RESUMO
Mutations in one of the three RAS genes (HRAS, KRAS, and NRAS) are present in nearly 20% of all human cancers. These mutations shift RAS to the GTP-loaded active state due to impairment in the intrinsic GTPase activity and disruption of GAP-mediated GTP hydrolysis, resulting in constitutive activation of effectors such as RAF. Because activation of RAF involves dimerization, RAS dimerization has been proposed as an important step in RAS-mediated activation of effectors. The α4-α5 allosteric lobe of RAS has been proposed as a RAS dimerization interface. Indeed, the NS1 monobody, which binds the α4-α5 region within the RAS G domain, inhibits RAS-dependent signaling and transformation as well as RAS nanoclustering at the plasma membrane. Although these results are consistent with a model in which the G domain dimerizes through the α4-α5 region, the isolated G domain of RAS lacks intrinsic dimerization capacity. Furthermore, prior studies analyzing α4-α5 point mutations have reported mixed effects on RAS function. Here, we evaluated the activity of a panel of single amino acid substitutions in the α4-α5 region implicated in RAS dimerization. We found that these proposed "dimerization-disrupting" mutations do not significantly impair self-association, signaling, or transformation of oncogenic RAS. These results are consistent with a model in which activated RAS protomers cluster in close proximity to promote the dimerization of their associated effector proteins (e.g., RAF) without physically associating into dimers mediated by specific molecular interactions. Our findings suggest the need for a nonconventional approach to developing therapeutics targeting the α4-α5 region.
Assuntos
Genes ras , Transdução de Sinais , Humanos , Ligação Proteica , Transdução de Sinais/genética , Mutação , Guanosina Trifosfato/genéticaRESUMO
The RNA helicase RIG-I plays a key role in sensing pathogen-derived RNA. Double-stranded RNA structures bearing 5'-tri- or diphosphates are commonly referred to as activating RIG-I ligands. However, endogenous RNA fragments generated during viral infection via RNase L also activate RIG-I. Of note, RNase-digested RNA fragments bear a 5'-hydroxyl group and a 2',3'-cyclic phosphate. How endogenous RNA fragments activate RIG-I despite the lack of 5'-phosphorylation has not been elucidated. Here we describe an endogenous RIG-I ligand (eRL) that is derived from the internal transcribed spacer 2 region (ITS2) of the 45S ribosomal RNA after partial RNase A digestion in vitro, RNase A protein transfection or RNase L activation. The immunostimulatory property of the eRL is dependent on 2',3'-cyclic phosphate and its sequence is characterized by a G-quadruplex containing sequence motif mediating guanosine-5'-triphosphate (GTP) binding. In summary, RNase generated self-RNA fragments with 2',3'-cyclic phosphate function as nucleotide-5'-triphosphate binding aptamers activating RIG-I.
Assuntos
Proteína DEAD-box 58/genética , RNA Helicases/genética , RNA Ribossômico/genética , RNA/genética , Guanosina Trifosfato/genética , Humanos , Ligantes , Fosfatos/metabolismo , RNA/química , RNA Helicases/metabolismo , Receptores Imunológicos , Ribonucleases/genéticaRESUMO
Candida albicans is among the most common causes of human fungal infections and is an important source of mortality. C. albicans is able to diminish its detection by innate immune cells through masking of ß (1,3)-glucan in the inner cell wall with an outer layer of heavily glycosylated mannoproteins (mannan). However, mutations or drugs that disrupt the cell wall can lead to exposure of ß (1,3)-glucan (unmasking) and enhanced detection by innate immune cells through receptors like Dectin-1, the C-type signaling lectin. Previously, our lab showed that the pathway for synthesizing the phospholipid phosphatidylserine (PS) plays a role in ß (1,3)-glucan masking. The homozygous PS synthase knockout mutant, cho1Δ/Δ, exhibits increased exposure of ß (1,3)-glucan. Several Mitogen Activated Protein Kinase (MAPK) pathways and their upstream Rho-type small GTPases are important for regulating cell wall biogenesis and remodeling. In the cho1Δ/Δ mutant, both the Cek1 and Mkc1 MAPKs are constitutively activated, and they act downstream of the small GTPases Cdc42 and Rho1, respectively. In addition, Cdc42 activity is up-regulated in cho1Δ/Δ. Thus, it was hypothesized that activation of Cdc42 or Rho1 and their downstream kinases cause unmasking. Disruption of MKC1 does not decrease unmasking in cho1Δ/Δ, and hyperactivation of Rho1 in wild-type cells increases unmasking and activation of both Cek1 and Mkc1. Moreover, independent hyperactivation of the MAP kinase kinase kinase Ste11 in wild-type cells leads to Cek1 activation and increased ß (1,3)-glucan exposure. Thus, upregulation of the Cek1 MAPK pathway causes unmasking, and may be responsible for unmasking in cho1Δ/Δ.
Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Candida albicans/genética , Proteínas Fúngicas/genética , MAP Quinase Quinase Quinases/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Parede Celular/genética , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Guanosina Trifosfato/genética , Humanos , Lectinas Tipo C/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/genética , beta-Glucanas/química , beta-Glucanas/metabolismo , Proteína cdc42 de Ligação ao GTP/genéticaRESUMO
Bacterial Rel proteins synthesize hyperphosphorylated guanosine nucleotides, denoted as (p)ppGpp, which by inhibiting energy requiring molecular pathways help bacteria to overcome the depletion of nutrients in its surroundings. (p)ppGpp synthesis by Rel involves transferring a pyrophosphate from ATP to the oxygen of 3'-OH of GTP/GDP. Initially, a conserved glutamate at the active site was believed to generate the nucleophile necessary to accomplish the reaction. Later this role was alluded to a Mg2+ ion. However, no study has unequivocally established a catalytic mechanism for (p)ppGpp synthesis. Here we present a revised mechanism, wherein for the first time we explore a role for 2'-OH of GTP and show how it is important in generating the nucleophile. Through a careful comparison of substrate-bound structures of Rel, we illustrate that the active site does not discriminate GTP from dGTP, for a substrate. Using biochemical studies, we demonstrate that both GTP and dGTP bind to Rel, but only GTP (but not dGTP) can form the product. Reactions performed using GTP analogs substituted with different chemical moieties at the 2' position suggest a clear role for 2'-OH in catalysis by providing an indispensable hydrogen bond; preliminary computational analysis further supports this view. This study elucidating a catalytic role for 2'-OH of GTP in (p)ppGpp synthesis allows us to propose different mechanistic possibilities by which it generates the nucleophile for the synthesis reaction. This study underscores the selection of ribose nucleotides as second messengers and finds its roots in the old RNA world hypothesis.
Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato/biossíntese , Guanosina Trifosfato/metabolismo , Ligases/metabolismo , Streptococcus/metabolismo , Proteínas de Bactérias/genética , Guanosina Pentafosfato/genética , Guanosina Trifosfato/genética , Ligases/genética , Magnésio/metabolismo , Streptococcus/genéticaRESUMO
The RAS-related C3 botulinum toxin substrate 2 (RAC2) is a member of the RHO subclass of RAS superfamily GTPases required for proper immune function. An activating mutation in a key switch II region of RAC2 (RAC2E62K) involved in recognizing modulatory factors and effectors has been identified in patients with common variable immune deficiency. To better understand how the mutation dysregulates RAC2 function, we evaluated the structure and stability, guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) activity, and effector binding of RAC2E62K Our findings indicate the E62K mutation does not alter RAC2 structure or stability. However, it does alter GEF specificity, as RAC2E62K is activated by the DOCK GEF, DOCK2, but not by the Dbl homology GEF, TIAM1, both of which activate the parent protein. Our previous data further showed that the E62K mutation impairs GAP activity for RAC2E62K As this disease mutation is also found in RAS GTPases, we assessed GAP-stimulated GTP hydrolysis for KRAS and observed a similar impairment, suggesting that the mutation plays a conserved role in GAP activation. We also investigated whether the E62K mutation alters effector binding, as activated RAC2 binds effectors to transmit signaling through effector pathways. We find that RAC2E62K retains binding to an NADPH oxidase (NOX2) subunit, p67phox, and to the RAC-binding domain of p21-activated kinase, consistent with our earlier findings. Taken together, our findings indicate that the RAC2E62K mutation promotes immune dysfunction by promoting RAC2 hyperactivation, altering GEF specificity, and impairing GAP function yet retaining key effector interactions.
Assuntos
Guanosina Trifosfato/química , Mutação de Sentido Incorreto , Proteínas rac de Ligação ao GTP/química , Substituição de Aminoácidos , Ativação Enzimática , Guanosina Trifosfato/genética , Guanosina Trifosfato/imunologia , Humanos , Hidrólise , NADPH Oxidase 2/química , NADPH Oxidase 2/genética , NADPH Oxidase 2/imunologia , Domínios Proteicos , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Quinases Ativadas por p21/química , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/imunologia , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/imunologia , Proteína RAC2 de Ligação ao GTPRESUMO
GTP-bound forms of Ras proteins (Rasâ¢GTP) assume two interconverting conformations, "inactive" state 1 and "active" state 2. Our previous study on the crystal structure of the state 1 conformation of H-Ras in complex with guanosine 5'-(ß, γ-imido)triphosphate (GppNHp) indicated that state 1 is stabilized by intramolecular hydrogen-bonding interactions formed by Gln61. Since Ras are constitutively activated by substitution mutations of Gln61, here we determine crystal structures of the state 1 conformation of H-Rasâ¢GppNHp carrying representative mutations Q61L and Q61H to observe the effect of the mutations. The results show that these mutations alter the mode of hydrogen-bonding interactions of the residue 61 with Switch II residues and induce conformational destabilization of the neighboring regions. In particular, Q61L mutation results in acquirement of state 2-like structural features. Moreover, the mutations are likely to impair an intramolecular structural communication between Switch I and Switch II. Molecular dynamics simulations starting from these structures support the above observations. These findings may give a new insight into the molecular mechanism underlying the aberrant activation of the Gln61 mutants.
Assuntos
Guanosina Trifosfato/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Cristalografia por Raios X , Guanosina Trifosfato/genética , Humanos , Conformação Molecular , Simulação de Dinâmica Molecular , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
An elongation cycle of a transcribing RNA polymerase (RNAP) usually consists of multiple kinetics steps, so there exist multiple kinetic checkpoints where non-cognate nucleotides can be selected against. We conducted comprehensive free energy calculations on various nucleotide insertions for viral T7 RNAP employing all-atom molecular dynamics simulations. By comparing insertion free energy profiles between the non-cognate nucleotide species (rGTP and dATP) and a cognate one (rATP), we obtained selection free energetics from the nucleotide pre-insertion to the insertion checkpoints, and further inferred the selection energetics down to the catalytic stage. We find that the insertion of base mismatch rGTP proceeds mainly through an off-path along which both pre-insertion screening and insertion inhibition play significant roles. In comparison, the selection against dATP is found to go through an off-path pre-insertion screening along with an on-path insertion inhibition. Interestingly, we notice that two magnesium ions switch roles of leave and stay during the dATP on-path insertion. Finally, we infer that substantial selection energetic is still required to catalytically inhibit the mismatched rGTP to achieve an elongation error rate â¼10-4 or lower; while no catalytic selection seems to be further needed against dATP to obtain an error rate â¼10-2.
Assuntos
Bacteriófago T7/genética , RNA Polimerases Dirigidas por DNA/genética , Transcrição Gênica , Proteínas Virais/genética , Replicação Viral/genética , Trifosfato de Adenosina/genética , Bacteriófago T7/enzimologia , Guanosina Trifosfato/genética , Cinética , Simulação de Dinâmica Molecular , Nucleotídeos/genética , Especificidade por SubstratoRESUMO
Translation termination requires eRF1 and eRF3 for polypeptide- and tRNA-release on stop codons. Additionally, Dbp5/DDX19 and Rli1/ABCE1 are required; however, their function in this process is currently unknown. Using a combination of in vivo and in vitro experiments, we show that they regulate a stepwise assembly of the termination complex. Rli1 and eRF3-GDP associate with the ribosome first. Subsequently, Dbp5-ATP delivers eRF1 to the stop codon and in this way prevents a premature access of eRF3. Dbp5 dissociates upon placing eRF1 through ATP-hydrolysis. This in turn enables eRF1 to contact eRF3, as the binding of Dbp5 and eRF3 to eRF1 is mutually exclusive. Defects in the Dbp5-guided eRF1 delivery lead to premature contact and premature dissociation of eRF1 and eRF3 from the ribosome and to subsequent stop codon readthrough. Thus, the stepwise Dbp5-controlled termination complex assembly is essential for regular translation termination events. Our data furthermore suggest a possible role of Dbp5/DDX19 in alternative translation termination events, such as during stress response or in developmental processes, which classifies the helicase as a potential drug target for nonsense suppression therapy to treat cancer and neurodegenerative diseases.
Assuntos
RNA Helicases DEAD-box/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , Códon de Terminação/genética , Guanosina Trifosfato/genética , Ligação Proteica/genética , Biossíntese de Proteínas/genética , RNA de Transferência/genética , Ribossomos/genética , Saccharomyces cerevisiae/genéticaRESUMO
Heterotrimeric GTP-binding proteins (G proteins), consisting of Gα, Gß and Gγ subunits, transduce signals from a diverse range of extracellular stimuli, resulting in the regulation of numerous cellular and physiological functions in Eukaryotes. According to the classic G protein paradigm established in animal models, the bound guanine nucleotide on a Gα subunit, either guanosine diphosphate (GDP) or guanosine triphosphate (GTP) determines the inactive or active mode, respectively. In plants, there are two types of Gα subunits: canonical Gα subunits structurally similar to their animal counterparts and unconventional extra-large Gα subunits (XLGs) containing a C-terminal domain homologous to the canonical Gα along with an extended N-terminal domain. Both Gα and XLG subunits interact with Gßγ dimers and regulator of G protein signalling (RGS) protein. Plant G proteins are implicated directly or indirectly in developmental processes, stress responses, and innate immunity. It is established that despite the substantial overall similarity between plant and animal Gα subunits, they convey signalling differently including the mechanism by which they are activated. This review emphasizes the unique characteristics of plant Gα subunits and speculates on their unique signalling mechanisms.
Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transdução de Sinais , Animais , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Guanosina Difosfato/genética , Guanosina Trifosfato/genética , Proteínas de Plantas/genética , Plantas/genéticaRESUMO
Mutation in leucine-rich repeat kinase 2 (LRRK2) is a common cause of familial Parkinson's disease (PD). Recently, we showed that a disease-associated mutation R1441H rendered the GTPase domain of LRRK2 catalytically less active and thereby trapping it in a more persistently "on" conformation. However, the mechanism involved and characteristics of this on conformation remained unknown. Here, we report that the Ras of complex protein (ROC) domain of LRRK2 exists in a dynamic dimer-monomer equilibrium that is oppositely driven by GDP and GTP binding. We also observed that the PD-associated mutations at residue 1441 impair this dynamic and shift the conformation of ROC to a GTP-bound-like monomeric conformation. Moreover, we show that residue Arg-1441 is critical for regulating the conformational dynamics of ROC. In summary, our results reveal that the PD-associated substitutions at Arg-1441 of LRRK2 alter monomer-dimer dynamics and thereby trap its GTPase domain in an activated state.
Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mutação de Sentido Incorreto , Doença de Parkinson , Multimerização Proteica , Substituição de Aminoácidos , Guanosina Difosfato/química , Guanosina Difosfato/genética , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Domínios ProteicosRESUMO
Regulator of G protein signaling (RGS) proteins are negative regulators of G protein-coupled receptor (GPCR) signaling through their ability to act as GTPase-activating proteins (GAPs) for activated Gα subunits. Members of the RZ subfamily of RGS proteins bind to activated Gαo, Gαz, and Gαi1-3 proteins in the nervous system and thereby inhibit downstream pathways, including those involved in Ca2+-dependent signaling. In contrast to other RGS proteins, little is known about RZ subfamily structure and regulation. Herein, we present the 1.5-Å crystal structure of RGS17, the most complete and highest-resolution structure of an RZ subfamily member to date. RGS17 cocrystallized with Ca2+ bound to conserved positions on the predicted Gα-binding surface of the protein. Using NMR chemical shift perturbations, we confirmed that Ca2+ binds in solution to the same site. Furthermore, RGS17 had greater than 55-fold higher affinity for Ca2+ than for Mg2+ Finally, we found that Ca2+ promotes interactions between RGS17 and activated Gα and decreases the Km for GTP hydrolysis, potentially by altering the binding mechanism between these proteins. Taken together, these findings suggest that Ca2+ positively regulates RGS17, which may represent a general mechanism by which increased Ca2+ concentration promotes the GAP activity of the RZ subfamily, leading to RZ-mediated inhibition of Ca2+ signaling.
Assuntos
Sinalização do Cálcio , Cálcio/química , Proteínas RGS/química , Cálcio/metabolismo , Cristalografia por Raios X , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Magnésio/química , Magnésio/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismoRESUMO
mTOR complex 1 (mTORC1) is a major regulator of cell growth and proliferation that coordinates nutrient inputs with anabolic and catabolic processes. Amino acid signals are transmitted to mTORC1 through the Rag GTPases, which directly recruit mTORC1 onto the lysosomal surface, its site of activation. The Rag GTPase heterodimer has a unique architecture that consists of two GTPase subunits, RagA or RagB bound to RagC or RagD. Their nucleotide-loading states are strictly controlled by several lysosomal or cytosolic protein complexes that directly detect and transmit the amino acid signals. GATOR1 (GTPase-activating protein (GAP) activity toward Rags-1), a negative regulator of the cytosolic branch of the nutrient-sensing pathway, comprises three subunits, Depdc5 (DEP domain-containing protein 5), Nprl2 (NPR2-like GATOR1 complex subunit), and Nprl3 (NPR3-like GATOR1 complex subunit), and is a GAP for RagA. GATOR1 binds the Rag GTPases via two modes: an inhibitory mode that holds the Rag GTPase heterodimer and has previously been captured by structural determination, and a GAP mode that stimulates GTP hydrolysis by RagA but remains structurally elusive. Here, using site-directed mutagenesis, GTP hydrolysis assays, coimmunoprecipitation experiments, and structural analysis, we probed the GAP mode and found that a critical residue on Nprl2, Arg-78, is the arginine finger that carries out GATOR1's GAP function. Substitutions of this arginine residue rendered mTORC1 signaling insensitive to amino acid starvation and are found frequently in cancers such as glioblastoma. Our results reveal the biochemical bases of mTORC1 inactivation through the GATOR1 complex.
Assuntos
Guanosina Trifosfato , Proteínas Monoméricas de Ligação ao GTP , Proteínas Repressoras , Proteínas Supressoras de Tumor , Substituição de Aminoácidos , Arginina/química , Arginina/genética , Arginina/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação de Sentido Incorreto , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Transcription initiation factor 90 (TIF-90), an alternatively spliced variant of TIF-IA, differs by a 90 base pair deletion of exon 6. TIF-90 has been shown to regulate ribosomal RNA (rRNA) synthesis by interacting with polymerase I (Pol I) during the initiation of ribosomal DNA (rDNA) transcription in the nucleolus. Recently, we showed that TIF-90-mediated rRNA synthesis can play an important role in driving tumorigenesis in human colon cancer cells. Here we show that TIF-90 binds GTP at threonine 310, and that GTP binding is required for TIF-90-enhanced rRNA synthesis. Overexpression of activated AKT induces TIF-90 T310, but not a GTP-binding site (TIF-90 T310N) mutant, to translocate into the nucleolus and increase rRNA synthesis. Complementing this result, treatment with mycophenolic acid (MPA), an inhibitor of GTP production, dissociates TIF-90 from Pol I and hence abolishes AKT-increased rRNA synthesis by way of TIF-90 activation. Thus, TIF-90 requires bound GTP to fulfill its function as an enhancer of rRNA synthesis. Both TIF variants are highly expressed in colon cancer cells, and depletion of TIF-IA expression in these cells results in significant sensitivity to MPA-inhibited rRNA synthesis and reduced cell proliferation. Finally, a combination of MPA and AZD8055 (an inhibitor of both AKT and mTOR) synergistically inhibits rRNA synthesis, in vivo tumor growth, and other oncogenic activities of primary human colon cancer cells, suggesting a potential avenue for the development of therapeutic treatments by targeting the regulation of rRNA synthesis by TIF proteins.
Assuntos
Carcinogênese/genética , Neoplasias do Colo/genética , Guanosina Trifosfato/genética , RNA Ribossômico/genética , Ribossomos/genética , Fatores de Transcrição/genética , Transcrição Gênica/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , DNA Ribossômico/genética , Células HCT116 , Humanos , RNA Polimerase I/genética , Transdução de Sinais/genéticaRESUMO
Because metabolism is a complex balanced process involving multiple enzymes, understanding how organisms compensate for transient or permanent metabolic imbalance is a challenging task that can be more easily achieved in simpler unicellular organisms. The metabolic balance results not only from the combination of individual enzymatic properties, regulation of enzyme abundance, but also from the architecture of the metabolic network offering multiple interconversion alternatives. Although metabolic networks are generally highly resilient to perturbations, metabolic imbalance resulting from enzymatic defect and specific environmental conditions can be designed experimentally and studied. Starting with a double amd1 aah1 mutant that severely and conditionally affects yeast growth, we carefully characterized the metabolic shuffle associated with this defect. We established that the GTP decrease resulting in an adenylic/guanylic nucleotide imbalance was responsible for the growth defect. Identification of several gene dosage suppressors revealed that TAT1, encoding an amino acid transporter, is a robust suppressor of the amd1 aah1 growth defect. We show that TAT1 suppression occurs through replenishment of the GTP pool in a process requiring the histidine biosynthesis pathway. Importantly, we establish that a tat1 mutant exhibits synthetic sickness when combined with an amd1 mutant and that both components of this synthetic phenotype can be suppressed by specific gene dosage suppressors. Together our data point to a strong phenotypic connection between amino acid uptake and GTP synthesis, a connection that could open perspectives for future treatment of related human defects, previously reported as etiologically highly conserved.
Assuntos
AMP Desaminase/genética , Sistemas de Transporte de Aminoácidos/genética , Aminoidrolases/genética , Nucleosídeos de Purina/genética , Proteínas de Saccharomyces cerevisiae/genética , Guanosina Trifosfato/genética , Humanos , Nucleotídeos/genética , Fenótipo , Saccharomyces cerevisiae/genéticaRESUMO
GTP is a major regulator of multiple cellular processes, but tools for quantitative evaluation of GTP levels in live cells have not been available. We report the development and characterization of genetically encoded GTP sensors, which we constructed by inserting a circularly permuted yellow fluorescent protein (cpYFP) into a region of the bacterial G protein FeoB that undergoes a GTP-driven conformational change. GTP binding to these sensors results in a ratiometric change in their fluorescence, thereby providing an internally normalized response to changes in GTP levels while minimally perturbing those levels. Mutations introduced into FeoB to alter its affinity for GTP created a series of sensors with a wide dynamic range. Critically, in mammalian cells the sensors showed consistent changes in ratiometric signal upon depletion or restoration of GTP pools. We show that these GTP evaluators (GEVALs) are suitable for detection of spatiotemporal changes in GTP levels in living cells and for high-throughput screening of molecules that modulate GTP levels.
Assuntos
Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Guanosina Trifosfato/metabolismo , Proteínas Luminescentes/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Guanosina Trifosfato/genética , Humanos , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/genética , MutaçãoRESUMO
Translational GTPases (trGTPases) belong to the family of G proteins and play key roles at all stages of protein biosynthesis on the ribosome. Unidirectional and cyclic functioning of G proteins is ensured by their ability to switch between the active and inactive states due to GTP hydrolysis accelerated by the auxiliary GTPase-activating proteins. Although trGTPases interact with the ribosomes in different conformational states, they bind to the same conserved region, which, unlike in classical GTPase-activating proteins, is represented by ribosomal RNA. The resulting catalytic sites have almost identical structure in all elongation factors suggesting a common mechanism of GTP hydrolysis. However, fine details of the activated state formation and significantly different rates of GTP hydrolysis indicate the existence of distinctive features upon GTP hydrolysis catalyzed by the different factors. Here, we present a contemporary view on the mechanism of GTPase activation and GTP hydrolysis by the elongation factors EF-Tu, EF-G, and SelB based on the analysis of structural, biochemical, and bioinformatics data.
Assuntos
Guanosina Trifosfato/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Guanosina Trifosfato/genética , Hidrólise , Fatores de Alongamento de Peptídeos/genética , Ribossomos/genéticaRESUMO
The conserved Histidine 301 in switch II of Geobacillus stearothermophilus IF2 G2 domain was substituted with Ser, Gln, Arg, Leu and Tyr to generate mutants displaying different phenotypes. Overexpression of IF2H301S, IF2H301L and IF2H301Y in cells expressing wtIF2, unlike IF2H301Q and IF2H301R, caused a dominant lethal phenotype, inhibiting in vivo translation and drastically reducing cell viability. All mutants bound GTP but, except for IF2H301Q, were inactive in ribosome-dependent GTPase for different reasons. All mutants promoted 30S initiation complex (30S IC) formation with wild type (wt) efficiency but upon 30S IC association with the 50S subunit, the fMet-tRNA reacted with puromycin to different extents depending upon the IF2 mutant present in the complex (wtIF2 to IF2H301Q > IF2H301R >>> IF2H301S, IF2H301L and IF2H301Y) whereas only fMet-tRNA 30S-bound with IF2H301Q retained some ability to form initiation dipeptide fMet-Phe. Unlike wtIF2, all mutants, regardless of their ability to hydrolyze GTP, displayed higher affinity for the ribosome and failed to dissociate from the ribosomes upon 50S docking to 30S IC. We conclude that different amino acids substitutions of His301 cause different structural alterations of the factor, resulting in disparate phenotypes with no direct correlation existing between GTPase inactivation and IF2 failure to dissociate from ribosomes.
Assuntos
Proteínas de Bactérias/genética , Geobacillus stearothermophilus/genética , Histidina/genética , Mutação/genética , Fatores de Iniciação de Peptídeos/genética , Substituição de Aminoácidos/genética , GTP Fosfo-Hidrolases/genética , Guanosina Trifosfato/genética , Fenótipo , Biossíntese de Proteínas/genética , Domínios Proteicos/genética , RNA de Transferência de Metionina/genética , Ribossomos/genéticaRESUMO
The rice heterotrimeric G-protein complex, a guanine-nucleotide-dependent on-off switch, mediates vital cellular processes and responses to biotic and abiotic stress. Exchange of bound GDP (resting state) for GTP (active state) is spontaneous in plants including rice and thus there is no need for promoting guanine nucleotide exchange in vivo as a mechanism for regulating the active state of signaling as it is well known for animal G signaling. As such, a master regulator controlling the G-protein activation state is unknown in plants. Therefore, an ab initio approach is taken to discover candidate regulators. The rice Gα subunit (RGA1) is used as bait to screen for nucleotide-dependent protein partners. A total of 264 proteins are identified by tandem mass spectrometry of which 32 were specific to the GDP-bound inactive state and 22 specific to the transition state. Approximately, 10% are validated as previously identified G-protein interactors.
Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/genética , Oryza/genética , Subunidades Proteicas/genética , Guanosina Difosfato/genética , Guanosina Trifosfato/genética , Nucleotídeos/genética , Transdução de Sinais/genéticaRESUMO
Mutations in leucine-rich repeat kinase 2 (LRRK2) comprise the most common cause of familial Parkinson's disease (PD), and sequence variants modify risk for sporadic PD. Previous studies indicate that LRRK2 interacts with microtubules (MTs) and alters MT-mediated vesicular transport processes. However, the molecular determinants within LRRK2 required for such interactions have remained unknown. Here, we report that most pathogenic LRRK2 mutants cause relocalization of LRRK2 to filamentous structures which colocalize with a subset of MTs, and an identical relocalization is seen upon pharmacological LRRK2 kinase inhibition. The pronounced colocalization with MTs does not correlate with alterations in LRRK2 kinase activity, but rather with increased GTP binding. Synthetic mutations which impair GTP binding, as well as LRRK2 GTP-binding inhibitors profoundly interfere with the abnormal localization of both pathogenic mutant as well as kinase-inhibited LRRK2. Conversely, addition of a non-hydrolyzable GTP analog to permeabilized cells enhances the association of pathogenic or kinase-inhibited LRRK2 with MTs. Our data elucidate the mechanism underlying the increased MT association of select pathogenic LRRK2 mutants or of pharmacologically kinase-inhibited LRRK2, with implications for downstream MT-mediated transport events.
Assuntos
Guanosina Trifosfato/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Variação Genética , Guanosina Trifosfato/genética , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Doença de Parkinson/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de SinaisRESUMO
Elongation factor G (EF-G) is a translational GTPase that acts at several stages of protein synthesis. Its canonical function is to catalyze tRNA movement during translation elongation, but it also acts at the last step of translation to promote ribosome recycling. Moreover, EF-G has additional functions, such as helping the ribosome to maintain the mRNA reading frame or to slide over non-coding stretches of the mRNA. EF-G has an unconventional GTPase cycle that couples the energy of GTP hydrolysis to movement. EF-G facilitates movement in the GDP-Pi form. To convert the energy of hydrolysis to movement, it requires various ligands in the A site, such as a tRNA in translocation, an mRNA secondary structure element in ribosome sliding, or ribosome recycling factor in post-termination complex disassembly. The ligand defines the direction and timing of EF-G-facilitated motion. In this review, we summarize recent advances in understanding the mechanism of EF-G action as a remarkable force-generating GTPase.