Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627406

RESUMO

Marine Synechococcus cyanobacteria owe their ubiquity in part to the wide pigment diversity of their light-harvesting complexes. In open ocean waters, cells predominantly possess sophisticated antennae with rods composed of phycocyanin and two types of phycoerythrins (PEI and PEII). Some strains are specialized for harvesting either green or blue light, while others can dynamically modify their light absorption spectrum to match the dominant ambient color. This process, called type IV chromatic acclimation (CA4), has been linked to the presence of a small genomic island occurring in two configurations (CA4-A and CA4-B). While the CA4-A process has been partially characterized, the CA4-B process has remained an enigma. Here we characterize the function of two members of the phycobilin lyase E/F clan, MpeW and MpeQ, in Synechococcus sp. strain A15-62 and demonstrate their critical role in CA4-B. While MpeW, encoded in the CA4-B island and up-regulated in green light, attaches the green light-absorbing chromophore phycoerythrobilin to cysteine-83 of the PEII α-subunit in green light, MpeQ binds phycoerythrobilin and isomerizes it into the blue light-absorbing phycourobilin at the same site in blue light, reversing the relationship of MpeZ and MpeY in the CA4-A strain RS9916. Our data thus reveal key molecular differences between the two types of chromatic acclimaters, both highly abundant but occupying distinct complementary ecological niches in the ocean. They also support an evolutionary scenario whereby CA4-B island acquisition allowed former blue light specialists to become chromatic acclimaters, while former green light specialists would have acquired this capacity by gaining a CA4-A island.


Assuntos
Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Liases/metabolismo , Ficocianina/biossíntese , Ficoeritrina/biossíntese , Pigmentos Biológicos/biossíntese , Synechococcus/metabolismo , Aclimatação , Organismos Aquáticos , Proteínas de Bactérias/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ilhas Genômicas , Luz , Complexos de Proteínas Captadores de Luz/genética , Liases/genética , Ficobilinas/biossíntese , Ficobilinas/genética , Ficocianina/genética , Ficoeritrina/genética , Filogenia , Pigmentos Biológicos/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Synechococcus/classificação , Synechococcus/genética , Synechococcus/efeitos da radiação , Urobilina/análogos & derivados , Urobilina/biossíntese , Urobilina/genética
2.
Biochem J ; 478(5): 1043-1059, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33559683

RESUMO

Cyanobacteriochromes are linear tetrapyrrole-binding photoreceptors produced by cyanobacteria. Their chromophore-binding GAF domains are categorized into many lineages. Among them, dual Cys-type cyanobacteriochrome GAF domains possessing not only a highly conserved 'first Cys' but also a 'second Cys' are found from multiple lineages. The first Cys stably attaches to C31 of the A-ring, while the second Cys mostly shows reversible ligation to the C10 of the chromophore. Notably, the position of the second Cys in the primary sequence is diversified, and the most abundant dual Cys-type GAF domains have a 'second Cys' within the DXCF motif, which are called DXCF GAF domains. It has been long known that the second Cys in the DXCF GAF domains not only shows the reversible ligation but also is involved in isomerization activity (reduction in C4=C5 double bond) from the initially incorporated phycocyanobilin to phycoviolobilin. However, comprehensive site-directed mutagenesis on the DXCF GAF domains, AM1_6305g1 and AM1_1499g1, revealed that the second Cys is dispensable for isomerization activity, in which three residues participate by fixing the C- and D-rings. Fixation of the chromophore on both sides of the C5 bridge is necessary, even though one side of the fixation site is far from this bridge, with the other side at C31 fixed by the first Cys.


Assuntos
Cianobactérias/metabolismo , Cisteína/química , Mutação , Fotorreceptores Microbianos/metabolismo , Ficobilinas/biossíntese , Fitocromo/metabolismo , Cisteína/genética , Cisteína/metabolismo , Mutagênese Sítio-Dirigida , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/genética , Fitocromo/química , Fitocromo/genética , Conformação Proteica , Domínios Proteicos
3.
Microb Cell Fact ; 20(1): 128, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225717

RESUMO

BACKGROUND: The development of multiple gene expression systems, especially those based on the physical signals, such as multiple color light irradiations, is challenging. Complementary chromatic acclimation (CCA), a photoreversible process that facilitates the control of cellular expression using light of different wavelengths in cyanobacteria, is one example. In this study, an artificial CCA systems, inspired by type III CCA light-regulated gene expression, was designed by employing a single photosensor system, the CcaS/CcaR green light gene expression system derived from Synechocystis sp. PCC6803, combined with G-box (the regulator recognized by activated CcaR), the cognate cpcG2 promoter, and the constitutively transcribed promoter, the PtrcΔLacO promoter. RESULTS: One G-box was inserted upstream of the cpcG2 promoter and a reporter gene, the rfp gene (green light-induced gene expression), and the other G-box was inserted between the PtrcΔLacO promoter and a reporter gene, the bfp gene (red light-induced gene expression). The Escherichia coli transformants with plasmid-encoded genes were evaluated at the transcriptional and translational levels under red or green light illumination. Under green light illumination, the transcription and translation of the rfp gene were observed, whereas the expression of the bfp gene was repressed. Under red light illumination, the transcription and translation of the bfp gene were observed, whereas the expression of the rfp gene was repressed. During the red and green light exposure cycles at every 6 h, BFP expression increased under red light exposure while RFP expression was repressed, and RFP expression increased under green light exposure while BFP expression was repressed. CONCLUSION: An artificial CCA system was developed to realize a multiple gene expression system, which was regulated by two colors, red and green lights, using a single photosensor system, the CcaS/CcaR system derived from Synechocystis sp. PCC6803, in E. coli. The artificial CCA system functioned repeatedly during red and green light exposure cycles. These results demonstrate the potential application of this CCA gene expression system for the production of multiple metabolites in a variety of microorganisms, such as cyanobacteria.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Expressão Gênica , Luz , Escherichia coli/metabolismo , Genes Reporter , Proteínas Luminescentes/genética , Ficobilinas/biossíntese , Ficobilinas/genética , Ficocianina/biossíntese , Ficocianina/genética , Regiões Promotoras Genéticas , Synechocystis/genética , Synechocystis/metabolismo , Transcrição Gênica , Transformação Bacteriana , Proteína Vermelha Fluorescente
4.
Proc Natl Acad Sci U S A ; 114(45): 11962-11967, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078307

RESUMO

Optogenetics is a powerful tool to precisely manipulate cell signaling in space and time. For example, protein activity can be regulated by several light-induced dimerization (LID) systems. Among them, the phytochrome B (PhyB)-phytochrome-interacting factor (PIF) system is the only available LID system controlled by red and far-red lights. However, the PhyB-PIF system requires phycocyanobilin (PCB) or phytochromobilin as a chromophore, which must be artificially added to mammalian cells. Here, we report an expression vector that coexpresses HO1 and PcyA with Ferredoxin and Ferredoxin-NADP+ reductase for the efficient synthesis of PCB in the mitochondria of mammalian cells. An even higher intracellular PCB concentration was achieved by the depletion of biliverdin reductase A, which degrades PCB. The PCB synthesis and PhyB-PIF systems allowed us to optogenetically regulate intracellular signaling without any external supply of chromophores. Thus, we have provided a practical method for developing a fully genetically encoded PhyB-PIF system, which paves the way for its application to a living animal.


Assuntos
Ferredoxina-NADP Redutase/biossíntese , Ferredoxinas/biossíntese , Heme Oxigenase (Desciclizante)/biossíntese , Optogenética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases/biossíntese , Ficobilinas/biossíntese , Ficocianina/biossíntese , Linhagem Celular Tumoral , Vetores Genéticos/genética , Células HeLa , Humanos , Luz , Ficobilinas/genética , Ficocianina/genética , Transdução de Sinais/genética
5.
Nucleic Acids Res ; 45(15): 9193-9205, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28911120

RESUMO

Highly regulated induction systems enabling dose-dependent and reversible fine-tuning of protein expression output are beneficial for engineering complex biosynthetic pathways. To address this, we developed PhiReX, a novel red/far-red light-regulated protein expression system for use in Saccharomyces cerevisiae. PhiReX is based on the combination of a customizable synTALE DNA-binding domain, the VP64 activation domain and the light-sensitive dimerization of the photoreceptor PhyB and its interacting partner PIF3 from Arabidopsis thaliana. Robust gene expression and high protein levels are achieved by combining genome integrated red light-sensing components with an episomal high-copy reporter construct. The gene of interest as well as the synTALE DNA-binding domain can be easily exchanged, allowing the flexible regulation of any desired gene by targeting endogenous or heterologous promoter regions. To allow low-cost induction of gene expression for industrial fermentation processes, we engineered yeast to endogenously produce the chromophore required for the effective dimerization of PhyB and PIF3. Time course experiments demonstrate high-level induction over a period of at least 48 h.


Assuntos
Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ligação a DNA/genética , Engenharia Genética/métodos , Proteínas de Homeodomínio/genética , Fitocromo B/genética , Saccharomyces cerevisiae/genética , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Luz , Transdução de Sinal Luminoso , Ficobilinas/biossíntese , Ficobilinas/genética , Ficocianina/biossíntese , Ficocianina/genética , Fitocromo B/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Multimerização Proteica , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação
6.
New Phytol ; 214(3): 1145-1157, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28106912

RESUMO

Land plant phytochromes perceive red and far-red light to control growth and development, using the linear tetrapyrrole (bilin) chromophore phytochromobilin (PΦB). Phytochromes from streptophyte algae, sister species to land plants, instead use phycocyanobilin (PCB). PCB and PΦB are synthesized by different ferredoxin-dependent bilin reductases (FDBRs): PΦB is synthesized by HY2, whereas PCB is synthesized by PcyA. The pathway for PCB biosynthesis in streptophyte algae is unknown. We used phylogenetic analysis and heterologous reconstitution of bilin biosynthesis to investigate bilin biosynthesis in streptophyte algae. Phylogenetic results suggest that PcyA is present in chlorophytes and prasinophytes but absent in streptophytes. A system reconstituting bilin biosynthesis in Escherichia coli was modified to utilize HY2 from the streptophyte alga Klebsormidium flaccidum (KflaHY2). The resulting bilin was incorporated into model cyanobacterial photoreceptors and into phytochrome from the early-diverging streptophyte alga Mesostigma viride (MvirPHY1). All photoreceptors tested incorporate PCB rather than PΦB, indicating that KflaHY2 is sufficient for PCB synthesis without any other algal protein. MvirPHY1 exhibits a red-far-red photocycle similar to those seen in other streptophyte algal phytochromes. These results demonstrate that streptophyte algae use HY2 to synthesize PCB, consistent with the hypothesis that PΦB synthesis arose late in HY2 evolution.


Assuntos
Proteínas de Algas/metabolismo , Clorófitas/metabolismo , Ficobilinas/biossíntese , Ficocianina/biossíntese , Fitocromo/metabolismo , Escherichia coli/metabolismo , Ferredoxinas/metabolismo , Oxirredutases/metabolismo , Ficobilinas/química , Ficobilinas/metabolismo , Ficocianina/química , Ficocianina/metabolismo , Filogenia , Desnaturação Proteica
7.
Environ Microbiol ; 18(12): 4337-4347, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26950653

RESUMO

The pink open-chain tetrapyrrole pigment phycoerythrobilin (PEB) is employed by marine cyanobacteria, red algae and cryptophytes as a light-harvesting chromophore in phycobiliproteins. Genes encoding biosynthesis proteins for PEB have also been discovered in cyanophages, viruses that infect cyanobacteria, and mimic host pigment biosynthesis with the exception of PebS which combines the enzymatic activities of two host enzymes. In this study, we have identified novel members of the PEB biosynthetic enzyme families, heme oxygenases and ferredoxin-dependent bilin reductases. Encoding genes were found in metagenomic datasets and could be traced back to bacteriophage but not cyanophage origin. While the heme oxygenase exhibited standard activity, a new bilin reductase with highest homology to the teal pigment producing enzyme PcyA revealed PEB biosynthetic activity. Although PcyX possesses PebS-like activity both enzymes share only 9% sequence identity and likely catalyze the reaction via two independent mechanisms. Our data point towards the presence of phycobilin biosynthetic genes in phages that probably infect alphaproteobacteria and, therefore, further support a role of phycobilins outside oxygenic phototrophs.


Assuntos
Bacteriófagos/metabolismo , Vias Biossintéticas , Ficobilinas/biossíntese , Ficoeritrina/biossíntese , Água do Mar/virologia , Bacteriófagos/classificação , Bacteriófagos/enzimologia , Bacteriófagos/genética , Oceanos e Mares , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
Photochem Photobiol Sci ; 15(4): 546-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27004456

RESUMO

The genome of the cyanobacterium Nostoc sp. PCC 7120 encodes a large number of putative bacteriophytochrome and cyanobacteriochrome photoreceptors that, due to their long-wavelength absorption and fluorescence emission, might serve as fluorescent tags in intracellular investigations. We show that the PAS-GAF domain of the bacteriophytochrome, AphB, binds biliverdin covalently and exhibits, besides its reversible photochemistry, a moderate fluorescence in the near infrared (NIR) spectral region. It was selected for further increasing the brightness while retaining the NIR fluorescence. In the first step, amino acids assumed to improve fluorescence were selectively mutated. The resulting variants were then subjected to several rounds of random mutagenesis and screened for enhanced fluorescence in the NIR. The brightness of optimized PAS-GAF variants increased more than threefold compared to that of wt AphB(1-321), with only insignificant spectral shifts (Amax around 695 nm, and Fmax around 720 nm). In general, the brightness increases with decreasing wavelengths, which allows for a selection of the fluorophore depending on the optical properties of the tissue. A spectral heterogeneity was observed when residue His260, located in close proximity to the chromophore, was mutated to Tyr, emphasizing the strong effects of the environment on the electronic properties of the bound biliverdin chromophore.


Assuntos
Nostoc/metabolismo , Ficobilinas/biossíntese , Fitocromo/metabolismo , Microscopia de Fluorescência , Modelos Moleculares , Fitocromo/química , Espectrofotometria Ultravioleta
9.
Proc Natl Acad Sci U S A ; 110(9): 3621-6, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23345435

RESUMO

The maintenance of functional chloroplasts in photosynthetic eukaryotes requires real-time coordination of the nuclear and plastid genomes. Tetrapyrroles play a significant role in plastid-to-nucleus retrograde signaling in plants to ensure that nuclear gene expression is attuned to the needs of the chloroplast. Well-known sites of synthesis of chlorophyll for photosynthesis, plant chloroplasts also export heme and heme-derived linear tetrapyrroles (bilins), two critical metabolites respectively required for essential cellular activities and for light sensing by phytochromes. Here we establish that Chlamydomonas reinhardtii, one of many chlorophyte species that lack phytochromes, can synthesize bilins in both plastid and cytosol compartments. Genetic analyses show that both pathways contribute to iron acquisition from extracellular heme, whereas the plastid-localized pathway is essential for light-dependent greening and phototrophic growth. Our discovery of a bilin-dependent nuclear gene network implicates a widespread use of bilins as retrograde signals in oxygenic photosynthetic species. Our studies also suggest that bilins trigger critical metabolic pathways to detoxify molecular oxygen produced by photosynthesis, thereby permitting survival and phototrophic growth during the light period.


Assuntos
Pigmentos Biliares/metabolismo , Chlamydomonas reinhardtii/fisiologia , Processos Fototróficos , Pigmentação , Transdução de Sinais , Biliverdina/farmacologia , Biocatálise/efeitos dos fármacos , Biocatálise/efeitos da radiação , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/enzimologia , Cloroplastos/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos da radiação , Genes de Plantas/genética , Heme/metabolismo , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Ferro/farmacologia , Luz , Mutação/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Fenótipo , Processos Fototróficos/efeitos dos fármacos , Processos Fototróficos/genética , Ficobilinas/biossíntese , Ficocianina/biossíntese , Pigmentação/efeitos dos fármacos , Pigmentação/genética , Pigmentação/efeitos da radiação , Plantas Geneticamente Modificadas , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Frações Subcelulares/efeitos da radiação
10.
Proc Natl Acad Sci U S A ; 109(21): 8310-5, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22566621

RESUMO

The red/far-red light photoreceptor phytochrome mediates photomorphological responses in plants. For light sensing and signaling, phytochromes need to associate with open-chain tetrapyrrole molecules as the chromophore. Biosynthesis of tetrapyrrole chromophores requires members of ferredoxin-dependent bilin reductases (FDBRs). It was shown that LONG HYPOCOTYL 2 (HY2) is the only FDBR in flowering plants producing the phytochromobilin (PΦB) for phytochromes. However, in the moss Physcomitrella patens, we found a second FDBR that catalyzes the formation of phycourobilin (PUB), a tetrapyrrole pigment usually found as the protein-bound form in cyanobacteria and red algae. Thus, we named the enzyme PUB synthase (PUBS). Severe photomorphogenic phenotypes, including the defect of phytochrome-mediated phototropism, were observed in Physcomitrella patens when both HY2 and PUBS were disrupted by gene targeting. This indicates HY2 and PUBS function redundantly in phytochrome-mediated responses of nonvascular plants. Our studies also show that functional PUBS orthologs are found in selected lycopod and chlorophyte genomes. Using mRNA sequencing for transcriptome profiling, we demonstrate that expression of the majority of red-light-responsive genes are misregulated in the pubs hy2 double mutant. These studies showed that moss phytochromes rapidly repress expression of genes involved in cell wall organization, transcription, hormone responses, and protein phosphorylation but activate genes involved in photosynthesis and stress signaling during deetiolation. We propose that, in nonvascular plants, HY2 and PUBS produce structurally different but functionally similar chromophore precursors for phytochromes. Holophytochromes regulate biological processes through light signaling to efficiently reprogram gene expression for vegetative growth in the light.


Assuntos
Bryopsida/enzimologia , Oxirredutases/metabolismo , Ficobilinas/biossíntese , Ficoeritrina/biossíntese , Proteínas de Plantas/metabolismo , Plastídeos/fisiologia , Urobilina/análogos & derivados , Bryopsida/genética , Bryopsida/crescimento & desenvolvimento , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Técnicas de Inativação de Genes , Luz , Dados de Sequência Molecular , Oxirredutases/genética , Fotoperíodo , Fitocromo/genética , Fitocromo/metabolismo , Proteínas de Plantas/genética , Tetrapirróis/biossíntese , Transcriptoma/fisiologia , Urobilina/biossíntese
11.
Genes (Basel) ; 15(8)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39202418

RESUMO

Phycocyanobilin (PCB) is a small chromophore found in certain phycobiliproteins, such as phycocyanins (PCs) and allophycocyanins (APCs). PCB, along with other phycobilins (PBs) and intermediates such as biliverdin (BV) or phycoerythrobilin (PEB), is attracting increasing biotechnological interest due to its fluorescent and medicinal properties that allow potential applications in biomedicine and the food industry. This study aims to optimize PCB synthesis in Escherichia coli BL21 (DE3) and scale the process to a pre-industrial level. Parameters such as optimal temperature, inducer concentration, initial OD600, and stirring speed were analyzed in shake flask cultures to maximize PCB production. The best results were obtained at a temperature of 28 °C, an IPTG concentration of 0.1 mM, an initial OD600 of 0.5, and an orbital shaking speed of 260 rpm. Furthermore, the optimized protocol was scaled up into a 2 L bioreactor batch, achieving a maximum PCB concentration of 3.8 mg/L. Analysis of the results revealed that biosynthesis of exogenous PBs in Escherichia coli BL21 (DE3) is highly dependent on the metabolic burden of the host. Several scenarios, such as too rapid growth, high inducer concentration, or mechanical stress, can advance entry into the stationary phase. That progressively halts pigment synthesis, leading, in some cases, to its excretion into the growth media and ultimately triggering rapid degradation by the host. These conclusions provide a promising protocol for scalable PCB production and highlight the main biotechnological challenges to increase the yields of the process.


Assuntos
Reatores Biológicos , Escherichia coli , Ficobilinas , Ficocianina , Ficobilinas/metabolismo , Ficobilinas/biossíntese , Ficocianina/biossíntese , Ficocianina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biotecnologia/métodos
12.
Biotechnol Lett ; 35(5): 689-93, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23307652

RESUMO

Genes of the key enzymes for phycocyanobilin (PCB) biosynthesis were cloned into E. coli and combinationally expressed to produce phycocyanobilin, with autologous heme as substrate. Culture conditions were optimized to achieve ~3 mg PCB/l. A protocol for the purification of recombinant phycocyanobilin was established using solvent extraction combined with chromatography, which resulted in a final yield of ~0.3 mg PCB/l with a purity >95 %. Recombinant phycocyanobilin could scavenge hydroxyl radicals with an EC50 of 0.1 µM.


Assuntos
Escherichia coli/genética , Ficobilinas/biossíntese , Ficocianina/biossíntese , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Biotecnologia/métodos , Compostos de Bifenilo/análise , Compostos de Bifenilo/metabolismo , Cromatografia Líquida de Alta Pressão , Escherichia coli/metabolismo , Ficobilinas/química , Ficobilinas/isolamento & purificação , Ficobilinas/metabolismo , Ficocianina/química , Ficocianina/isolamento & purificação , Ficocianina/metabolismo , Picratos/análise , Picratos/metabolismo , Espectrometria de Fluorescência
13.
Biochem J ; 433(3): 469-76, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21050180

RESUMO

PEB (phycoerythrobilin) is a pink-coloured open-chain tetrapyrrole molecule found in the cyanobacterial light-harvesting phycobilisome. Within the phycobilisome, PEB is covalently bound via thioether bonds to conserved cysteine residues of the phycobiliprotein subunits. In cyanobacteria, biosynthesis of PEB proceeds via two subsequent two-electron reductions catalysed by the FDBRs (ferredoxin-dependent bilin reductases) PebA and PebB starting from the open-chain tetrapyrrole biliverdin IXα. A new member of the FDBR family has been identified in the genome of a marine cyanophage. In contrast with the cyanobacterial enzymes, PebS (PEB synthase) from cyanophages combines both two-electron reductions for PEB synthesis. In the present study we show that PebS acts via a substrate radical mechanism and that two conserved aspartate residues at position 105 and 206 are critical for stereospecific substrate protonation and conversion. On the basis of the crystal structures of both PebS mutants and presented biochemical and biophysical data, a mechanism for biliverdin IXα conversion to PEB is postulated and discussed with respect to other FDBR family members.


Assuntos
Bacteriófagos/enzimologia , Ficobilinas/biossíntese , Ficoeritrina/biossíntese , Transporte de Elétrons , Proteínas Virais
14.
J Bacteriol ; 193(7): 1663-71, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21296968

RESUMO

The pathway for phycocyanobilin biosynthesis in Synechococcus sp. strain PCC 7002 comprises two enzymes: heme oxygenase and phycocyanobilin synthase (PcyA). The phycobilin content of cells can be modified by overexpressing genes encoding alternative enzymes for biliverdin reduction. Overexpression of the pebAB and HY2 genes, encoding alternative ferredoxin-dependent biliverdin reductases, caused unique effects due to the overproduction of phycoerythrobilin and phytochromobilin, respectively. Colonies overexpressing pebAB became reddish brown and visually resembled strains that naturally produce phycoerythrin. This was almost exclusively due to the replacement of phycocyanobilin by phycoerythrobilin on the phycocyanin α-subunit. This phenotype was unstable, and such strains rapidly reverted to the wild-type appearance, presumably due to strong selective pressure to inactivate pebAB expression. Overproduction of phytochromobilin, synthesized by the Arabidopsis thaliana HY2 product, was tolerated much better. Cells overexpressing HY2 were only slightly less pigmented and blue-green than the wild type. Although the pcyA gene could not be inactivated in the wild type, pcyA was easily inactivated when cells expressed HY2. These results indicate that phytochromobilin can functionally substitute for phycocyanobilin in Synechococcus sp. strain PCC 7002. Although functional phycobilisomes were assembled in this strain, the overall phycobiliprotein content of cells was lower, the efficiency of energy transfer by these phycobilisomes was lower than for wild-type phycobilisomes, and the absorption cross-section of the cells was reduced relative to that of the wild type because of an increased spectral overlap of the modified phycobiliproteins with chlorophyll a. As a result, the strain producing phycobiliproteins carrying phytochromobilin grew much more slowly at low light intensity.


Assuntos
Proteínas de Bactérias/metabolismo , Ficobilinas/biossíntese , Ficobilinas/química , Synechococcus/enzimologia , Proteínas de Bactérias/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Estrutura Molecular , Mutagênese Insercional , Mutação , Synechococcus/citologia , Synechococcus/genética
15.
J Biol Chem ; 285(48): 37561-9, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20876568

RESUMO

In contrast to the majority of cyanobacteria, the unicellular marine cyanobacterium Prochlorococcus marinus MED4 uses an intrinsic divinyl-chlorophyll-dependent light-harvesting system for photosynthesis. Despite the absence of phycobilisomes, this high-light adapted strain possesses ß-phycoerythrin (CpeB), an S-type lyase (CpeS), and enzymes for the biosynthesis of phycoerythrobilin (PEB) and phycocyanobilin. Of all linear tetrapyrroles synthesized by Prochlorococcus including their 3Z- and 3E-isomers, CpeS binds both isomers of PEB and its biosynthetic precursor 15,16-dihydrobiliverdin (DHBV). However, dimerization of CpeS is independent of bilins, which are tightly bound in a complex at a ratio of 1:1. Although bilin binding by CpeS is fast, transfer to CpeB is rather slow. CpeS is able to attach 3E-PEB and 3Z-PEB to dimeric CpeB but not DHBV. CpeS transfer of 3Z-PEB exclusively yields correctly bound ßCys(82)-PEB, whereas ßCys(82)-DHBV is a side product of 3E-PEB transfer. Spontaneous 3E- and 3Z-PEB addition to CpeB is faulty, and products are in both cases ßCys(82)-DHBV and likely a PEB bound at ßCys(82) in a non-native configuration. Our data indicate that CpeS is specific for 3Z-PEB transfer to ßCys(82) of phycoerythrin and essential for the correct configuration of the attachment product.


Assuntos
Proteínas de Bactérias/metabolismo , Liases/metabolismo , Ficobilinas/biossíntese , Ficoeritrina/metabolismo , Prochlorococcus/enzimologia , Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Isomerismo , Liases/genética , Ficobilinas/química , Ficoeritrina/biossíntese , Ficoeritrina/química , Ficoeritrina/genética , Prochlorococcus/química , Prochlorococcus/genética , Prochlorococcus/metabolismo , Ligação Proteica
16.
Curr Biol ; 18(8): R342-3, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18430634

RESUMO

Phycobilins function as light-harvesting pigments in most cyanobacteria and red algae. Although green cyanobacteria of the genus Prochlorococcus express genes encoding enzymes that direct the synthesis of phycobilins, these pigments do not appear to play a role in light harvesting in Prochlorococcus. Now, it is shown that cyanophages infecting Prochlorococcus also contain genes for phycobilin-synthesizing enzymes, and these are expressed in Prochlorococcus, raising further questions as to the role of phycobilins in the host and the virus.


Assuntos
Ficobilinas/biossíntese , Prochlorococcus/metabolismo , Genes Virais , Fotossíntese/fisiologia , Ficobilinas/genética , Prochlorococcus/genética , Prochlorococcus/virologia
17.
Curr Biol ; 18(6): 442-8, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18356052

RESUMO

Although the oceanic cyanobacterium Prochlorococcus harvests light with a chlorophyll antenna [1-3] rather than with the phycobilisomes that are typical of cyanobacteria, some strains express genes that are remnants of the ancestral Synechococcus phycobilisomes [4]. Similarly, some Prochlorococcus cyanophages, which often harbor photosynthesis-related genes [5], also carry homologs of phycobilisome pigment biosynthesis genes [6, 7]. Here, we investigate four such genes in two cyanophages that both infect abundant Prochlorococcus strains [8]: homologs of heme oxygenase (ho1), 15,16-dihydrobiliverdin:ferredoxin oxidoreductase (pebA), ferredoxin (petF) in the myovirus P-SSM2, and a phycocyanobilin:ferredoxin oxidoreductase (pcyA) homolog in the myovirus P-SSM4. We demonstrate that the phage homologs mimic the respective host activities, with the exception of the divergent phage PebA homolog. In this case, the phage PebA single-handedly catalyzes a reaction for which uninfected host cells require two consecutive enzymes, PebA and PebB. We thus renamed the phage enzyme phycoerythrobilin synthase (PebS). This gene, and other pigment biosynthesis genes encoded by P-SSM2 (petF and ho1), are transcribed during infection, suggesting that they can improve phage fitness. Analyses of global ocean metagenomes show that PcyA and Ho1 occur in both cyanobacteria and their phages, whereas the novel PebS-encoding gene is exclusive to phages.


Assuntos
Myoviridae/genética , Ficobilinas/biossíntese , Ficobiliproteínas/genética , Ficoeritrina/biossíntese , Prochlorococcus/virologia , Biliverdina/análogos & derivados , Biliverdina/metabolismo , Ecossistema , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Viral , Heme Oxigenase-1/genética , Myoviridae/enzimologia , Oceanos e Mares , Ficobiliproteínas/biossíntese
18.
FEBS J ; 287(2): 284-294, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31319014

RESUMO

Substrate channeling is a widespread mechanism in metabolic pathways to avoid decomposition of unstable intermediates, competing reactions, and to accelerate catalytic turnover. During the biosynthesis of light-harvesting phycobilins in cyanobacteria, two members of the ferredoxin-dependent bilin reductases are involved in the reduction of the open-chain tetrapyrrole biliverdin IXα to the pink pigment phycoerythrobilin. The first reaction is catalyzed by 15,16-dihydrobiliverdin:ferredoxin oxidoreductase and produces the unstable intermediate 15,16-dihydrobiliverdin (DHBV). This intermediate is subsequently converted by phycoerythrobilin:ferredoxin oxidoreductase to the final product phycoerythrobilin. Although substrate channeling has been postulated already a decade ago, detailed experimental evidence was missing. Using a new on-column assay employing immobilized enzyme in combination with UV-Vis and fluorescence spectroscopy revealed that both enzymes transiently interact and that transfer of the intermediate is facilitated by a significantly higher binding affinity of DHBV toward phycoerythrobilin:ferredoxin oxidoreductase. Concluding from the presented data, the intermediate DHBV is transferred via proximity channeling.


Assuntos
Cianobactérias/metabolismo , Ficobilinas/biossíntese , Ficoeritrina/biossíntese , Proteínas de Bactérias/metabolismo , Biliverdina/análogos & derivados , Biliverdina/metabolismo , Cianobactérias/enzimologia , Enzimas Imobilizadas/metabolismo , Oxirredutases/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-19194010

RESUMO

Cyanobacteriochromes form a recently defined superfamily of tetrapyrrole-based photoreceptors that are distantly related to conventional red/far-red photoreceptor phytochromes. Among these molecules, AnPixJ from Anabaena sp. PCC 7120 is a novel photoreceptor that shows reversible photoconversion between green-absorbing and red-absorbing forms, which is in contrast to the properties of conventional phytochromes. In order to better understand the structural basis of this unique photoconversion mechanism, the chromophore-binding domain of AnPixJ (AnPixJ-GAF2) was heterologously overproduced and purified, and crystallization of both forms was attempted. Blue crystals of the red-absorbing form of AnPixJ-GAF2 were successfully obtained; they belonged to space group P4(3)2(1)2 and contained one monomer per asymmetric unit. Diffraction data were collected to a resolution of 1.8 A using synchrotron-radiation beamline BL-5A at the Photon Factory.


Assuntos
Anabaena/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Fotorreceptores Microbianos/química , Fitocromo/química , Anabaena/metabolismo , Cristalização , Fotorreceptores Microbianos/metabolismo , Ficobilinas/biossíntese , Ficocianina/biossíntese , Fitocromo/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
20.
Nat Commun ; 10(1): 3099, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308373

RESUMO

The Gram-positive bacterium Bacillus subtilis exhibits complex spatial and temporal gene expression signals. Although optogenetic tools are ideal for studying such processes, none has been engineered for this organism. Here, we port a cyanobacterial light sensor pathway comprising the green/red photoreversible two-component system CcaSR, two metabolic enzymes for production of the chromophore phycocyanobilin (PCB), and an output promoter to control transcription of a gene of interest into B. subtilis. Following an initial non-functional design, we optimize expression of pathway genes, enhance PCB production via a translational fusion of the biosynthetic enzymes, engineer a strong chimeric output promoter, and increase dynamic range with a miniaturized photosensor kinase. Our final design exhibits over 70-fold activation and rapid response dynamics, making it well-suited to studying a wide range of gene regulatory processes. In addition, the synthetic biology methods we develop to port this pathway should make B. subtilis easier to engineer in the future.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Engenharia Metabólica/métodos , Optogenética/métodos , Fitocromo/genética , Proteínas Quinases/genética , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Luz , Fotorreceptores Microbianos , Ficobilinas/biossíntese , Ficocianina/biossíntese , Fitocromo/metabolismo , Regiões Promotoras Genéticas/efeitos da radiação , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA