Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(12): 2807-2822, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762879

RESUMO

Piperine has been shown to bind to myosin and shift the distribution of conformational states of myosin molecules from the super-relaxed state to the disordered relaxed state. However, little is known about the implications for muscle force production and potential underlying mechanisms. Muscle contractility experiments were performed using isolated muscles and single fibres from rats and mice. The dose-response effect of piperine on muscle force was assessed at several stimulation frequencies. The potentiation of muscle force was also tested in muscles fatigued by eccentric contractions. Potential mechanisms of force potentiation were assessed by measuring Ca2+ levels during stimulation in enzymatically dissociated muscle fibres, while myofibrillar Ca2+ sensitivity was assessed in chemically skinned muscle fibres. Piperine caused a dose-dependent increase in low-frequency force with no effect on high-frequency force in both slow- and fast-twitch muscle, with similar relative increases in twitch force, rate of force development and relaxation rate. The potentiating effect of piperine on low-frequency force was reversible, and piperine partially recovered low-frequency force in fatigued muscle. Piperine had no effect on myoplasmic free [Ca2+] levels in mouse muscle fibres, whereas piperine substantially augmented the force response to submaximal levels of [Ca2+] in rat MyHCII fibres and MyHCI fibres along with a minor increase in maximum Ca2+-activated force. Piperine enhances low-frequency force production in both fast- and slow-twitch muscle. The effects are reversible and can counteract muscle fatigue. The primary underlying mechanism appears to be an increase in Ca2+ sensitivity. KEY POINTS: Piperine is a plant alkaloid derived from black pepper. It is known to bind to skeletal muscle myosin and enhance resting ATP turnover but its effects on contractility are not well known. We showed for the first time a piperine-induced force potentiation that was pronounced during low-frequency electrical stimulation of isolated muscles. The effect of piperine was observed in both slow and fast muscle types, was reversible, and could counteract the force decrements observed after fatiguing muscle contractions. Piperine treatment caused an increase in myofibrillar Ca2+ sensitivity in chemically skinned muscle fibres, while we observed no effect on intracellular Ca2+ concentrations during electrical stimulation in enzymatically dissociated muscle fibres.


Assuntos
Alcaloides , Benzodioxóis , Cálcio , Contração Muscular , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Piperidinas , Alcamidas Poli-Insaturadas , Animais , Alcamidas Poli-Insaturadas/farmacologia , Benzodioxóis/farmacologia , Piperidinas/farmacologia , Alcaloides/farmacologia , Camundongos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/fisiologia , Ratos , Contração Muscular/efeitos dos fármacos , Masculino , Cálcio/metabolismo , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/fisiologia , Fadiga Muscular/efeitos dos fármacos , Fadiga Muscular/fisiologia , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Relação Dose-Resposta a Droga
2.
Can J Physiol Pharmacol ; 102(5): 342-360, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38118126

RESUMO

Sarcopenia is a musculoskeletal disease that reduces muscle mass and strength in older individuals. The study investigates the effects of azilsartan (AZL) on skeletal muscle loss in natural sarcopenic rats. Male Sprague-Dawley rats aged 4-6 months and 18-21 months were selected as young-matched control and natural-aged (sarcopenic) rats, respectively. Rats were allocated into young and old control (YC and OC) and young and old AZL treatment (YT and OT) groups, which received vehicles and AZL (8 mg/kg, orally) for 6 weeks. Rats were then sacrificed after muscle function analysis. Serum and gastrocnemius (GN) muscles were isolated for further endpoints. AZL significantly improved muscle grip strength and antioxidant levels in sarcopenic rats. AZL also restored the levels of insulin, testosterone, and muscle biomarkers such as myostatin and creatinine kinase in sarcopenic rats. Furthermore, AZL treatment improved the cellular and ultrastructure of GN muscle and prevented the shift of type II (glycolytic) myofibers to type I (oxidative) myofibers. The results showed that AZL intervention restored protein synthesis in natural sarcopenic rats by increasing p-Akt-1 and decreasing muscle RING-finger protein-1 and tumor necrosis factor alpha immunoexpressions. In conclusion, the present findings showed that AZL could be an effective intervention in treating age-related muscle impairments.


Assuntos
Envelhecimento , Benzimidazóis , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Oxidiazóis , Ratos Sprague-Dawley , Sarcopenia , Animais , Sarcopenia/prevenção & controle , Sarcopenia/metabolismo , Sarcopenia/tratamento farmacológico , Sarcopenia/patologia , Masculino , Oxidiazóis/farmacologia , Oxidiazóis/uso terapêutico , Envelhecimento/efeitos dos fármacos , Ratos , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Miostatina/metabolismo , Antioxidantes/farmacologia
3.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892380

RESUMO

Levosimendan's calcium sensitizing effects in heart muscle cells are well established; yet, its potential impact on skeletal muscle cells has not been evidently determined. Despite controversial results, levosimendan is still expected to interact with skeletal muscle through off-target sites (further than troponin C). Adding to this debate, we investigated levosimendan's acute impact on fast-twitch skeletal muscle biomechanics in a length-dependent activation study by submersing single muscle fibres in a levosimendan-supplemented solution. We employed our MyoRobot technology to investigate the calcium sensitivity of skinned single muscle fibres alongside their stress-strain response in the presence or absence of levosimendan (100 µM). While control data are in agreement with the theory of length-dependent activation, levosimendan appears to shift the onset of the 'descending limb' of active force generation to longer sarcomere lengths without notably improving myofibrillar calcium sensitivity. Passive stretches in the presence of levosimendan yielded over twice the amount of enlarged restoration stress and Young's modulus in comparison to control single fibres. Both effects have not been described before and may point towards potential off-target sites of levosimendan.


Assuntos
Cálcio , Fibras Musculares de Contração Rápida , Simendana , Simendana/farmacologia , Animais , Camundongos , Cálcio/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Contração Muscular/efeitos dos fármacos , Sarcômeros/metabolismo , Sarcômeros/efeitos dos fármacos , Masculino , Miofibrilas/metabolismo , Miofibrilas/efeitos dos fármacos
4.
J Food Sci ; 89(6): 3788-3801, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638069

RESUMO

The conversion of fast-twitch fibers into slow-twitch fibers within skeletal muscle plays a crucial role in improving physical stamina and safeguarding against metabolic disorders in individuals. Grape seed proanthocyanidin extract (GSPE) possesses numerous pharmacological and health advantages, effectively inhibiting the onset of chronic illnesses. However, there is a lack of research on the specific mechanisms by which GSPE influences muscle physiology and gut microbiota. This study aims to investigate the role of gut microbiota and their metabolites in GSPE regulation of skeletal muscle fiber type conversion. In this experiment, 54 male BALB/c mice were randomly divided into three groups: basal diet, basal diet supplemented with GSPE, and basal diet supplemented with GSPE and antibiotics. During the feeding period, glucose tolerance and forced swimming tests were performed. After euthanasia, samples of muscle and feces were collected for analysis. The results showed that GSPE increased the muscle mass and anti-fatigue capacity of the mice, as well as the expression of slow-twitch fibers. However, the beneficial effects of GSPE on skeletal muscle fibers disappeared after adding antibiotics to eliminate intestinal microorganisms, suggesting that GSPE may play a role by regulating intestinal microbial structure. In addition, GSPE increased the relative abundance of Blautia, Muribaculaceae, and Enterorhabdus, as well as butyrate production. Importantly, these gut microbes exhibited a significant positive correlation with the expression of slow-twitch muscle fibers. In conclusion, supplementation with GSPE can increase the levels of slow-twitch fibers by modulating the gut microbiota, consequently prolonging the duration of exercise before exhaustion. PRACTICAL APPLICATION: This research suggests that grape seed proanthocyanidin extract (GSPE) has potential applications in improving physical stamina and preventing metabolic disorders. By influencing the gut microbiota and increasing butyric acid production, GSPE contributes to the conversion of fast-twitch muscle fibers into slow-twitch fibers, thereby enhancing anti-fatigue capacity and exercise endurance. While further studies are needed, incorporating GSPE into dietary supplements or functional foods could support individuals seeking to optimize their exercise performance and overall metabolic health.


Assuntos
Ácido Butírico , Microbioma Gastrointestinal , Extrato de Sementes de Uva , Camundongos Endogâmicos BALB C , Proantocianidinas , Animais , Proantocianidinas/farmacologia , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Camundongos , Ácido Butírico/metabolismo , Ácido Butírico/farmacologia , Ceco/microbiologia , Ceco/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA