Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.543
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(2): 273-275, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242084

RESUMO

Although the blinding eye disease glaucoma is more common in people of African ancestry, previous genetic studies predominantly involved European subjects. In this issue of Cell, O'Brien et al. report a genome-wide association study for glaucoma in individuals of African ancestry, showing overlap with European studies and refining an African polygenic risk score.


Assuntos
Estudo de Associação Genômica Ampla , Glaucoma , Humanos , Glaucoma/genética , População Negra/genética , Pesquisa , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
2.
Cell ; 186(17): 3659-3673.e23, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37527660

RESUMO

Many regions in the human genome vary in length among individuals due to variable numbers of tandem repeats (VNTRs). To assess the phenotypic impact of VNTRs genome-wide, we applied a statistical imputation approach to estimate the lengths of 9,561 autosomal VNTR loci in 418,136 unrelated UK Biobank participants and 838 GTEx participants. Association and statistical fine-mapping analyses identified 58 VNTRs that appeared to influence a complex trait in UK Biobank, 18 of which also appeared to modulate expression or splicing of a nearby gene. Non-coding VNTRs at TMCO1 and EIF3H appeared to generate the largest known contributions of common human genetic variation to risk of glaucoma and colorectal cancer, respectively. Each of these two VNTRs associated with a >2-fold range of risk across individuals. These results reveal a substantial and previously unappreciated role of non-coding VNTRs in human health and gene regulation.


Assuntos
Canais de Cálcio , Neoplasias Colorretais , Fator de Iniciação 3 em Eucariotos , Glaucoma , Repetições Minissatélites , Humanos , Canais de Cálcio/genética , Neoplasias Colorretais/genética , Genoma Humano , Glaucoma/genética , Polimorfismo Genético , Fator de Iniciação 3 em Eucariotos/genética
3.
Cell ; 184(16): 4299-4314.e12, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34297923

RESUMO

Retinal ganglion cells (RGCs) are the sole output neurons that transmit visual information from the retina to the brain. Diverse insults and pathological states cause degeneration of RGC somas and axons leading to irreversible vision loss. A fundamental question is whether manipulation of a key regulator of RGC survival can protect RGCs from diverse insults and pathological states, and ultimately preserve vision. Here, we report that CaMKII-CREB signaling is compromised after excitotoxic injury to RGC somas or optic nerve injury to RGC axons, and reactivation of this pathway robustly protects RGCs from both injuries. CaMKII activity also promotes RGC survival in the normal retina. Further, reactivation of CaMKII protects RGCs in two glaucoma models where RGCs degenerate from elevated intraocular pressure or genetic deficiency. Last, CaMKII reactivation protects long-distance RGC axon projections in vivo and preserves visual function, from the retina to the visual cortex, and visually guided behavior.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Citoproteção , Células Ganglionares da Retina/patologia , Visão Ocular , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Encéfalo/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Dependovirus/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Glaucoma/genética , Glaucoma/patologia , Camundongos Endogâmicos C57BL , Neurotoxinas/toxicidade , Traumatismos do Nervo Óptico/patologia , Transdução de Sinais
4.
Immunity ; 55(9): 1627-1644.e7, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35977543

RESUMO

The apolipoprotein E4 (APOE4) allele is associated with an increased risk of Alzheimer disease and a decreased risk of glaucoma, but the underlying mechanisms remain poorly understood. Here, we found that in two mouse glaucoma models, microglia transitioned to a neurodegenerative phenotype characterized by upregulation of Apoe and Lgals3 (Galectin-3), which were also upregulated in human glaucomatous retinas. Mice with targeted deletion of Apoe in microglia or carrying the human APOE4 allele were protected from retinal ganglion cell (RGC) loss, despite elevated intraocular pressure (IOP). Similarly to Apoe-/- retinal microglia, APOE4-expressing microglia did not upregulate neurodegeneration-associated genes, including Lgals3, following IOP elevation. Genetic and pharmacologic targeting of Galectin-3 ameliorated RGC degeneration, and Galectin-3 expression was attenuated in human APOE4 glaucoma samples. These results demonstrate that impaired activation of APOE4 microglia is protective in glaucoma and that the APOE-Galectin-3 signaling can be targeted to treat this blinding disease.


Assuntos
Apolipoproteína E4 , Glaucoma , Animais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E4/uso terapêutico , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Modelos Animais de Doenças , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/uso terapêutico , Glaucoma/tratamento farmacológico , Glaucoma/genética , Glaucoma/metabolismo , Humanos , Camundongos , Microglia/metabolismo
5.
Nature ; 626(7999): 574-582, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086421

RESUMO

The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.


Assuntos
Astrócitos , Neuroproteção , Adenilil Ciclases/metabolismo , Astrócitos/citologia , Astrócitos/enzimologia , Astrócitos/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Sobrevivência Celular , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/metabolismo , Microglia/patologia , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/terapia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia , Glaucoma/patologia , Glaucoma/terapia
6.
Nature ; 588(7836): 124-129, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268865

RESUMO

Ageing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity1-3. Changes to DNA methylation patterns over time form the basis of ageing clocks4, but whether older individuals retain the information needed to restore these patterns-and, if so, whether this could improve tissue function-is not known. Over time, the central nervous system (CNS) loses function and regenerative capacity5-7. Using the eye as a model CNS tissue, here we show that ectopic expression of Oct4 (also known as Pou5f1), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice. The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2. These data indicate that mammalian tissues retain a record of youthful epigenetic information-encoded in part by DNA methylation-that can be accessed to improve tissue function and promote regeneration in vivo.


Assuntos
Envelhecimento/genética , Reprogramação Celular/genética , Metilação de DNA , Epigênese Genética , Olho , Regeneração Nervosa/genética , Visão Ocular/genética , Visão Ocular/fisiologia , Envelhecimento/fisiologia , Animais , Axônios/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Proteínas de Ligação a DNA/genética , Dependovirus/genética , Dioxigenases , Modelos Animais de Doenças , Olho/citologia , Olho/inervação , Olho/patologia , Feminino , Vetores Genéticos/genética , Glaucoma/genética , Glaucoma/patologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator 3 de Transcrição de Octâmero/genética , Traumatismos do Nervo Óptico/genética , Proteínas Proto-Oncogênicas/genética , Células Ganglionares da Retina/citologia , Fatores de Transcrição SOXB1/genética , Transcriptoma/genética
7.
Proc Natl Acad Sci U S A ; 120(34): e2306153120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37566633

RESUMO

Although the visual system extends through the brain, most vision loss originates from defects in the eye. Its central element is the neural retina, which senses light, processes visual signals, and transmits them to the rest of the brain through the optic nerve (ON). Surrounding the retina are numerous other structures, conventionally divided into anterior and posterior segments. Here, we used high-throughput single-nucleus RNA sequencing (snRNA-seq) to classify and characterize cells in six extraretinal components of the posterior segment: ON, optic nerve head (ONH), peripheral sclera, peripapillary sclera (PPS), choroid, and retinal pigment epithelium (RPE). Defects in each of these tissues are associated with blinding diseases-for example, glaucoma (ONH and PPS), optic neuritis (ON), retinitis pigmentosa (RPE), and age-related macular degeneration (RPE and choroid). From ~151,000 single nuclei, we identified 37 transcriptomically distinct cell types, including multiple types of astrocytes, oligodendrocytes, fibroblasts, and vascular endothelial cells. Our analyses revealed a differential distribution of many cell types among distinct structures. Together with our previous analyses of the anterior segment and retina, the data presented here complete a "Version 1" cell atlas of the human eye. We used this atlas to map the expression of >180 genes associated with the risk of developing glaucoma, which is known to involve ocular tissues in both anterior and posterior segments as well as the neural retina. Similar methods can be used to investigate numerous additional ocular diseases, many of which are currently untreatable.


Assuntos
Glaucoma , Disco Óptico , Humanos , Transcriptoma , Células Endoteliais , Glaucoma/genética , Nervo Óptico , Esclera
8.
Hum Mol Genet ; 32(15): 2523-2531, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37220876

RESUMO

Rare missense and nonsense variants in the Angiopoietin-like 7 (ANGPTL7) gene confer protection from primary open-angle glaucoma (POAG), though the functional mechanism remains uncharacterized. Interestingly, a larger variant effect size strongly correlates with in silico predictions of increased protein instability (r = -0.98), suggesting that protective variants lower ANGPTL7 protein levels. Here, we show that missense and nonsense variants cause aggregation of mutant ANGPTL7 protein in the endoplasmic reticulum (ER) and decreased levels of secreted protein in human trabecular meshwork (TM) cells; a lower secreted:intracellular protein ratio strongly correlates with variant effects on intraocular pressure (r = 0.81). Importantly, accumulation of mutant protein in the ER does not increase expression of ER stress proteins in TM cells (P > 0.05 for all variants tested). Cyclic mechanical stress, a glaucoma-relevant physiologic stressor, also significantly lowers ANGPTL7 expression in primary cultures of human Schlemm's canal (SC) cells (-2.4-fold-change, P = 0.01). Collectively, these data suggest that the protective effects of ANGPTL7 variants in POAG stem from lower levels of secreted protein, which may modulate responses to physiologic and pathologic ocular cell stressors. Downregulation of ANGPTL7 expression may therefore serve as a viable preventative and therapeutic strategy for this common, blinding disease.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Glaucoma de Ângulo Aberto/patologia , Glaucoma/metabolismo , Malha Trabecular/metabolismo , Pressão Intraocular , Angiopoietinas/genética , Angiopoietinas/metabolismo , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Proteína 7 Semelhante a Angiopoietina/genética
9.
Am J Pathol ; 194(7): 1317-1328, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38548269

RESUMO

Two major constituents of exfoliation material, fibrillin-1 and lysyl oxidase-like 1 (encoded by FBN1 and LOXL1), are implicated in exfoliation glaucoma, yet their individual contributions to ocular phenotype are minor. To test the hypothesis that a combination of FBN1 mutation and LOXL1 deficiency exacerbates ocular phenotypes, the pan-lysyl oxidase inhibitor ß-aminopropionitrile (BAPN) was used to treat adult wild-type (WT) mice and mice heterozygous for a missense mutation in Fbn1 (Fbn1C1041G/+) for 8 weeks and their eyes were examined. Although intraocular pressure did not change and exfoliation material was not detected in the eyes, BAPN treatment worsened optic nerve and axon expansion in Fbn1C1041G/+ mice, an early sign of axonal damage in rodent models of glaucoma. Disruption of elastic fibers was detected only in Fbn1C1041G/+ mice, which increased with BAPN treatment, as shown by histologic and immunohistochemical staining of the optic nerve pia mater. Transmission electron microscopy showed that Fbn1C1041G/+ mice had fewer microfibrils, smaller elastin cores, and a lower density of elastic fibers compared with WT mice in control groups. BAPN treatment led to elastin core expansion in both WT and Fbn1C1041G/+ mice, but an increase in the density of elastic fiber was confined to Fbn1C1041G/+ mice. LOX inhibition had a stronger effect on optic nerve and elastic fiber parameters in the context of Fbn1 mutation, indicating the Marfan mouse model with LOX inhibition warrants further investigation for exfoliation glaucoma pathogenesis.


Assuntos
Aminopropionitrilo , Modelos Animais de Doenças , Fibrilina-1 , Síndrome de Marfan , Nervo Óptico , Proteína-Lisina 6-Oxidase , Animais , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Síndrome de Marfan/patologia , Síndrome de Marfan/complicações , Camundongos , Fibrilina-1/genética , Aminopropionitrilo/farmacologia , Nervo Óptico/patologia , Nervo Óptico/ultraestrutura , Nervo Óptico/efeitos dos fármacos , Tecido Elástico/patologia , Tecido Elástico/metabolismo , Tecido Elástico/ultraestrutura , Pressão Intraocular , Fibrilinas/metabolismo , Camundongos Endogâmicos C57BL , Aminoácido Oxirredutases/metabolismo , Aminoácido Oxirredutases/antagonistas & inibidores , Aminoácido Oxirredutases/genética , Glaucoma/patologia , Proteínas dos Microfilamentos/metabolismo , Adipocinas
10.
FASEB J ; 38(10): e23651, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38752537

RESUMO

Singleton-Merten syndrome (SMS) is a rare immunogenetic disorder affecting multiple systems, characterized by dental dysplasia, aortic calcification, glaucoma, skeletal abnormalities, and psoriasis. Glaucoma, a key feature of both classical and atypical SMS, remains poorly understood in terms of its molecular mechanism caused by DDX58 mutation. This study presented a novel DDX58 variant (c.1649A>C [p.Asp550Ala]) in a family with childhood glaucoma. Functional analysis showed that DDX58 variant caused an increase in IFN-stimulated gene expression and high IFN-ß-based type-I IFN. As the trabecular meshwork (TM) is responsible for controlling intraocular pressure (IOP), we examine the effect of IFN-ß on TM cells. Our study is the first to demonstrate that IFN-ß significantly reduced TM cell viability and function by activating autophagy. In addition, anterior chamber injection of IFN-ß remarkably increased IOP level in mice, which can be attenuated by treatments with autophagy inhibitor chloroquine. To uncover the specific mechanism underlying IFN-ß-induced autophagy in TM cells, we performed microarray analysis in IFN-ß-treated and DDX58 p.Asp550Ala TM cells. It showed that RSAD2 is necessary for IFN-ß-induced autophagy. Knockdown of RSAD2 by siRNA significantly decreased autophagy flux induced by IFN-ß. Our findings suggest that DDX58 mutation leads to the overproduction of IFN-ß, which elevates IOP by modulating autophagy through RSAD2 in TM cells.


Assuntos
Autofagia , Interferon beta , Pressão Intraocular , Malha Trabecular , Autofagia/efeitos dos fármacos , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Humanos , Animais , Camundongos , Pressão Intraocular/fisiologia , Interferon beta/metabolismo , Masculino , Feminino , Glaucoma/patologia , Glaucoma/metabolismo , Glaucoma/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/metabolismo , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Camundongos Endogâmicos C57BL , Mutação , Atrofia Óptica/genética , Atrofia Óptica/metabolismo , Atrofia Óptica/patologia , Linhagem , Odontodisplasia , Calcificação Vascular , Hipoplasia do Esmalte Dentário , Metacarpo/anormalidades , Osteoporose , Doenças Musculares , Doenças da Aorta , Receptores Imunológicos
11.
Exp Cell Res ; 440(1): 114137, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897410

RESUMO

Glaucoma is characterized by pathological elevation of intraocular pressure (IOP) due to dysfunctional trabecular meshwork (TM), which is the primary cause of irreversible vision loss. There are currently no effective treatment strategies for glaucoma. Mitochondrial function plays a crucial role in regulating IOP within the TM. In this study, primary TM cells treated with dexamethasone were used to simulate glaucomatous changes, showing abnormal cellular cytoskeleton, increased expression of extracellular matrix, and disrupted mitochondrial fusion and fission dynamics. Furthermore, glaucomatous TM cell line GTM3 exhibited impaired mitochondrial membrane potential and phagocytic function, accompanied by decreased oxidative respiratory levels as compared to normal TM cells iHTM. Mechanistically, lower NAD + levels in GTM3, possibly associated with increased expression of key enzymes CD38 and PARP1 related to NAD + consumption, were observed. Supplementation of NAD + restored mitochondrial function and cellular viability in GTM3 cells. Therefore, we propose that the aberrant mitochondrial function in glaucomatous TM cells may be attributed to increased NAD + consumption dependent on CD38 and PARP1, and NAD + supplementation could effectively ameliorate mitochondrial function and improve TM function, providing a novel alternative approach for glaucoma treatment.


Assuntos
Glaucoma , Mitocôndrias , NAD , Malha Trabecular , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Glaucoma/metabolismo , Glaucoma/patologia , Glaucoma/tratamento farmacológico , NAD/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pressão Intraocular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/genética , Linhagem Celular , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Dexametasona/farmacologia , Células Cultivadas
12.
Mol Ther ; 32(6): 1760-1778, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38659223

RESUMO

Glaucoma is characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons, and its risk increases with aging. Yet comprehensive insights into the complex mechanisms are largely unknown. Here, we found that anti-aging molecule Sirt6 was highly expressed in RGCs. Deleting Sirt6 globally or specifically in RGCs led to progressive RGC loss and optic nerve degeneration during aging, despite normal intraocular pressure (IOP), resembling a phenotype of normal-tension glaucoma. These detrimental effects were potentially mediated by accelerated RGC senescence through Caveolin-1 upregulation and by the induction of mitochondrial dysfunction. In mouse models of high-tension glaucoma, Sirt6 level was decreased after IOP elevation. Genetic overexpression of Sirt6 globally or specifically in RGCs significantly attenuated high tension-induced degeneration of RGCs and their axons, whereas partial or RGC-specific Sirt6 deletion accelerated RGC loss. Importantly, therapeutically targeting Sirt6 with pharmacological activator or AAV2-mediated gene delivery ameliorated high IOP-induced RGC degeneration. Together, our studies reveal a critical role of Sirt6 in preventing RGC and optic nerve degeneration during aging and glaucoma, setting the stage for further exploration of Sirt6 activation as a potential therapy for glaucoma.


Assuntos
Envelhecimento , Modelos Animais de Doenças , Glaucoma , Nervo Óptico , Células Ganglionares da Retina , Sirtuínas , Animais , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Camundongos , Sirtuínas/metabolismo , Sirtuínas/genética , Glaucoma/metabolismo , Glaucoma/genética , Glaucoma/patologia , Glaucoma/etiologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Envelhecimento/metabolismo , Envelhecimento/genética , Pressão Intraocular , Humanos , Axônios/metabolismo , Axônios/patologia , Camundongos Knockout , Degeneração Neural/metabolismo
13.
Mol Cell Proteomics ; 22(11): 100654, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793503

RESUMO

The pathogenesis of glaucoma is still unknown. There are few studies on the dynamic change of tissue-specific and time-specific molecular pathophysiology caused by ocular hypertension (OHT). This study aimed to identify the early proteomic alterations in the retina, optic nerve head (ONH), and optic nerve (ON). After establishing a rat model of OHT, we harvested the tissues from control and glaucomatous eyes and analyzed the changes in protein expression using a multiplexed quantitative proteomics approach (TMT-MS3). Our study identified 6403 proteins after 1-day OHT and 4399 proteins after 7-days OHT in the retina, 5493 proteins after 1-day OHT and 4544 proteins after 7-days OHT in ONH, and 5455 proteins after 1-day OHT and 3835 proteins after 7-days OHT in the ON. Of these, 560 and 489 differential proteins were identified on day 1 and 7 after OHT in the retina, 428 and 761 differential proteins were identified on day 1 and 7 after OHT in the ONH, and 257 and 205 differential proteins on days 1 and 7 after OHT in the ON. Computational analysis on day 1 and 7 of OHT revealed that alpha-2 macroglobulin was upregulated across two time points and three tissues stably. The differentially expressed proteins between day 1 and 7 after OHT in the retina, ONH, and ON were associated with glutathione metabolism, mitochondrial dysfunction/oxidative phosphorylation, oxidative stress, microtubule, and crystallin. And the most significant change in retina are crystallins. We validated this proteomic result with the Western blot of crystallin proteins and found that upregulated on day 1 but recovered on day 7 after OHT, which are promising as therapeutic targets. These findings provide insights into the time- and region-order mechanisms that are specifically affected in the retina, ONH, and ON in response to elevated IOP during the early stages.


Assuntos
Cristalinas , Glaucoma , Hipertensão Ocular , Disco Óptico , Ratos , Animais , Disco Óptico/metabolismo , Disco Óptico/patologia , Proteômica , Pressão Intraocular , Glaucoma/metabolismo , Retina/metabolismo , Retina/patologia , Hipertensão Ocular/metabolismo , Hipertensão Ocular/patologia , Nervo Óptico/patologia , Cristalinas/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(48): e2206829119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409915

RESUMO

Retinal ganglion cells (RGCs) are heterogeneous projection neurons that convey distinct visual features from the retina to brain. Here, we present a high-throughput in vivo RGC activity assay in response to light stimulation using noninvasive Ca2+ imaging of thousands of RGCs simultaneously in living mice. Population and single-cell analyses of longitudinal RGC Ca2+ imaging reveal distinct functional responses of RGCs and unprecedented individual RGC activity conversions during traumatic and glaucomatous degeneration. This study establishes a foundation for future in vivo RGC function classifications and longitudinal activity evaluations using more advanced imaging techniques and visual stimuli under normal, disease, and neural repair conditions. These analyses can be performed at both the population and single-cell levels using temporal and spatial information, which will be invaluable for understanding RGC pathophysiology and identifying functional biomarkers for diverse optic neuropathies.


Assuntos
Glaucoma , Células Ganglionares da Retina , Animais , Camundongos , Diagnóstico por Imagem , Retina , Glaucoma/diagnóstico por imagem , Encéfalo
15.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135877

RESUMO

Reduced blood flow and impaired neurovascular coupling are recognized features of glaucoma, the leading cause of irreversible blindness worldwide, but the mechanisms underlying these defects are unknown. Retinal pericytes regulate microcirculatory blood flow and coordinate neurovascular coupling through interpericyte tunneling nanotubes (IP-TNTs). Using two-photon microscope live imaging of the mouse retina, we found reduced capillary diameter and impaired blood flow at pericyte locations in eyes with high intraocular pressure, the most important risk factor to develop glaucoma. We show that IP-TNTs are structurally and functionally damaged by ocular hypertension, a response that disrupted light-evoked neurovascular coupling. Pericyte-specific inhibition of excessive Ca2+ influx rescued hemodynamic responses, protected IP-TNTs and neurovascular coupling, and enhanced retinal neuronal function as well as survival in glaucomatous retinas. Our study identifies pericytes and IP-TNTs as potential therapeutic targets to counter ocular pressure-related microvascular deficits, and provides preclinical proof of concept that strategies aimed to restore intrapericyte calcium homeostasis rescue autoregulatory blood flow and prevent neuronal dysfunction.


Assuntos
Estruturas da Membrana Celular/fisiologia , Glaucoma/patologia , Pericitos/fisiologia , Retina/citologia , Retina/patologia , Animais , Antígenos , Cálcio/metabolismo , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Glaucoma/etiologia , Fenômenos Magnéticos , Masculino , Camundongos , Microesferas , Nanotubos , Regiões Promotoras Genéticas , Proteoglicanas , Vasos Retinianos/patologia , Técnicas de Cultura de Tecidos
16.
Clin Microbiol Rev ; 36(4): e0005723, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37966199

RESUMO

Glaucoma is a leading cause of irreversible blindness worldwide, caused by the gradual degeneration of retinal ganglion cells and their axons. While glaucoma is primarily considered a genetic and age-related disease, some inflammatory conditions, such as uveitis and viral-induced anterior segment inflammation, cause secondary or uveitic glaucoma. Viruses are predominant ocular pathogens and can impose both acute and chronic pathological insults to the human eye. Many viruses, including herpes simplex virus, varicella-zoster virus, cytomegalovirus, rubella virus, dengue virus, chikungunya virus, Ebola virus, and, more recently, Zika virus (ZIKV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), have been associated with sequela of either primary or secondary glaucoma. Epidemiological and clinical studies suggest the association between these viruses and subsequent glaucoma development. Despite this, the ocular manifestation and sequela of viral infections are not well understood. In fact, the association of viruses with glaucoma is considered relatively uncommon in part due to underreporting and/or lack of long-term follow-up studies. In recent years, literature on the pathological spectrum of emerging viral infections, such as ZIKV and SARS-CoV-2, has strengthened this proposition and renewed research activity in this area. Clinical studies from endemic regions as well as laboratory and preclinical investigations demonstrate a strong link between an infectious trigger and development of glaucomatous pathology. In this article, we review the current understanding of the field with a particular focus on viruses and their association with the pathogenesis of glaucoma.


Assuntos
Infecções Oculares Virais , Glaucoma , Uveíte Anterior , Infecção por Zika virus , Zika virus , Humanos , Uveíte Anterior/complicações , Infecções Oculares Virais/complicações , Infecção por Zika virus/complicações , Glaucoma/epidemiologia , Glaucoma/etiologia , Progressão da Doença
17.
Am J Physiol Cell Physiol ; 326(2): C513-C528, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105758

RESUMO

Pathological alterations in the biomechanical properties of the Schlemm's canal (SC) inner wall endothelium and its immediate vicinity are strongly associated with ocular hypertension in glaucoma due to decreased outflow facility. Specifically, the underlying trabecular meshwork is substantially stiffer in glaucomatous eyes compared with that from normal eyes. This raises the possibility of a critical involvement of mechanotransduction processes in driving SC cell dysfunction. Yes-associated protein (YAP) has emerged as a key contributor to glaucoma pathogenesis. However, the molecular underpinnings of SC cell mechanosignaling via YAP and transcriptional coactivator with PDZ-binding motif (TAZ) in response to glaucomatous extracellular matrix (ECM) stiffening are not well understood. Using a novel biopolymer hydrogel that facilitates dynamic and reversible stiffness tuning, we investigated how ECM stiffening modulates YAP/TAZ activity in primary human SC cells, and whether disruption of YAP/TAZ mechanosignaling attenuates SC cell pathobiology and increases ex vivo outflow facility. We demonstrated that ECM stiffening drives pathologic YAP/TAZ activation and cytoskeletal reorganization in SC cells, which was fully reversible by matrix softening in a distinct time-dependent manner. Furthermore, we showed that pharmacologic or genetic disruption of YAP/TAZ mechanosignaling abrogates stiffness-induced SC cell dysfunction involving altered cytoskeletal and ECM remodeling. Finally, we found that perfusion of the clinically used, small molecule YAP/TAZ inhibitor verteporfin (without light activation) increases ex vivo outflow facility in normal mouse eyes. Collectively, our data provide new evidence for a pathologic role of aberrant YAP/TAZ mechanosignaling in SC cell dysfunction and suggest that YAP/TAZ inhibition has therapeutic value for treating ocular hypertension in glaucoma.NEW & NOTEWORTHY Pathologically altered biomechanical properties of the Schlemm's canal (SC) inner wall microenvironment were recently validated as the cause for increased outflow resistance in ocular hypertensive glaucoma. However, the involvement of specific mechanotransduction pathways in these disease processes is largely unclear. Here, we demonstrate that Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) are central regulators of glaucoma-like SC cell dysfunction in response to extracellular matrix stiffening and that targeted disruption of YAP/TAZ mechanosignaling attenuates SC cell pathobiology and enhances outflow function.


Assuntos
Glaucoma , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Mecanotransdução Celular , Canal de Schlemm , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
18.
Am J Physiol Cell Physiol ; 326(5): C1293-C1307, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525543

RESUMO

Given the widespread application of glucocorticoids in ophthalmology, the associated elevation of intraocular pressure (IOP) has long been a vexing concern for clinicians, yet the underlying mechanisms remain inconclusive. Much of the discussion focuses on the extracellular matrix (ECM) of trabecular meshwork (TM). It is widely agreed that glucocorticoids impact the expression of matrix metalloproteinases (MMPs), leading to ECM deposition. Since Zn2+ is vital for MMPs, we explored its role in ECM alterations induced by dexamethasone (DEX). Our study revealed that in human TM cells treated with DEX, the level of intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. This correlated with changes in several Zrt-, Irt-related proteins (ZIPs) and metallothionein. ZIP8 knockdown impaired extracellular Zn2+ uptake, but Zn2+ chelation did not affect ZIP8 expression. Resembling DEX's effects, chelation of Zn2+ decreased MMP2 expression, increased the deposition of ECM proteins, and induced structural disarray of ECM. Conversely, supplementation of exogenous Zn2+ in DEX-treated cells ameliorated these outcomes. Notably, dietary zinc supplementation in mice significantly reduced DEX-induced IOP elevation and collagen content in TM, thereby rescuing the visual function of the mice. These findings underscore zinc's pivotal role in ECM regulation, providing a novel perspective on the pathogenesis of glaucoma.NEW & NOTEWORTHY Our study explores zinc's pivotal role in mitigating extracellular matrix dysregulation in the trabecular meshwork and glucocorticoid-induced ocular hypertension. We found that in human trabecular meshwork cells treated with dexamethasone, intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. Zinc supplementation rescues visual function by modulating extracellular matrix proteins and lowering intraocular pressure, offering a direction for further exploration in glaucoma management.


Assuntos
Glaucoma , Malha Trabecular , Camundongos , Humanos , Animais , Malha Trabecular/metabolismo , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Glaucoma/patologia , Pressão Intraocular , Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinases da Matriz/metabolismo , Zinco/metabolismo , Células Cultivadas
19.
Am J Physiol Cell Physiol ; 326(5): C1505-C1519, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557355

RESUMO

Glaucoma is a blinding disease. Reduction of intraocular pressure (IOP) is the mainstay of treatment, but current drugs show side effects or become progressively ineffective, highlighting the need for novel compounds. We have synthesized a family of perhydro-1,4-oxazepine derivatives of digoxin, the selective inhibitor of Na,K-ATPase. The cyclobutyl derivative (DcB) displays strong selectivity for the human α2 isoform and potently reduces IOP in rabbits. These observations appeared consistent with a hypothesis that in ciliary epithelium DcB inhibits the α2 isoform of Na,K-ATPase, which is expressed strongly in nonpigmented cells, reducing aqueous humor (AH) inflow. This paper extends assessment of efficacy and mechanism of action of DcB using an ocular hypertensive nonhuman primate model (OHT-NHP) (Macaca fascicularis). In OHT-NHP, DcB potently lowers IOP, in both acute (24 h) and extended (7-10 days) settings, accompanied by increased aqueous humor flow rate (AFR). By contrast, ocular normotensive animals (ONT-NHP) are poorly responsive to DcB, if at all. The mechanism of action of DcB has been analyzed using isolated porcine ciliary epithelium and perfused enucleated eyes to study AH inflow and AH outflow facility, respectively. 1) DcB significantly stimulates AH inflow although prior addition of 8-Br-cAMP, which raises AH inflow, precludes additional effects of DcB. 2) DcB significantly increases AH outflow facility via the trabecular meshwork (TM). Taken together, the data indicate that the original hypothesis on the mechanism of action must be revised. In the OHT-NHP, and presumably other species, DcB lowers IOP by increasing AH outflow facility rather than by decreasing AH inflow.NEW & NOTEWORTHY When applied topically, a cyclobutyl derivative of digoxin (DcB) potently reduces intraocular pressure in an ocular hypertensive nonhuman primate model (Macaca fascicularis), associated with increased aqueous humor (AH) flow rate (AFR). The mechanism of action of DcB involves increased AH outflow facility as detected in enucleated perfused porcine eyes and, in parallel, increased (AH) inflow as detected in isolated porcine ciliary epithelium. DcB might have potential as a drug for the treatment of open-angle human glaucoma.


Assuntos
Humor Aquoso , Digoxina , Pressão Intraocular , Macaca fascicularis , Hipertensão Ocular , Animais , Pressão Intraocular/efeitos dos fármacos , Digoxina/farmacologia , Humor Aquoso/metabolismo , Humor Aquoso/efeitos dos fármacos , Hipertensão Ocular/tratamento farmacológico , Hipertensão Ocular/fisiopatologia , Hipertensão Ocular/metabolismo , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Coelhos , Humanos , Corpo Ciliar/efeitos dos fármacos , Corpo Ciliar/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Masculino , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo
20.
BMC Genomics ; 25(1): 484, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755526

RESUMO

Childhood glaucoma (CG) encompasses a heterogeneous group of genetic eye disorders that is responsible for approximately 5% of childhood blindness worldwide. Understanding the molecular aetiology is key to improving diagnosis, prognosis and unlocking the potential for optimising clinical management. In this study, we investigated 86 CG cases from 78 unrelated families of diverse ethnic backgrounds, recruited into the Genomics England 100,000 Genomes Project (GE100KGP) rare disease cohort, to improve the genetic diagnostic yield. Using the Genomics England/Genomic Medicine Centres (GE/GMC) diagnostic pipeline, 13 unrelated families were solved (13/78, 17%). Further interrogation using an expanded gene panel yielded a molecular diagnosis in 7 more unrelated families (7/78, 9%). This analysis effectively raises the total number of solved CG families in the GE100KGP to 26% (20/78 families). Twenty-five percent (5/20) of the solved families had primary congenital glaucoma (PCG), while 75% (15/20) had secondary CG; 53% of this group had non-acquired ocular anomalies (including iris hypoplasia, megalocornea, ectopia pupillae, retinal dystrophy, and refractive errors) and 47% had non-acquired systemic diseases such as cardiac abnormalities, hearing impairment, and developmental delay. CYP1B1 was the most frequently implicated gene, accounting for 55% (11/20) of the solved families. We identified two novel likely pathogenic variants in the TEK gene, in addition to one novel pathogenic copy number variant (CNV) in FOXC1. Variants that passed undetected in the GE100KGP diagnostic pipeline were likely due to limitations of the tiering process, the use of smaller gene panels during analysis, and the prioritisation of coding SNVs and indels over larger structural variants, CNVs, and non-coding variants.


Assuntos
Glaucoma , Humanos , Glaucoma/genética , Glaucoma/diagnóstico , Masculino , Feminino , Criança , Pré-Escolar , Citocromo P-450 CYP1B1/genética , Mutação , Lactente , Genômica/métodos , Linhagem , Adolescente , Fatores de Transcrição Forkhead
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA