosus, Bergeriella denitrificans, Kingella potus, Uruburuella suis, and Uruburuella testudinis. Neisseria shayeganii clustered outside the clade with members of the genus Eikenella. Amino acid identity (AAI) values were calculated, and a threshold of 71â% was used to circumscribe the genus Neisseria. According to this proposed AAI threshold, strains 3986T, 51.81, and JF 2415 were placed within the genus Neisseria. The cells of the three strains were Gram-stain-negative diplococcobacilli and non-motile. Optimal growth on trypticase soy agar occurred at 37 °C and pH 8.5 in aerobic conditions. Notably, all strains exhibited indole production in the API-NH test, which is atypical for Neisseria and the family Neisseriaceae. The strains exhibited a common set of 68 peaks in their MALDI-TOF MS profiles, facilitating the swift and accurate identification of this species. Based on genotypic and phenotypic data, it is proposed that strains 3986T, 51.81, and JF 2415 represent a novel species within the genus Neisseria, for which the name Neisseria leonii sp. nov. is proposed (type strain 3986T=R726T=CIP 109994T=LMG 32907T).
Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Fígado , Pulmão , Neisseria , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Animais , Coelhos , RNA Ribossômico 16S/genética , Neisseria/isolamento & purificação , Neisseria/classificação , Neisseria/genética , DNA Bacteriano/genética , Fígado/microbiologia , Pulmão/microbiologia , Ácidos Graxos/análise , Composição de BasesRESUMO
The gut microbiota, amounting to approximately 100 trillion (1014) microbes represents a genetic repertoire that is bigger than the human genome itself. Evidence on bidirectional interplay between human and microbial genes is mounting. Microbiota probably play vital roles in diverse aspects of normal human metabolism, such as digestion, immune modulation, and gut endocrine function, as well as in the genesis and progression of many human diseases. Indeed, the gut microbiota has been most closely linked to various chronic ailments affecting the liver, although concrete scientific data are sparse. In this narrative review, we initially discuss the basic epidemiology of gut microbiota and the factors influencing their initial formation in the gut. Subsequently, we delve into the gut-liver axis and the evidence regarding the link between gut microbiota and the genesis or progression of various liver diseases. Finally, we summarise the recent research on plausible ways to modulate the gut microbiota to alter the natural history of liver disease.
Assuntos
Microbioma Gastrointestinal , Hepatopatias , Fígado , Humanos , Fígado/microbiologia , Hepatopatias/microbiologia , Animais , Trato Gastrointestinal/microbiologiaRESUMO
Yeasts are unicellular eukaryotic microorganisms extensively employed in various applications, notably as an alternative source of protein in feeds, owing to their nutritional benefits. Despite their potential, marine and mangrove yeast species used in the aquaculture industry have received little attention in the Philippines. Pichia kudriavzevii (A2B R1 ISO 3), sourced from bark samples, was selected and mass-produced due to its high protein content and amino acid profile. The dried biomass of P. kudriavzevii was incorporated into the diets of Nile tilapia (Oreochromis niloticus) juveniles at varying inclusion levels (0, 1, 2, and 4 g/kg diet) and its effect on their growth performance, body composition, and liver and intestinal morphology was assessed after 40 days of feeding. The groups that received P. kudriavzevii at a concentration of 2 g/kg diet exhibited higher final body weight, percent weight gain, and specific growth rate in comparison to the other treatment groups. Whole body proximate composition did not vary among the dietary groups. Intestinal and liver histopathology also indicated no abnormalities. These findings suggest the potential of ascomycetous P. kudriavzevii as a beneficial feed additive in Nile tilapia diets, warranting further investigation into its long-term effects and broader applications in fish culture.
Assuntos
Ração Animal , Aquicultura , Ciclídeos , Pichia , Animais , Ração Animal/análise , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/microbiologia , Pichia/crescimento & desenvolvimento , Pichia/isolamento & purificação , Pichia/metabolismo , Dieta/veterinária , Fígado/microbiologia , Intestinos/microbiologia , Suplementos Nutricionais/análise , FilipinasRESUMO
Gut microbiota (GM) has been proven to resist pathogenic infection through nutritional competition, colonization resistance and promotion of the host immune response. However, in clinical practice, GM is mainly used in intestinal diseases, such as Clostridium difficile infection, and there are few reports on its application in the treatment of pathogenic bacterial infections. In this study, GM from healthy mice was transplanted into mice infected with Listeria monocytogenes using fecal microbiota transplantation (FMT) and the effects were observed. We found that GM from healthy mice could reduce the mortality of infected mice and decrease the counts of L. monocytogenes in their liver and spleen. In addition, FMT inhibited the expression of inflammatory factors in the liver and spleen of infected mice. In vitro cell experiments revealed that GM can reduce the count of L. monocytogenes invading Caco-2 cells and inhibit the L. monocytogenes-caused apoptosis. These results indicate that GM can be used to protect mice infected with L. monocytogenes by eliminating the amount of L. monocytogenes in the host and inhibiting the overexpression of inflammatory factors. Hence, this method can potentially replace antibiotics in the treatment of L. monocytogenes infection.
Assuntos
Apoptose , Citocinas , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Listeria monocytogenes , Listeriose , Animais , Listeriose/microbiologia , Listeriose/imunologia , Camundongos , Citocinas/metabolismo , Humanos , Células CACO-2 , Fígado/microbiologia , Baço/microbiologia , FemininoRESUMO
Chlorine-containing substances are widely used as disinfectants for treating equipment surfaces and technological aids for antimicrobial treatment of a number of foodstuff in the food industry. The toxic and bactericidal effects of the active (free) chlorine they contain are well understood for the concentrations used in practice, whereas little is known about the effect of its residual (subinhibitory) amounts on the organism and on the microbiota, including the ability to induce antimicrobial resistance. The aim of the study was to investigate the effect of different doses of active chlorine at oral administration on the commensal bacteria of intestinal microbiota, body weight gain and micromorphological features of the liver in rats. Material and methods. The study was carried out on male Wistar rats, with an initial body weight of 90-100 g, which for 4 weeks received doses of active chlorine together with drinking water ad libitum, with the given concentration: subinhibitory (10 mg/L), threshold (50 mg/L) and aggravated (100 mg/L). Chloramine was used as a chlorinecontaining agent stable in aqueous solution. Body weight gain was monitored daily. After decapitation, the caecum was taken for microbiota examination as well as the liver. The phenotypic antimicrobial resistance characteristics of Enterobacteriaceae and Enterococci were studied by the disk diffusion method. Additionally, a micromorphologic study of liver slices was performed. Results. Insignificant negative deviations in the body weight gain of rats in the experimental groups receiving subinhibitory doses of active chlorine, combined with a reduced level of Enterococci and Enterobacteriaceae representatives, were revealed. No significant effect of chlorine on the levels of resistant Escherichia coli populations was found, but a tendency to exhibit antimicrobial resistance of Enterococci isolated from rats receiving low doses of active chlorine (10 and 50 mg/l) was detected. No signs of toxic effect on the liver tissue most sensitive to chlorine were detected, but some accumulations of inflammatory cells in the liver slice were revealed. Conclusion. Low doses of chlorine-containing substances at their oral consumption are not indifferent for rats' organism, causing negative phenomena in intestinal bacteria and in liver tissues at the level of tendency. It is expedient to continue studies in this direction.
Assuntos
Microbioma Gastrointestinal , Ratos Wistar , Animais , Masculino , Ratos , Microbioma Gastrointestinal/efeitos dos fármacos , Administração Oral , Cloro/farmacologia , Fígado/efeitos dos fármacos , Fígado/microbiologia , Relação Dose-Resposta a DrogaRESUMO
Connections between the microbiome and health are rapidly emerging in a wide range of diseases. However, a detailed mechanistic understanding of how different microbial communities are influencing their hosts is often lacking. One method researchers have used to understand these effects are germ-free (GF) mouse models. Differences found within the organ systems of these model organisms may highlight generalizable mechanisms that microbiome dysbioses have throughout the host. Here, we applied multiplexed, quantitative proteomics on the brains, spleens, hearts, small intestines, and colons of conventionally raised and GF mice, identifying associations to colonization state in over 7000 proteins. Highly ranked associations were constructed into protein-protein interaction networks and visualized onto an interactive 3D mouse model for user-guided exploration. These results act as a resource for microbiome researchers hoping to identify host effects of microbiome colonization on a given organ of interest. Our results include validation of previously reported effects in xenobiotic metabolism, the innate immune system, and glutamate-associated proteins while simultaneously providing organism-wide context. We highlight organism-wide differences in mitochondrial proteins including consistent increases in NNT, a mitochondrial protein with essential roles in influencing levels of NADH and NADPH, in all analyzed organs of conventional mice. Our networks also reveal new associations for further exploration, including protease responses in the spleen, high-density lipoproteins in the heart, and glutamatergic signaling in the brain. In total, our study provides a resource for microbiome researchers through detailed tables and visualization of the protein-level effects of microbial colonization on several organ systems.
Assuntos
Disbiose/genética , Microbioma Gastrointestinal/genética , Interações Hospedeiro-Patógeno/genética , Proteômica , Animais , Encéfalo/metabolismo , Encéfalo/microbiologia , Colo/metabolismo , Colo/microbiologia , Disbiose/microbiologia , Coração/microbiologia , Humanos , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Fígado/metabolismo , Fígado/microbiologia , Camundongos , Baço/metabolismo , Baço/microbiologiaRESUMO
Microbiome alterations are emerging as one of the most important factors that influence the course of alcohol use disorder (AUD). Recent advances in bioinformatics enable more robust and accurate characterization of changes in the composition of the microbiome. In this study, our objective was to provide the most comprehensive and up-to-date evaluation of microbiome alterations associated with AUD and alcoholic liver disease (ALD). To achieve it, we have applied consistent, state of art bioinformatic workflow to raw reads from multiple 16S rRNA sequencing datasets. The study population consisted of 122 patients with AUD, 75 with ALD, 54 with non-alcoholic liver diseases, and 260 healthy controls. We have found several microbiome alterations that were consistent across multiple datasets. The most consistent changes included a significantly lower abundance of multiple butyrate-producing families, including Ruminococcaceae, Lachnospiraceae, and Oscillospiraceae in AUD compared to HC and further reduction of these families in ALD compared with AUD. Other important results include an increase in endotoxin-producing Proteobacteria in AUD, with the ALD group having the largest increase. All of these alterations can potentially contribute to increased intestinal permeability and inflammation associated with AUD and ALD.
Assuntos
Alcoolismo , Microbioma Gastrointestinal , Lactobacillales , Hepatopatias Alcoólicas , Microbiota , Humanos , Alcoolismo/genética , Alcoolismo/microbiologia , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Hepatopatias Alcoólicas/microbiologia , Lactobacillales/genética , Fígado/microbiologiaRESUMO
Cryptococcosis infection after transplantation is easily overlooked or misdiagnosed. We report a cluster of donor-derived cryptococcosis infection in liver and kidney transplant recipients from the same donor in China. Infections occurred within 1 month after transplantation, and were confirmed by using biopsies and blood tests.
Assuntos
Criptococose , Cryptococcus neoformans , Transplante de Rim , Rim , Transplante de Fígado , Fígado , Complicações Pós-Operatórias , Criptococose/diagnóstico , Criptococose/epidemiologia , Cryptococcus neoformans/isolamento & purificação , Humanos , Hospedeiro Imunocomprometido , Rim/microbiologia , Transplante de Rim/efeitos adversos , Fígado/microbiologia , Transplante de Fígado/efeitos adversos , Doadores de Tecidos , Resultado do TratamentoAssuntos
Febre , Icterícia , Leptospirose , Mialgia , Insuficiência Respiratória , Adulto , Humanos , Masculino , Diagnóstico Diferencial , Febre/diagnóstico , Febre/tratamento farmacológico , Febre/microbiologia , Icterícia/diagnóstico , Icterícia/tratamento farmacológico , Icterícia/microbiologia , Pulmão/diagnóstico por imagem , Pulmão/patologia , Mialgia/diagnóstico , Mialgia/tratamento farmacológico , Mialgia/microbiologia , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/tratamento farmacológico , Insuficiência Respiratória/microbiologia , Tomografia Computadorizada por Raios X , Fígado/microbiologia , Fígado/patologia , Biópsia , Leptospira/isolamento & purificação , Leptospirose/complicações , Leptospirose/diagnóstico , Leptospirose/tratamento farmacológico , Leptospirose/microbiologia , Resultado do Tratamento , Doxiciclina/administração & dosagemRESUMO
Formyl peptide receptors (FPRs, mouse Fprs) belong to the G protein-coupled receptor superfamily and mediate phagocyte migration in response to bacteria- and host-derived chemoattractants; however, knowledge about their in vivo roles in bacterial pathogenesis is limited. In this study, we investigated the role of Fpr1 and Fpr2 in host defense against Escherichia coli infection. In vitro, we found that supernatants from E. coli cultures induced chemotaxis of wild-type (WT) mouse bone marrow-derived neutrophils and that the activity was significantly reduced in cells genetically deficient in either Fpr1 or Fpr2 and was almost absent in cells lacking both receptors. Consistent with this, E. coli supernatants induced chemotaxis and MAPK phosphorylation in HEK293 cells expressing either recombinant Fpr1 or Fpr2 but not untransfected parental cells. WT bone marrow -derived neutrophils could actively phagocytose and kill E. coli, whereas both activities were diminished in cells lacking Fpr1 or Fpr2; again, an additive effect was observed in cells lacking both receptors. In vivo, Fpr1 and Fpr2 deficiency resulted in reduced recruitment of neutrophils in the liver and peritoneal cavity of mice infected with inactivated E. coli Moreover, Fpr1-/- and Fpr2-/- mice had significantly increased mortality compared with WT mice after i.p. challenge with a virulent E. coli clinical isolate. These results indicate a critical role of Fprs in host defense against E. coli infection.
Assuntos
Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Escherichia coli/imunologia , Receptores de Formil Peptídeo/imunologia , Receptores de Formil Peptídeo/metabolismo , Animais , Medula Óssea/imunologia , Medula Óssea/metabolismo , Medula Óssea/microbiologia , Células Cultivadas , Quimiotaxia/imunologia , Células HEK293 , Humanos , Fígado/imunologia , Fígado/metabolismo , Fígado/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Cavidade Peritoneal/microbiologia , Fagocitose/imunologia , Fosforilação/imunologiaRESUMO
Bifidobacterium pseudocatenulatum LI09 could prevent D-galactosamine-induced liver injury. Our previous study has preliminarily determined that different intestinal microbiota profiles existed in the LI09-treated rats. Due to the sample size limitation, some subsequent analyses could not be achieved. In the current study, we conducted different experiments and bioinformatic analyses to characterise the distinct intestinal bacterial microbiota profiles in the LI09-treated rats with liver injury (i.e., LI09 group). Partition around medoids clustering analysis determined two intestinal microbiota profiles (i.e., Cluster_1_LI09 and Cluster_2_LI09) in LI09 group. Compared with Cluster_2_LI09, Cluster_1_LI09 group was determined at less dysbiotic microbial status and with lower level of liver injury. The two microbiota profiles were determined with distinct representative amplicon sequence variants (ASVs), among which, ASV1_Akkermansia and ASV3_Bacteroides were most associated with Cluster_1_LI09 and Cluster_2_LI09, respectively. Multiple representative phylotypes in Cluster_1_LI09 negatively correlating with liver function variables were assigned to Parabacteroides, suggesting Parabacteroides could benefit LI09 on modulating the liver function. In addition, ASV310_Lachnospiraceae, ASV501_Muribaculaceae and ASV484_Lachnospiraceae were determined as network gatekeepers in Cluster_1_LI09 network. The relevant results suggest that some intestinal bacteria could assist LI09 in lowering the intestinal microbial dysbiosis in the rats with liver injury, and their clinical application deserves further investigation.
Assuntos
Bifidobacterium pseudocatenulatum , Doença Hepática Crônica Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Microbiota , Ratos , Animais , Galactosamina/toxicidade , Fígado/microbiologia , Disbiose , BactériasRESUMO
BACKGROUND: Base excision repair (BER), consisting mostly of lesion-specific DNA glycosylases and apurinic/apyrimidinic (AP) endonucleases, is one of the most important DNA repair mechanisms for repair of single nucleobase lesions generated by reactive oxygen and nitrogen species as part of an immune response against bacterial infections. However, few studies have addressed the contribution of BER to bacterial virulence and Listeria monocytogenes BER has thus far remained completely uncharacterized. METHODS: Analysis of the L. monocytogenes EGDe genome identified 7 DNA glycosylases (MutM, MutY, Nth, Tag, Mpg, Ung, and Ung2) and 2 apurinic/apyrimidinic endonucleases (Xth and Nfo) as part of BER. Markerless in-frame deletion mutants were generated for all 9 genes, and mutants were tested for DNA damage survival, mutagenesis, and the ability to colonize a mouse model of infection. RESULTS: Distinct lesion-specific phenotypes were identified for all deletion mutants. Importantly, the Δnth, ΔmutY, and Δnfo mutants were significantly attenuated for virulence in the mouse model and showed much lower colonization of the liver and spleen or were unable to compete with the wild-type strain during in vivo competition assays. CONCLUSIONS: Our results highlight the importance of BER for L. monocytogenes virulence and survival of DNA-damaging insults during host colonization.
Assuntos
Reparo do DNA , DNA Bacteriano/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Macrófagos/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA/genética , DNA Bacteriano/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Feminino , Genes Bacterianos , Humanos , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/metabolismo , Fígado/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Deleção de Sequência , Baço/microbiologia , Células THP-1RESUMO
The gut and the liver have a bidirectional communication via the biliary system and the portal vein. The intestinal microbiota and microbial products play an important role for modulating liver diseases such as alcohol-associated liver disease, non-alcoholic fatty liver disease and steatohepatitis, and cholestatic liver diseases. Here, we review the role of the gut microbiota and its products for the pathogenesis and therapy of chronic liver diseases.