Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 65, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773376

RESUMO

OBJECTIVE: Catalpol (CAT) has various pharmacological activities and plays a protective role in cerebral ischemia. It has been reported that CAT played a protective role in cerebral ischemia by upregulaing NRF1 expression. Bioinformatics analysis reveals that NRF1 can be used as a transcription factor to bind to the histone acetyltransferase KAT2A. However, the role of KAT2A in cerebral ischemia remains to be studied. Therefore, we aimed to investigate the role of CAT in cerebral ischemia and its related mechanism. METHODS: In vitro, a cell model of oxygen and glucose deprivation/reperfusion (OGD/R) was constructed, followed by evaluation of neuronal injury and the expression of METTL3, Beclin-1, NRF1, and KAT2A. In vivo, a MCAO rat model was prepared by means of focal cerebral ischemia, followed by assessment of neurological deficit and brain injury in MCAO rats. Neuronal autophagy was evaluated by observation of autophagosomes in neurons or brain tissues by TEM and detection of the expression of LC3 and p62. RESULTS: In vivo, CAT reduced the neurological function deficit and infarct volume, inhibited neuronal apoptosis in the cerebral cortex, and significantly improved neuronal injury and excessive autophagy in MCAO rats. In vitro, CAT restored OGD/R-inhibited cell viability, inhibited cell apoptosis, LDH release, and neuronal autophagy. Mechanistically, CAT upregulated NRF1, NRF1 activated METTL3 via KAT2A transcription, and METTL3 inhibited Beclin-1 via m6A modification. CONCLUSION: CAT activated the NRF1/KAT2A/METTL3 axis and downregulated Beclin-1 expression, thus relieving neuronal injury and excessive autophagy after cerebral ischemia.


Assuntos
Autofagia , Proteína Beclina-1 , Isquemia Encefálica , Glucosídeos Iridoides , Neurônios , Animais , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Ratos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/tratamento farmacológico , Masculino , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças , Apoptose/efeitos dos fármacos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Adenosina/análogos & derivados
2.
Cell Physiol Biochem ; 58(4): 361-381, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39092504

RESUMO

BACKGROUND/AIMS: Traumatic brain injury is a significant public problem with an incidence of 10 million people per year, causing the largest deaths and disabilities worldwide. Head injuries can be classified into primary and secondary head injuries. Secondary head injuries can be caused by several factors such as ischemia, cerebral edema, and neuroinflammation. AIF and MMP-9 are two parameters that can be indicators in measuring the effect of Oleuropein on traumatic brain injury in rats. Oleuropein itself has many activities such as antioxidant, anti-apoptotic, antimicrobial, anti-inflammatory, and neuroprotective. METHODS: Adult male Sprague-Dawley rats (250-350 grams) were exposed to head injury, with or without intraperitoneal administration of Oleuropein. Within 24-72 hours brain tissue was isolated for immunohistochemical analysis, ELISA, and TUNEL. AIF, GFAP, MMP-9, and HMGB-1 levels were determined using immunohistochemistry in both the control and treatment groups. Statistical analysis was made using the One-Way Analysis of Variance (ANOVA) and paired t-test. RESULTS: The results showed that Oleuropein was able to reduce AIF and MMP-9 levels in rats with traumatic brain injury. This indicates that Oleuropein has a neuroprotective effect by reducing inflammation and apoptosis. CONCLUSION: Oleuropein has a potential neuroprotective effect in traumatic brain injury by reducing inflammation and apoptosis. Therefore, Oleuropein can be considered as a potential therapeutic agent for traumatic brain injury in the future.


Assuntos
Fator de Indução de Apoptose , Lesões Encefálicas Traumáticas , Modelos Animais de Doenças , Glucosídeos Iridoides , Iridoides , Metaloproteinase 9 da Matriz , Ratos Sprague-Dawley , Animais , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Masculino , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Iridoides/farmacologia , Iridoides/uso terapêutico , Ratos , Fator de Indução de Apoptose/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteína HMGB1/metabolismo , Apoptose/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos
3.
BMC Cardiovasc Disord ; 24(1): 431, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39148029

RESUMO

BACKGROUND: Hyperhomocysteinemia (HHcy) is an independent risk factor for atherosclerosis (AS). Endothelial mesenchymal transition (EndMT) refers to the process in which endothelial cells lose endothelial cell morphology and characteristic gene expression, and acquire phenotypic characteristics and gene expression related to mesenchymal cells. Numerous studies have confirmed that EndMT is involved in the formation of atherosclerosis. Catalpol is one of the active components of Rehmannia, which has antioxidant, anti-inflammatory, anti-tumor, neuroprotective and other biological activities. Studies have shown that catalpol can reduce atherosclerotic plaque induced by high sugar or fat. However, the effect of catalpol on HHCY-induced EndMT is unclear. METHODS AND RESULTS: In vitro HHcy-treated primary human umbilical vein endothelial cells (HUVECs) were used to construct a cell model, and the antioxidants N-acetylcysteine (NAC) and catalase alcohol were administered. In vivo C57BL/6N mice were given a diet fed with 4.4% high methionine chow to construct a HHcy mice model and were treated with catalpol. The results showed that hhcy could induce morphological transformation of endothelial cells into mesenchymal cells, increase intracellular ROS content, up-regulate α-SMA, N-cadherin, p-p65 protein expression, down-regulate VE-cadherin, CD31 protein expression, induce pathological changes of aortic root endothelium, and increase aortic endothelial ROS content. Catalpol reversed these hhcy induced outcomes. CONCLUSIONS: Catalpol inhibits HHcy-induced EndMT, and the underlying mechanism may be related to the ROS/NF-κB signaling pathway. Catalpol may be a potential drug for the treatment of HHcy-related AS.


Assuntos
Aterosclerose , Transição Endotélio-Mesênquima , Hiper-Homocisteinemia , Glucosídeos Iridoides , NF-kappa B , Espécies Reativas de Oxigênio , Animais , Humanos , Antígenos CD/metabolismo , Antioxidantes/farmacologia , Aterosclerose/tratamento farmacológico , Aterosclerose/etiologia , Aterosclerose/patologia , Caderinas/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Transição Endotélio-Mesênquima/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/patologia , Hiper-Homocisteinemia/tratamento farmacológico , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/complicações , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Camundongos
4.
Drug Dev Res ; 84(7): 1376-1394, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37534768

RESUMO

Catalpol is a kind of iridoid glucoside, widely found in a variety of plants, mostly extracted from the rhizome of the traditional medicinal herb rehmanniae. It has various biological activities such as anti-inflammatory, antioxidant, and antitumor. The anti-inflammatory effects of catalpol have been demonstrated in a variety of diseases, such as neurological diseases, atherosclerosis, renal diseases, respiratory diseases, digestive diseases, bone and joint diseases, eye diseases, and periodontitis. The purpose of this review is to summarize the existing literature on the anti-inflammatory effects of catalpol in a variety of inflammatory diseases over the last decade and to focus on the anti-inflammatory mechanisms of catalpol.


Assuntos
Anti-Inflamatórios , Glucosídeos Iridoides , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
5.
Toxicol Appl Pharmacol ; 454: 116215, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36067808

RESUMO

Breast cancer is a fatal cancer with the highest mortality in female. New strategies for anti-breast cancer are still urgently needed. Catalpol, an iridoid glycoside extracted from the traditional Chinese medicinal plant Rehmannia glutinosa, has shown anticancer efficacy in various cancer cells. However, its effect on breast cancer remains unclear. In this study, we aim to investigate the anti-breast cancer activity of catalpol and elucidate its underlying mechanism. Cell counting kit-8 (CCK-8) and morphology change showed that catalpol could inhibit the proliferation and viability of MCF-7 cells. Catalpol administration reduced the tumor volume in xenograft model. Catalpol induced apoptosis in MCF-7 cells confirmed by Hoechst 33342 staining and Annexin V-FITC/PI double staining. In vivo, catalpol also induced apoptosis as seen from the increased level of terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) in tumor. According to JC-1 and Dichlorodi-hydrofluorescein Diacetate (DCFH-DA) staining, loss of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) generation was found in MCF-7 cells treated with catalpol. Furthermore, catalpol also increased the level of cytoplasmic cytochrome c and activity of caspase-3 in MCF-7 cells. Likewise, histopathological and immunohistochemical (IHC) assay also found that catalpol enhanced the levels of cytochrome c and caspase-3 in breast cancer tissues. Ultimately, acetylation, 2-hydroxyisobutyrylation and lactylation were dramatically increased, whereas succinylation, malonylation and phosphorylation were markedly decreased in the breast cancer tumor treated with catalpol. Taken together, catalpol inhibited breast cancer in vitro and in vivo through induction of apoptosis via mitochondria apoptosis pathway and regulation of protein post-translational modifications (PTMs). Thus, it can be considered as an excellent candidate compound for treatment of breast cancer.


Assuntos
Neoplasias da Mama , Citocromos c , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Caspase 3/metabolismo , Citocromos c/metabolismo , Feminino , Humanos , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Mitocôndrias , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo
6.
Neuroimmunomodulation ; 29(4): 414-424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35545014

RESUMO

INTRODUCTION: Isoflurane-associated perioperative neurocognitive disorders (PNDs) is a common complication that occurs commonly in elderly patients characterized by deterioration of hippocampus-dependent cognitive function. Mounting evidence has shown that hippocampal impairment and inflammatory processes are implicated in the pathogenesis of PNDs. Catalpol has been suggested to play a role in the modulation of neuroprotection and neurotransmission. Therefore, we surmised that catalpol may play a similar role during isoflurane-induced PNDs. METHODS: In our current study, aged mice were exposed to isoflurane to develop a mouse model of PNDs and preconditioned with catalpol for 2 weeks before modeling. Three weeks after isoflurane exposure, behavioral, histological, biochemical, electrophysiological, and immunofluorescent assays were performed. RESULTS: Our results showed that catalpol preadministration significantly alleviated cognitive impairment in the Morris water maze, novel object recognition, and Y-maze behavioral tests. Neuropathological analyses showed that catalpol preadministration reduced the loss of neurons and synapses; in line with this, it is revealed that hippocampal synaptic plasticity was restored. Mechanistically, catalpol preadministration suppressed the activation of microglia and decreased the expression of NLRP3 inflammasome. CONCLUSION: Our results indicate that catalpol preadministration could effectively alleviate cognitive impairment and neuropathological damage in isoflurane-exposed aged mice with its neuroprotective effects via modulation of the NLRP3 inflammatory pathway. Furthermore, the NLRP3 inflammatory pathway was revealed to be involved in these effects.


Assuntos
Isoflurano , Camundongos , Animais , Isoflurano/toxicidade , Isoflurano/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hipocampo/metabolismo , Glucosídeos Iridoides/uso terapêutico , Glucosídeos Iridoides/metabolismo , Glucosídeos Iridoides/farmacologia , Aprendizagem em Labirinto
7.
Neurochem Res ; 46(8): 2131-2142, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34008118

RESUMO

This study was designed to evaluate the underlying protective mechanisms of oleuropein involved in alleviating brain damage in a rat model of ischemic stroke. Male Wistar rats were divided into four groups; Control, stroke (MCAO), MCAO + clopidogrel (Clop) and MCAO + oleuropein (Ole). Results showed that the MCAO group evidenced significant brain edema (+ 9%) as well as increases of plasma cardiac markers such as lactate deshydrogenase (LDH), creatine kinase (CK-MB), fibrinogen and Trop-T by 11 %, 43%, 168 and 590%, respectively, as compared to the control group. Moreover, infarcted rats exhibited remarkable elevated levels of angiotensin converting enzyme (ACE), both in plasma and brain tissue, with astrocyte swelling and necrotic neurons in the infarct zone, hyponatremia, and increased rate of thiobarbituric acid-reactive substances (TBARS) by 89% associated with decreases in the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (Cat) by 51%, 44 and 42%, respectively, compared to normal control rats. However, MCAO rats treated with oleuropein underwent mitigation of cerebral edema, correction of hyponatremia, remarkable decrease of plasma fibrinogen and cardiac dysfunctional enzymes, inhibition of ACE activity and improvement of oxidative stress status in brain tissue. Furthermore, in silico analysis showed considerable inhibitions of ACE, protein disulfide isomerase (PDI) and TGF-ß1, an indicative of potent anti-embolic properties. Overall, oleuropein offers a neuroprotective effect against ischemic stroke through its antioxidative and antithrombotic activities.


Assuntos
Sequestradores de Radicais Livres/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Glucosídeos Iridoides/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Acetilcolinesterase/metabolismo , Animais , Encéfalo/patologia , Edema Encefálico/patologia , Edema Encefálico/prevenção & controle , Clopidogrel/uso terapêutico , Sequestradores de Radicais Livres/metabolismo , Humanos , Hiponatremia/prevenção & controle , Infarto da Artéria Cerebral Média/patologia , Glucosídeos Iridoides/metabolismo , Masculino , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/metabolismo , Ratos Wistar , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
8.
Acta Pharmacol Sin ; 42(7): 1080-1089, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32939036

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by a mutation in the gene encoding the dystrophin protein. Catalpol is an iridoid glycoside found in Chinese herbs with anti-inflammatory, anti-oxidant, anti-apoptotic, and hypoglycemic activities that can protect against muscle wasting. In the present study we investigated the effects of catalpol on DMD. Aged Dystrophin-deficient (mdx) mice (12 months old) were treated with catalpol (100, 200 mg·kg-1·d-1, ig) for 6 weeks. At the end of the experiment, the mice were sacrificed, and gastrocnemius (GAS), tibialis anterior (TA), extensor digitorum longus (EDL), soleus (SOL) muscles were collected. We found that catalpol administration dose-dependently increased stride length and decreased stride width in Gait test. Wire grip test showed that the time of wire grip and grip strength were increased. We found that catalpol administration dose-dependently alleviated skeletal muscle damage, evidenced by reduced plasma CK and LDH activity as well as increased the weight of skeletal muscles. Catalpol administration had no effect on dystrophin expression, but exerted anti-inflammatory effects. Furthermore, catalpol administration dose-dependently decreased tibialis anterior (TA) muscle fibrosis, and inhibited the expression of TGF-ß1, TAK1 and α-SMA. In primary myoblasts from mdx mice, knockdown of TAK1 abolished the inhibitory effects of catalpol on the expression levels of TGF-ß1 and α-SMA. In conclusion, catalpol can restore skeletal muscle strength and alleviate skeletal muscle damage in aged mdx mice, thus may provide a novel therapy for DMD. Catalpol attenuates muscle fibrosis by inhibiting the TGF-ß1/TAK1 signaling pathway.


Assuntos
Glucosídeos Iridoides/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Fibrose/tratamento farmacológico , Fibrose/etiologia , Fibrose/patologia , Força da Mão/fisiologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/patologia , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Fator de Crescimento Transformador beta1/metabolismo
9.
Can J Physiol Pharmacol ; 99(1): 110-114, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33449845

RESUMO

Oleuropein (OLE) is the main bioactive ingredient in the leaves of the olive plant Olea europaea L. (Oleaceae), which has proven beneficial due to the antiinflammatory, antiatherogenic, anticancer, antimicrobial, and antiviral effects. This study aimed to investigate the antihypertensive and vasodilator potential of OLE by analyzing its acute effects on spontaneous atrial contractions and vasomotor responses of the isolated thoracic aorta in rats. We showed that the application of OLE induces negative chronotropic and inotropic effects on the heart. OLE also causes mild aortic vasodilation given that the maximal reduction in tension of intact aortic rings precontracted with phenylephrine was approximately 30%. This vasodilation is likely dependent on the nitric oxide released from the endothelium based on the effect obtained on denuded and phenylephrine precontracted aortic rings and responses reordered following vasoconstriction induced by high concentrations of K+ and heparin. Our findings provide a basis for further testing of OLE cardiovascular effects, which may lead to subsequent clinical research for its application in the treatment of hypertension and heart disease.


Assuntos
Anti-Hipertensivos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Átrios do Coração/efeitos dos fármacos , Glucosídeos Iridoides/farmacologia , Vasodilatadores/administração & dosagem , Animais , Anti-Hipertensivos/uso terapêutico , Aorta Torácica/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Endotélio Vascular/metabolismo , Átrios do Coração/metabolismo , Humanos , Hipertensão/tratamento farmacológico , Glucosídeos Iridoides/uso terapêutico , Masculino , Modelos Animais , Óxido Nítrico/metabolismo , Oleaceae/química , Folhas de Planta/química , Ratos , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
10.
Toxicol Appl Pharmacol ; 408: 115248, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976922

RESUMO

Alpha-naphthylisothiocyanate (ANIT) is a typical hepatotoxicant that causes cholestasis, which causes toxic bile acid accumulation in the liver and leads to liver injury. Picroside II (PIC), one of the dominant effective components extracted from Picrorhiza scrophulariiflora Pennell, exhibits many pharmacological effects. However, the role of AMP-activated protein kinase (AMPK)-Farnesoid X receptor (FXR) pathway in the hepatoprotective effect of PIC against ANIT-induced cholestasis remains largely unknown. This study aimed to investigate the mechanisms of PIC on ANIT-induced cholestasis in vivo and in vitro. Our results showed that PIC protected against ANIT-induced liver injury in primary mouse hepatocytes, and decreased serum biochemical markers and lessened histological injuries in mice. ANIT inhibited FXR and its target genes of bile acid synthesis enzymes sterol-12α-hydroxylase (CYP8B1), and increase bile acid uptake transporter Na + -dependent taurocholate transporter (NTCP), efflux transporter bile salt export pump (BSEP) and bile acid metabolizing enzymes UDP-glucuronosyltransferase 1a1 (UGT1A1) expressions. PIC prevented its downregulation of FXR, NTCP, BSEP and UGT1A1, and further reduced CYP8B1 by ANIT. Furthermore, ANIT activated AMPK via ERK1/2-LKB1 pathway. PIC inhibited ERK1/2, LKB1 and AMPK phosphorylation in ANIT-induced cholestasis in vivo and in vitro. AICAR, an AMPK agonist, blocked PIC-mediated changes in FXR, CYP8B1 and BSEP expression in vitro. Meanwhile, U0126, an ERK1/2 inhibitor, further repressed ERK1/2-LKB1-AMPK pathway phosphorylation. In conclusion, PIC regulated bile acid-related transporters and enzymes to protect against ANIT-induced liver injury, which related to ERK1/2-LKB1-AMPK pathway. Thus, this study extends the understanding of the anti-cholestasis effect of PIC and provides new therapeutic targets for cholestasis treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Colestase/tratamento farmacológico , Cinamatos/uso terapêutico , Glucosídeos Iridoides/uso terapêutico , Substâncias Protetoras/uso terapêutico , Receptores Citoplasmáticos e Nucleares/metabolismo , 1-Naftilisotiocianato , Animais , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colestase/induzido quimicamente , Colestase/metabolismo , Cinamatos/farmacologia , Hepatócitos , Glucosídeos Iridoides/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Substâncias Protetoras/farmacologia , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais/efeitos dos fármacos
11.
Anticancer Drugs ; 31(1): 1-5, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31609769

RESUMO

Oral mucositis is among the most common tissue toxicities associated with both cytotoxic cancer regimens and head and neck radiotherapy. Current management of oral mucositis might comprise growth factors and cytokines, anti-inflammatory agents, anesthetics, analgesics, antimicrobial and coating agents, cryotherapy and mucosal protectants. Despite its long history and its impact on patients, there are currently no effective options for the prevention or treatment of mucositis. In recent years, more attention has been focused on the role of natural drugs. Verbascoside belongs to the phenylpropanoid glycosides family. Several biological properties have been described, such as anti-inflammatory, antimicrobial, antitumor and antioxidant. Verbascoside, particularly when in solution with polyvinylpyrrolidone and sodium hyaluronate, thanks to barrier effect, is useful in re-epithelialization and in reducing pain, oral mucositis score, burning and erythema.


Assuntos
Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Estomatite/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Humanos , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Pharmacol Res ; 151: 104559, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759089

RESUMO

Our previous studies indicated that the G-protein-coupled bile acid receptor, Gpbar1 (TGR5), inhibits inflammation by inhibiting the NF-κB signalling pathway, eventually attenuating diabetic nephropathy (DN). Gentiopicroside (GPS), the main active secoiridoid glycoside of Gentiana manshurica Kitagawa, has been demonstrated to inhibit inflammation in various diseases via inhibiting the inflammatory signalling pathways. However, whether GPS inhibits the NF-κB signalling pathway by activating TGR5 and regulates the pathological progression of diabetic renal fibrosis requires further investigation. In this study, we found that GPS significantly reversed the downregulation of TGR5 and inhibited the overproduction of fibronectin (FN), transforming growth factor ß1 (TGF-ß1), intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) in glomerular mesangial cells (GMCs) exposed to high glucose (HG). Additionally, GPS prevented the phosphorylation and degradation of IκBα, and subsequently inhibited the activation of the NF-κB signalling pathway. Further investigation found that GPS enhanced the stabilization of IκBα by promoting the interaction of ß-arrestin2 with IκBα via TGR5 activation, which contributed to the inhibition of NF-κB signalling pathway. Importantly, the depletion of TGR5 blocked the inhibition of the NF-κB signalling pathway and reversed the downregulation of FN, ICAM-1, VCAM-1 and TGF-ß1 by GPS in HG-induced GMCs. Moreover, GPS increased the TGR5 protein levels and promoted the interaction between IκBα and ß-arrestin2, thereby inhibiting the reduction of IκBα and blocked NF-κB p65 nuclear translocation in the kidneys of STZ-induced diabetic mice. Collectively, these data suggested that GPS regulates the TGR5-ß-arrestin2-NF-κB signalling pathway to prevent inflammation in the kidneys of diabetic mice, and ultimately ameliorates the pathological progression of diabetic renal fibrosis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Glucosídeos Iridoides/uso terapêutico , NF-kappa B/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Nefropatias Diabéticas/metabolismo , Glucosídeos Iridoides/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Molecules ; 25(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182739

RESUMO

Secoiridoids could be used as a potential new drug for the treatment of hepatic disease. The content of secoiridoids of G. rigescens varied in different geographical origins and parts. In this study, a total of 783 samples collected from different parts of G. rigescens in Yunnan, Sichuan, and Guizhou Provinces. The content of secoiridoids including gentiopicroside, swertiamarin, and sweroside were determined by using HPLC and analyzed by one-way analysis of variance. Two selected variables including direct selected and variable importance in projection combined with partial least squares regression have been used to establish a method for the determination of secoiridoids using FT-IR spectroscopy. In addition, different pretreatments including multiplicative scatter correction (MSC), standard normal variate (SNV), first derivative and second derivative (SD), and orthogonal signal correction (OSC) were compared. The results indicated that the sample (root, stem, and leaf) with total secoiridoids, gentiopicroside, swertiamarin, and sweroside from west Yunnan had higher content than samples from the other regions. The sample from Baoshan had more total secoiridoids than other samples for the whole medicinal plant. The best performance using FT-IR for the total secoiridoid was with the direct selected variable method involving pretreatment of MSC+OSC+SD in the root and stem, while in leaf, of the best method involved using original data with MSC+OSC+SD. This method could be used to determine the bioactive compounds quickly for herbal medicines.


Assuntos
Gentiana/química , Glucosídeos Iridoides/química , Iridoides/química , Pironas/química , China , Cromatografia Líquida de Alta Pressão , Humanos , Glucosídeos Iridoides/uso terapêutico , Iridoides/uso terapêutico , Hepatopatias/tratamento farmacológico , Folhas de Planta/química , Raízes de Plantas/química , Caules de Planta/química , Pironas/uso terapêutico , Espectroscopia de Infravermelho com Transformada de Fourier
14.
J Pharmacol Exp Ther ; 371(2): 348-359, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31467086

RESUMO

Aucubin (AUB), which is extracted from Eucommia ulmoides Oliver seeds, has been found to possess anti-inflammatory and antiapoptotic properties. Recent studies have indicated that inflammation, oxidative stress, and apoptosis are involved in the pathophysiology of lipopolysaccharide (LPS)-induced cardiac dysfunction. Our study aimed to investigate the effect of AUB on LPS-induced acute cardiac injury. Male C57BL/6 mice were injected with LPS (one 6 mg/kg injection) to induce cardiac dysfunction without or with AUB pretreatment (20 or 80 mg/kg per day) for 1 week. We found that AUB ameliorated cardiac dysfunction, inflammation, oxidative stress, and apoptosis induced by LPS stimulation. Mechanistically, AUB inhibited LPS-induced oxidative stress by decreasing reactive oxygen species and thioredoxin interaction protein (TXNIP) levels. Moreover, AUB suppressed LPS-induced inflammation and apoptosis by reducing nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3)/apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)/caspase-1 inflammasome formation. Overexpression of NLRP3 in cardiomyocytes attenuated the protective effects of AUB. Interestingly, NLRP3 deficiency ameliorated cardiac function and reduced the inflammatory response and oxidative stress after LPS insult in mice, whereas AUB could not further prevent LPS-induced cardiac dysfunction in NLRP3-deficient mice. In summary, AUB exerts a protective effect against LPS-induced inflammation, oxidative stress, and apoptosis in vivo and in vitro by regulating the TXNIP pathway and inactivating the NLRP3/ASC/caspase-1 inflammasome. Hence, AUB may be a promising agent against LPS-induced cardiac dysfunction. SIGNIFICANCE STATEMENT: Aucubin exerts a protective effect against lipopolysaccharide-induced cardiac dysfunction by regulating nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome.


Assuntos
Cardiotônicos/uso terapêutico , Frutas , Cardiopatias/metabolismo , Cardiopatias/prevenção & controle , Glucosídeos Iridoides/uso terapêutico , Lipopolissacarídeos/toxicidade , Animais , Cardiotônicos/farmacologia , Células Cultivadas , Cardiopatias/induzido quimicamente , Glucosídeos Iridoides/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Distribuição Aleatória , Ratos
15.
Bioorg Med Chem Lett ; 29(14): 1699-1704, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31130265

RESUMO

Gentiopicroside is a major active component of the Gentiana scabra Bge., which is commonly used as herbal medicine for the treatment of inflammation in Asia. Gentiopicroside significantly down-regulated expression of key adipogenic transcription factors (PPARγ, C/EBPα, SREBP-1c) and dose-dependently inhibited the lipid uptake-related gene (LPL), fatty acid transport-related gene (FABP4) and triglyceride (TG) synthesis-related gene (DGAT2), as well as fatty acid synthesis-related genes (FAS, SCD1), which resulted in reduced intracellular lipid droplet accumulation and TG content in 3T3-L1 cells. Gentiopicroside also down-regulated expression of inflammatory cytokine genes (NFκB1, TNFα, IL6) compared with vehicle. Oral administration of gentiopicroside (50 mg/kg) in mice fed with high-fat diet for 12 weeks resulted in reduced body weight and visceral fat mass compared with the control group. Overall, the results of this study showed that gentiopicroside had positive anti-obesity effects by regulating the expression of adipogenesis/lipogenesis-related genes and inflammatory genes in 3T3-L1, and that it effectively reduced body weight and visceral fat mass in vivo.


Assuntos
Células 3T3-L1/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade/uso terapêutico , Peso Corporal/efeitos dos fármacos , Gentiana/química , Glucosídeos Iridoides/uso terapêutico , Animais , Fármacos Antiobesidade/farmacologia , Glucosídeos Iridoides/farmacologia , Masculino , Camundongos , Camundongos Obesos
16.
Molecules ; 24(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514313

RESUMO

This review aimed to provide a general view of catalpol in protection against diabetes and diabetic complications, as well as its pharmacokinetics and safety concerns. The following databases were consulted with the retrieval of more than 100 publications through June 2019: PubMed, Chinese National Knowledge Infrastructure, WanFang Data, and web of science. Catalpol exerts an anti-diabetic effect in different animal models with an oral dosage ranging from 2.5 to 200 mg/kg in rats and 10 to 200 mg/kg in mice. Besides, catalpol may prevent the development of diabetic complications in kidney, heart, central nervous system, and bone. The underlying mechanism may be associated with an inhibition of inflammation, oxidative stress, and apoptosis through modulation of various cellular signaling, such as AMPK/PI3K/Akt, PPAR/ACC, JNK/NF-κB, and AGE/RAGE/NOX4 signaling pathways, as well as PKCγ and Cav-1 expression. The pharmacokinetic profile reveals that catalpol could pass the blood-brain barrier and has a potential to be orally administrated. Taken together, catalpol is a well-tolerated natural compound with promising pharmacological actions in protection against diabetes and diabetic complications via multi-targets, offering a novel scaffold for the development of anti-diabetic drug candidate. Further prospective and well-designed clinical trials will shed light on the potential of clinical usage of catalpol.


Assuntos
Complicações do Diabetes/tratamento farmacológico , Diabetes Mellitus/tratamento farmacológico , Glucosídeos Iridoides/farmacocinética , Glucosídeos Iridoides/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Glucosídeos Iridoides/efeitos adversos , Glucosídeos Iridoides/química , Especificidade de Órgãos
17.
Molecules ; 24(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817154

RESUMO

In the present study, we examined the potent retinoprotective effects of an ethanol-based extract of Aucuba japonica (AJE) and its active ingredient, aucubin, on N-methyl-N-nitrosourea (MNU)-induced retinal degeneration in mice. Retinal degeneration was induced by an intraperitoneal injection of MNU (60 mg/kg). AJE (250 mg/kg) and aucubin (15 mg/kg) were orally administered for 1 week after the MNU injection. Electroretinography (ERG) and histological examinations were performed. Retinal apoptosis and oxidative DNA damage were also quantified. The retinoprotective abilities of AJE and aucubin were also assessed in primary cultured retinal cells. Morphologically, MNU induced a remarkable decrease in the outer nuclear layer, which contains photoreceptor cells. However, this layer was well preserved in the AJE- and aucubin-administered mice. The ERG responses significantly decreased in both a- and b-wave amplitudes in the MNU-injected mice. In the AJE and aucubin-treated mice, ERG responses were significantly increased. In addition, a terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay and immunohistochemical staining for 8-hydroxydeoxyguanosine (8-OHdG) revealed that both AJE and aucubin attenuated MNU-induced photoreceptor cell apoptosis and oxidative DNA damage. Furthermore, the in vitro assay also showed that AJE and aucubin have potent anti-oxidative and anti-apoptotic activities in primary cultured retinal cells. These results indicate that AJE and aucubin have potent retinoprotective effects, and that this retinoprotective activity is as a result of the potency of the bioactive compound, aucubin. These pharmacological characteristics suggest the additional application of AJE or aucubin in the treatment of patients with retinal degenerative diseases.


Assuntos
Glucosídeos Iridoides/uso terapêutico , Magnoliopsida/química , Degeneração Retiniana/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dano ao DNA , Modelos Animais de Doenças , Glucosídeos Iridoides/farmacologia , Masculino , Metilnitrosoureia , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , Extratos Vegetais/análise , Retina/efeitos dos fármacos , Retina/patologia , Retina/fisiopatologia , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia
18.
Cell Physiol Biochem ; 49(4): 1304-1319, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30223280

RESUMO

BACKGROUND/AIMS: Cholestasis is the major cause of the accumulation of bile acids and results in liver damage, fibrosis, and failure. A growing number of studies have shown that gentiopicroside is a promising prospect that may protect the liver. However, its therapeutic mechanism has not yet been clarified. This study aimed to explore the effect and mechanism of gentiopicroside in cholestasis induced by alpha-naphthylisothiocyanate. METHODS: We performed isobaric tags for relative and absolute quantification-based quantitative proteomics and metabolomics using liquid chromatography quadruple time-of-fight mass spectrometry and identified the expression of 73 metabolites and 84 proteins associated with cholestasis-related dysfunctions in the metabolism of bile acids, fatty acids, and glycerophospholipids. RESULTS: Integrated analyses of proteomic and metabonomic studies showed altered pathways in cholestasis-induced liver injury involving increased activity of farnesoid X receptor/retinoid X receptor, bile acid biosynthesis, and peroxisome proliferator-activated receptor-α/retinoid X receptor-α. Gentiopicroside could reverse these metabolite, protein, and blood biochemical indices, as well as alleviate liver damage. The progressive changes in the proteins and genes may be correlated with cholestasis and were confirmed by western blot and quantitative realtime polymerase chain reaction. CONCLUSION: Gentiopicroside could be used to protect the liver in the presence of cholestasis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Glucosídeos Iridoides/farmacologia , Metaboloma/efeitos dos fármacos , Metabolômica , Substâncias Protetoras/farmacologia , Proteoma/análise , Proteômica , 1-Naftilisotiocianato/toxicidade , Animais , Ácidos e Sais Biliares/biossíntese , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colestase/etiologia , Colestase/metabolismo , Análise Discriminante , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosídeos Iridoides/uso terapêutico , Masculino , PPAR alfa/metabolismo , Análise de Componente Principal , Substâncias Protetoras/uso terapêutico , Proteoma/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor X Retinoide alfa/metabolismo
19.
Cell Physiol Biochem ; 50(2): 585-596, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30308492

RESUMO

BACKGROUND/AIMS: Gentiopicroside is promising as an important secoiridoid compound against pain. The present study aimed to investigate the analgesic effect and the probable mechanism of Gentiopicroside on Diabetic Peripheral Neuropathy (DPN), and to figure out the association among Gentiopicroside, dyslipidemia and PPAR- γ/AMPK/ACC signaling pathway. METHODS: DPN rat models were established by streptozotocin and RSC96 cells were cultured. Hot, cold and mechanical tactile allodynia were conducted. Blood lipids, nerve blood flow, Motor Nerve Conduction Velocity (MNCV) and Sensory Nerve Conduction Velocity (SNCV) were detected. Gene and protein expression of PPAR- γ/AMPK/ACC pathway was analyzed by reverse transcription-quan titative polymerase chain reaction (RT-qPCR) and Westernblot. Besides, PPAR-γ antagonist GW9662 and agonist rosiglitazone, AMPK antagonist compound C and activator AICAR as well as ACC inhibitor TOFA were used to further confirm the relationship between PPAR-γ and AMPK. RESULTS: The results demonstrated that Gentiopicroside markedly ameliorated hyperalgesia with prolonged paw withdrawal latency to heat and cold stimuli and fewer responses to mechanical allodynia compared with DPN model group. Gentiopicroside regulated dyslipidemia, enhanced nerve blood flow and improved MNCV as well as SNCV. Gentiopicroside suppressed ACC expression through the activation of AMPK and PPAR-γ mediated the activation of AMPK and subsequent inhibition of ACC expression. CONCLUSION: In conclusion, the present study demon strated that Gentiopicroside exerted nerve-protective effect and attenuated experimental DPN by restoring dyslipidmia and improved nerve blood flow through regulating PPAR-γ/AMPK/ACC signal pathway. These results provided a promising potential treatment of DPN.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Neuropatias Diabéticas/prevenção & controle , Glucosídeos Iridoides/uso terapêutico , PPAR gama/metabolismo , Substâncias Protetoras/uso terapêutico , Proteínas Quinases Ativadas por AMP/genética , Acetil-CoA Carboxilase/genética , Anilidas/farmacologia , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/veterinária , Dislipidemias/patologia , Dislipidemias/prevenção & controle , Dislipidemias/veterinária , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia/patologia , Hiperalgesia/prevenção & controle , Hiperalgesia/veterinária , Glucosídeos Iridoides/farmacologia , PPAR gama/genética , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley , Células de Schwann/citologia , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/toxicidade
20.
Neurochem Res ; 43(5): 1058-1066, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29671236

RESUMO

Reactive astrocyte-mediated neuroinflammatory responses in the spinal dorsal horn have been reported to play a pivotal role in pathological pain. Chronic constriction injury (CCI) enhances the activation of nuclear factor kappa B (NF-κB), which is involved in neuropathic pain (NP). Picroside II (PII), a major active component of Picrorhiza scrophulariiflora, has been investigated for its anti-oxidative, anti-inflammatory, and anti-apoptotic activities. Here, we explored the analgesic effects of PII on a model of CCI-induced NP and investigated the levels of the GFAP protein and the mRNA and protein levels of pro-inflammatory cytokines in the spinal cord, including interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). CCI significantly induced mechanical allodynia and thermal hyperalgesia. Intraperitoneal administration of PII remarkably reversed the CCI-induced mechanical allodynia and thermal hyperalgesia and reduced the mRNA and protein levels of IL-1ß, IL-6, and TNF-α in the spinal cord. Additionally, according to the in vitro data, the PII treatment inhibited LPS-induced increases in the mRNA and protein levels of IL-1ß, IL-6, and TNF-α and suppressed the NF-κB pathway by inhibiting the phosphorylation of NF-κB/p65 and the degradation of inhibitor of NF-κB (IκB) in astrocytes without toxicity to astrocytes. Overall, the analgesic effect of PII correlated with the inhibition of spinal reactive astrocyte-mediated neuroinflammation through the NF-κB pathway in rats with NP.


Assuntos
Analgésicos/uso terapêutico , Astrócitos/efeitos dos fármacos , Cinamatos/uso terapêutico , Glucosídeos Iridoides/uso terapêutico , NF-kappa B/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Animais , Astrócitos/patologia , Células Cultivadas , Constrição Patológica/complicações , Citocinas/metabolismo , Proteína Glial Fibrilar Ácida/biossíntese , Proteína Glial Fibrilar Ácida/genética , Hiperalgesia/tratamento farmacológico , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , Neuralgia/etiologia , Neuralgia/patologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA