Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.250
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 41: 229-254, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36737597

RESUMO

Type 2 immunity mediates protective responses to helminths and pathological responses to allergens, but it also has broad roles in the maintenance of tissue integrity, including wound repair. Type 2 cytokines are known to promote fibrosis, an overzealous repair response, but their contribution to healthy wound repair is less well understood. This review discusses the evidence that the canonical type 2 cytokines, IL-4 and IL-13, are integral to the tissue repair process through two main pathways. First, essential for the progression of effective tissue repair, IL-4 and IL-13 suppress the initial inflammatory response to injury. Second, these cytokines regulate how the extracellular matrix is modified, broken down, and rebuilt for effective repair. IL-4 and/or IL-13 amplifies multiple aspects of the tissue repair response, but many of these pathways are highly redundant and can be induced by other signals. Therefore, the exact contribution of IL-4Rα signaling remains difficult to unravel.


Assuntos
Interleucina-13 , Interleucina-4 , Animais , Humanos , Citocinas/metabolismo , Fibrose , Helmintos
2.
Annu Rev Immunol ; 36: 639-665, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29400999

RESUMO

Granulomas are organized aggregates of macrophages, often with characteristic morphological changes, and other immune cells. These evolutionarily ancient structures form in response to persistent particulate stimuli-infectious or noninfectious-that individual macrophages cannot eradicate. Granulomas evolved as protective responses to destroy or sequester particles but are frequently pathological in the context of foreign bodies, infections, and inflammatory diseases. We summarize recent findings that suggest that the granulomatous response unfolds in a stepwise program characterized by a series of macrophage activations and transformations that in turn recruit additional cells and produce structural changes. We explore why different granulomas vary and the reasons that granulomas are protective and pathogenic. Understanding the mechanisms and role of granuloma formation may uncover new therapies for the multitude of granulomatous diseases that constitute serious medical problems while enhancing the protective function of granulomas in infections.


Assuntos
Granuloma/diagnóstico , Granuloma/etiologia , Animais , Diagnóstico Diferencial , Fibrose , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Necrose , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
3.
Cell ; 187(17): 4637-4655.e26, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39043180

RESUMO

The medical burden of stroke extends beyond the brain injury itself and is largely determined by chronic comorbidities that develop secondarily. We hypothesized that these comorbidities might share a common immunological cause, yet chronic effects post-stroke on systemic immunity are underexplored. Here, we identify myeloid innate immune memory as a cause of remote organ dysfunction after stroke. Single-cell sequencing revealed persistent pro-inflammatory changes in monocytes/macrophages in multiple organs up to 3 months after brain injury, notably in the heart, leading to cardiac fibrosis and dysfunction in both mice and stroke patients. IL-1ß was identified as a key driver of epigenetic changes in innate immune memory. These changes could be transplanted to naive mice, inducing cardiac dysfunction. By neutralizing post-stroke IL-1ß or blocking pro-inflammatory monocyte trafficking with a CCR2/5 inhibitor, we prevented post-stroke cardiac dysfunction. Such immune-targeted therapies could potentially prevent various IL-1ß-mediated comorbidities, offering a framework for secondary prevention immunotherapy.


Assuntos
Lesões Encefálicas , Imunidade Inata , Memória Imunológica , Inflamação , Interleucina-1beta , Camundongos Endogâmicos C57BL , Monócitos , Animais , Camundongos , Interleucina-1beta/metabolismo , Lesões Encefálicas/imunologia , Humanos , Masculino , Monócitos/metabolismo , Monócitos/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/imunologia , Cardiopatias/imunologia , Feminino , Receptores CCR2/metabolismo , Fibrose , Epigênese Genética , Imunidade Treinada
4.
Cell ; 186(18): 3793-3809.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37562401

RESUMO

Hepatocytes, the major metabolic hub of the body, execute functions that are human-specific, altered in human disease, and currently thought to be regulated through endocrine and cell-autonomous mechanisms. Here, we show that key metabolic functions of human hepatocytes are controlled by non-parenchymal cells (NPCs) in their microenvironment. We developed mice bearing human hepatic tissue composed of human hepatocytes and NPCs, including human immune, endothelial, and stellate cells. Humanized livers reproduce human liver architecture, perform vital human-specific metabolic/homeostatic processes, and model human pathologies, including fibrosis and non-alcoholic fatty liver disease (NAFLD). Leveraging species mismatch and lipidomics, we demonstrate that human NPCs control metabolic functions of human hepatocytes in a paracrine manner. Mechanistically, we uncover a species-specific interaction whereby WNT2 secreted by sinusoidal endothelial cells controls cholesterol uptake and bile acid conjugation in hepatocytes through receptor FZD5. These results reveal the essential microenvironmental regulation of hepatic metabolism and its human-specific aspects.


Assuntos
Células Endoteliais , Fígado , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Células de Kupffer/metabolismo , Fígado/citologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fibrose/metabolismo
5.
Cell ; 185(8): 1373-1388.e20, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35381199

RESUMO

Systemic sclerosis (scleroderma, SSc) is an incurable autoimmune disease with high morbidity and mortality rates. Here, we conducted a population-scale single-cell genomic analysis of skin and blood samples of 56 healthy controls and 97 SSc patients at different stages of the disease. We found immune compartment dysfunction only in a specific subtype of diffuse SSc patients but global dysregulation of the stromal compartment, particularly in a previously undefined subset of LGR5+-scleroderma-associated fibroblasts (ScAFs). ScAFs are perturbed morphologically and molecularly in SSc patients. Single-cell multiome profiling of stromal cells revealed ScAF-specific markers, pathways, regulatory elements, and transcription factors underlining disease development. Systematic analysis of these molecular features with clinical metadata associates specific ScAF targets with disease pathogenesis and SSc clinical traits. Our high-resolution atlas of the sclerodermatous skin spectrum will enable a paradigm shift in the understanding of SSc disease and facilitate the development of biomarkers and therapeutic strategies.


Assuntos
Escleroderma Sistêmico , Células Cultivadas , Fibroblastos/metabolismo , Fibrose , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/genética , Pele/metabolismo
6.
Annu Rev Cell Dev Biol ; 39: 197-221, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843929

RESUMO

The uterine lining (endometrium) regenerates repeatedly over the life span as part of its normal physiology. Substantial portions of the endometrium are shed during childbirth (parturition) and, in some species, menstruation, but the tissue is rapidly rebuilt without scarring, rendering it a powerful model of regeneration in mammals. Nonetheless, following some assaults, including medical procedures and infections, the endometrium fails to regenerate and instead forms scars that may interfere with normal endometrial function and contribute to infertility. Thus, the endometrium provides an exceptional platform to answer a central question of regenerative medicine: Why do some systems regenerate while others scar? Here, we review our current understanding of diverse endometrial disruption events in humans, nonhuman primates, and rodents, and the associated mechanisms of regenerative success and failure. Elucidating the determinants of these disparate repair processes promises insights into fundamental mechanisms of mammalian regeneration with substantial implications for reproductive health.


Assuntos
Endométrio , Útero , Feminino , Animais , Humanos , Endométrio/patologia , Endométrio/fisiologia , Útero/patologia , Útero/fisiologia , Fibrose , Mamíferos
7.
Annu Rev Biochem ; 90: 631-658, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33823651

RESUMO

Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.


Assuntos
Colágeno/química , Fibrose/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Pró-Colágeno/química , Pró-Colágeno/metabolismo , Animais , Colágeno/metabolismo , Retículo Endoplasmático/metabolismo , Fibrose/genética , Proteínas de Choque Térmico HSP47/química , Proteínas de Choque Térmico HSP47/genética , Humanos , Hidroxilação , Chaperonas Moleculares/metabolismo , Prolina/química , Prolina/metabolismo , Conformação Proteica , Dobramento de Proteína , Processamento de Proteína Pós-Traducional
8.
Nat Rev Mol Cell Biol ; 25(8): 617-638, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38589640

RESUMO

The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.


Assuntos
Fibrose , Miofibroblastos , Cicatrização , Humanos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Animais , Fibrose/metabolismo , Cicatrização/fisiologia , Transdução de Sinais , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Epigênese Genética
9.
Nat Rev Mol Cell Biol ; 25(9): 720-739, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38684869

RESUMO

Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.


Assuntos
Transição Epitelial-Mesenquimal , Fibrose , Humanos , Animais , Cicatrização/fisiologia , Regeneração/fisiologia , Células Epiteliais/patologia , Células Epiteliais/metabolismo
10.
Nat Immunol ; 24(9): 1423-1433, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474654

RESUMO

Fibrosis, defined by the excess deposition of structural and matricellular proteins in the extracellular space, underlies tissue dysfunction in multiple chronic diseases. Approved antifibrotics have proven modest in efficacy, and the immune compartment remains, for the most part, an untapped therapeutic opportunity. Recent single-cell analyses have interrogated human fibrotic tissues, including immune cells. These studies have revealed a conserved profile of scar-associated macrophages, which localize to the fibrotic niche and interact with mesenchymal cells that produce pathological extracellular matrix. Here we review recent advances in the understanding of the fibrotic microenvironment in human diseases, with a focus on immune cell profiles and functional immune-stromal interactions. We also discuss the key role of the immune system in mediating fibrosis regression and highlight avenues for future study to elucidate potential approaches to targeting inflammatory cells in fibrotic disorders.


Assuntos
Matriz Extracelular , Humanos , Fibrose , Matriz Extracelular/metabolismo
11.
Nat Immunol ; 24(9): 1443-1457, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563309

RESUMO

Tissue-resident macrophages (TRMs) are long-lived cells that maintain locally and can be phenotypically distinct from monocyte-derived macrophages. Whether TRMs and monocyte-derived macrophages have district roles under differing pathologies is not understood. Here, we showed that a substantial portion of the macrophages that accumulated during pancreatitis and pancreatic cancer in mice had expanded from TRMs. Pancreas TRMs had an extracellular matrix remodeling phenotype that was important for maintaining tissue homeostasis during inflammation. Loss of TRMs led to exacerbation of severe pancreatitis and death, due to impaired acinar cell survival and recovery. During pancreatitis, TRMs elicited protective effects by triggering the accumulation and activation of fibroblasts, which was necessary for initiating fibrosis as a wound healing response. The same TRM-driven fibrosis, however, drove pancreas cancer pathogenesis and progression. Together, these findings indicate that TRMs play divergent roles in the pathogenesis of pancreatitis and cancer through regulation of stromagenesis.


Assuntos
Pâncreas , Pancreatite , Camundongos , Animais , Pâncreas/patologia , Macrófagos , Pancreatite/genética , Pancreatite/patologia , Fibrose , Neoplasias Pancreáticas
12.
Annu Rev Immunol ; 31: 107-35, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516981

RESUMO

Fibrosis is the production of excessive amounts of connective tissue, i.e., scar formation, in the course of reactive and reparative processes. Fibrosis develops as a consequence of various underlying diseases and presents a major diagnostically and therapeutically unsolved problem. In this review, we postulate that fibrosis is always a sequela of inflammatory processes and that the many different causes of fibrosis all channel into the same final stereotypical pathways. During the inflammatory phase, both innate and adaptive immune mechanisms are operative. This concept is exemplified by fibrotic diseases that develop as a consequence of tissue damage, primary inflammatory diseases, fibrotic alterations induced by foreign body implants, "spontaneous" fibrosis, and tumor-associated fibrotic changes.


Assuntos
Fibroblastos/imunologia , Fibroblastos/patologia , Miofibroblastos/imunologia , Miofibroblastos/patologia , Imunidade Adaptativa , Animais , Proliferação de Células , Transdiferenciação Celular/imunologia , Fibrose , Humanos , Imunidade Inata , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia
13.
Cell ; 181(4): 848-864.e18, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32298651

RESUMO

Chronic obstructive pulmonary disease (COPD) is a progressive condition of chronic bronchitis, small airway obstruction, and emphysema that represents a leading cause of death worldwide. While inflammation, fibrosis, mucus hypersecretion, and metaplastic epithelial lesions are hallmarks of this disease, their origins and dependent relationships remain unclear. Here we apply single-cell cloning technologies to lung tissue of patients with and without COPD. Unlike control lungs, which were dominated by normal distal airway progenitor cells, COPD lungs were inundated by three variant progenitors epigenetically committed to distinct metaplastic lesions. When transplanted to immunodeficient mice, these variant clones induced pathology akin to the mucous and squamous metaplasia, neutrophilic inflammation, and fibrosis seen in COPD. Remarkably, similar variants pre-exist as minor constituents of control and fetal lung and conceivably act in normal processes of immune surveillance. However, these same variants likely catalyze the pathologic and progressive features of COPD when expanded to high numbers.


Assuntos
Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Adulto , Idoso , Animais , Feminino , Fibrose/fisiopatologia , Humanos , Inflamação/patologia , Pulmão/metabolismo , Masculino , Metaplasia/fisiopatologia , Camundongos , Pessoa de Meia-Idade , Neutrófilos/imunologia , Pneumonia/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Análise de Célula Única/métodos , Células-Tronco/metabolismo
14.
Cell ; 182(3): 545-562.e23, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32621799

RESUMO

Scar tissue size following myocardial infarction is an independent predictor of cardiovascular outcomes, yet little is known about factors regulating scar size. We demonstrate that collagen V, a minor constituent of heart scars, regulates the size of heart scars after ischemic injury. Depletion of collagen V led to a paradoxical increase in post-infarction scar size with worsening of heart function. A systems genetics approach across 100 in-bred strains of mice demonstrated that collagen V is a critical driver of postinjury heart function. We show that collagen V deficiency alters the mechanical properties of scar tissue, and altered reciprocal feedback between matrix and cells induces expression of mechanosensitive integrins that drive fibroblast activation and increase scar size. Cilengitide, an inhibitor of specific integrins, rescues the phenotype of increased post-injury scarring in collagen-V-deficient mice. These observations demonstrate that collagen V regulates scar size in an integrin-dependent manner.


Assuntos
Cicatriz/metabolismo , Colágeno Tipo V/deficiência , Colágeno Tipo V/metabolismo , Traumatismos Cardíacos/metabolismo , Contração Miocárdica/genética , Miofibroblastos/metabolismo , Animais , Cicatriz/genética , Cicatriz/fisiopatologia , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo V/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Fibrose/genética , Fibrose/metabolismo , Regulação da Expressão Gênica/genética , Integrinas/antagonistas & inibidores , Integrinas/genética , Integrinas/metabolismo , Isoproterenol/farmacologia , Masculino , Mecanotransdução Celular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Força Atômica/instrumentação , Microscopia Eletrônica de Transmissão , Contração Miocárdica/efeitos dos fármacos , Miofibroblastos/citologia , Miofibroblastos/patologia , Miofibroblastos/ultraestrutura , Análise de Componente Principal , Proteômica , RNA-Seq , Análise de Célula Única
15.
Cell ; 180(1): 107-121.e17, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31866069

RESUMO

Fibrosis can develop in most organs and causes organ failure. The most common type of lung fibrosis is known as idiopathic pulmonary fibrosis, in which fibrosis starts at the lung periphery and then progresses toward the lung center, eventually causing respiratory failure. Little is known about the mechanisms underlying the pathogenesis and periphery-to-center progression of the disease. Here we discovered that loss of Cdc42 function in alveolar stem cells (AT2 cells) causes periphery-to-center progressive lung fibrosis. We further show that Cdc42-null AT2 cells in both post-pneumonectomy and untreated aged mice cannot regenerate new alveoli, resulting in sustained exposure of AT2 cells to elevated mechanical tension. We demonstrate that elevated mechanical tension activates a TGF-ß signaling loop in AT2 cells, which drives the periphery-to-center progression of lung fibrosis. Our study establishes a direct mechanistic link between impaired alveolar regeneration, mechanical tension, and progressive lung fibrosis.


Assuntos
Células-Tronco Adultas/metabolismo , Fibrose Pulmonar Idiopática/etiologia , Alvéolos Pulmonares/metabolismo , Células-Tronco Adultas/patologia , Idoso , Células Epiteliais Alveolares/patologia , Animais , Fenômenos Biomecânicos/fisiologia , Feminino , Fibrose/patologia , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Alvéolos Pulmonares/patologia , Regeneração , Transdução de Sinais , Células-Tronco/patologia , Estresse Mecânico , Estresse Fisiológico/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
16.
Nat Immunol ; 23(6): 947-959, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35552540

RESUMO

Inflammation is an important component of fibrosis but immune processes that orchestrate kidney fibrosis are not well understood. Here we apply single-cell sequencing to a mouse model of kidney fibrosis. We identify a subset of kidney tubule cells with a profibrotic-inflammatory phenotype characterized by the expression of cytokines and chemokines associated with immune cell recruitment. Receptor-ligand interaction analysis and experimental validation indicate that CXCL1 secreted by profibrotic tubules recruits CXCR2+ basophils. In mice, these basophils are an important source of interleukin-6 and recruitment of the TH17 subset of helper T cells. Genetic deletion or antibody-based depletion of basophils results in reduced renal fibrosis. Human kidney single-cell, bulk gene expression and immunostaining validate a function for basophils in patients with kidney fibrosis. Collectively, these studies identify basophils as contributors to the development of renal fibrosis and suggest that targeting these cells might be a useful clinical strategy to manage chronic kidney disease.


Assuntos
Basófilos , Insuficiência Renal Crônica , Animais , Fibrose , Humanos , Rim/metabolismo , Túbulos Renais , Camundongos , Insuficiência Renal Crônica/metabolismo , Análise de Célula Única
17.
Immunity ; 57(6): 1306-1323.e8, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38815582

RESUMO

Group 3 innate lymphoid cells (ILC3s) regulate inflammation and tissue repair at mucosal sites, but whether these functions pertain to other tissues-like the kidneys-remains unclear. Here, we observed that renal fibrosis in humans was associated with increased ILC3s in the kidneys and blood. In mice, we showed that CXCR6+ ILC3s rapidly migrated from the intestinal mucosa and accumulated in the kidney via CXCL16 released from the injured tubules. Within the fibrotic kidney, ILC3s increased the expression of programmed cell death-1 (PD-1) and subsequent IL-17A production to directly activate myofibroblasts and fibrotic niche formation. ILC3 expression of PD-1 inhibited IL-23R endocytosis and consequently amplified the JAK2/STAT3/RORγt/IL-17A pathway that was essential for the pro-fibrogenic effect of ILC3s. Thus, we reveal a hitherto unrecognized migration pathway of ILC3s from the intestine to the kidney and the PD-1-dependent function of ILC3s in promoting renal fibrosis.


Assuntos
Movimento Celular , Fibrose , Rim , Linfócitos , Receptor de Morte Celular Programada 1 , Receptores CXCR6 , Receptores de Interleucina , Transdução de Sinais , Animais , Fibrose/imunologia , Camundongos , Receptores CXCR6/metabolismo , Receptores CXCR6/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais/imunologia , Movimento Celular/imunologia , Humanos , Rim/patologia , Rim/imunologia , Rim/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Receptores de Interleucina/metabolismo , Receptores de Interleucina/imunologia , Camundongos Endogâmicos C57BL , Nefropatias/imunologia , Nefropatias/metabolismo , Nefropatias/patologia , Imunidade Inata/imunologia , Camundongos Knockout , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/imunologia , Intestinos/patologia
18.
Cell ; 175(2): 310-311, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290137

RESUMO

Roediger et al. (2018) demonstrate that a kidney disease characterized by apparently spontaneous nephropathy that had been recognized in laboratory mice for many years is caused by a newly recognized virus named the mouse kidney parvovirus (MKPV). That virus appears to be widespread in mouse colonies as it is not detected by current diagnostic tools, and its recognition presents new opportunities for understanding the pathology of tubulointerstitial fibrosis.


Assuntos
Nefrite Intersticial , Infecções por Parvoviridae , Parvovirus , Animais , Fibrose , Camundongos
19.
Cell ; 175(2): 530-543.e24, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30220458

RESUMO

The occurrence of a spontaneous nephropathy with intranuclear inclusions in laboratory mice has puzzled pathologists for over 4 decades, because its etiology remains elusive. The condition is more severe in immunodeficient animals, suggesting an infectious cause. Using metagenomics, we identify the causative agent as an atypical virus, termed "mouse kidney parvovirus" (MKPV), belonging to a divergent genus of Parvoviridae. MKPV was identified in animal facilities in Australia and North America, is transmitted via a fecal-oral or urinary-oral route, and is controlled by the adaptive immune system. Detailed analysis of the clinical course and histopathological features demonstrated a stepwise progression of pathology ranging from sporadic tubular inclusions to tubular degeneration and interstitial fibrosis and culminating in renal failure. In summary, we identify a widely distributed pathogen in laboratory mice and establish MKPV-induced nephropathy as a new tool for elucidating mechanisms of tubulointerstitial fibrosis that shares molecular features with chronic kidney disease in humans.


Assuntos
Nefrite Intersticial/virologia , Parvovirus/isolamento & purificação , Parvovirus/patogenicidade , Animais , Austrália , Progressão da Doença , Feminino , Fibrose/patologia , Fibrose/virologia , Humanos , Rim/metabolismo , Rim/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrite Intersticial/fisiopatologia , América do Norte , Infecções por Parvoviridae/metabolismo
20.
Cell ; 173(1): 153-165.e22, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29502968

RESUMO

CNS injury often severs axons. Scar tissue that forms locally at the lesion site is thought to block axonal regeneration, resulting in permanent functional deficits. We report that inhibiting the generation of progeny by a subclass of pericytes led to decreased fibrosis and extracellular matrix deposition after spinal cord injury in mice. Regeneration of raphespinal and corticospinal tract axons was enhanced and sensorimotor function recovery improved following spinal cord injury in animals with attenuated pericyte-derived scarring. Using optogenetic stimulation, we demonstrate that regenerated corticospinal tract axons integrated into the local spinal cord circuitry below the lesion site. The number of regenerated axons correlated with improved sensorimotor function recovery. In conclusion, attenuation of pericyte-derived fibrosis represents a promising therapeutic approach to facilitate recovery following CNS injury.


Assuntos
Cicatriz/patologia , Traumatismos da Medula Espinal/patologia , Animais , Axônios/fisiologia , Axônios/efeitos da radiação , Modelos Animais de Doenças , Potenciais Evocados/efeitos da radiação , Matriz Extracelular/metabolismo , Fibrose , Luz , Camundongos , Camundongos Transgênicos , Pericitos/citologia , Pericitos/metabolismo , Estimulação Luminosa , Tratos Piramidais/fisiologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Recuperação de Função Fisiológica , Regeneração , Córtex Sensório-Motor/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA