Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Zoo Wildl Med ; 55(2): 462-465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38875203

RESUMO

Canine distemper virus (CDV) is a well-known RNA virus that affects domestic dogs and all families of wild terrestrial carnivores. Spillover infections from wildlife to domestic animals are mitigated by preventive vaccination, but there is limited information on the off-label use of veterinary vaccines for wildlife like raccoons (Procyon lotor). Twenty wild-caught raccoons were inoculated with a commercial recombinant DNA canarypox-vectored CDV vaccine, applying a regimen of two serial doses by SC route with an interval of 25-28 days between doses. The CDV serum virus neutralizing antibody (VNA) baseline titers and the postvaccination titers were measured at fixed time points. Forty percent (8/20) of the wild-caught raccoons had CDV VNA titers of 1:8 or greater upon intake, and all but a single individual were juvenile animals. Approximately one month following the first vaccine dose, 8% (1/12) of raccoons seronegative at baseline had serum CDV VNA titers of 1:24 or greater. Approximately one month following the booster vaccine dose, 67% (8/12) of raccoons seronegative at baseline had serum CDV VNA titers of 1:24 or greater. Among raccoons with CDV VNA titers greater than or equal to 1:8 at baseline, 13% (1/8) demonstrated a fourfold or greater rise in titer one month after the first vaccine dose, whereas 38% (3/8) reached the same threshold one month after the booster dose. The presence of naturally acquired CDV VNA in juvenile raccoons at the time of vaccination may have interfered with the humoral VNA response. A regimen of at least two serially administered SC vaccine doses may be immunogenic for raccoons, but further investigation of alternative routes, regimens, and CDV vaccine products is also warranted for this species.


Assuntos
Anticorpos Antivirais , Vírus da Cinomose Canina , Cinomose , Guaxinins , Vacinas Virais , Animais , Guaxinins/virologia , Cinomose/prevenção & controle , Vírus da Cinomose Canina/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Anticorpos Antivirais/sangue , Masculino , Feminino , Animais Selvagens , Vacinação/veterinária
2.
J Virol ; 94(15)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32404529

RESUMO

The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in a pandemic. Here, we used X-ray structures of human ACE2 bound to the receptor-binding domain (RBD) of the spike protein (S) from SARS-CoV-2 to predict its binding to ACE2 proteins from different animals, including pets, farm animals, and putative intermediate hosts of SARS-CoV-2. Comparing the interaction sites of ACE2 proteins known to serve or not serve as receptors allows the definition of residues important for binding. From the 20 amino acids in ACE2 that contact S, up to 7 can be replaced and ACE2 can still function as the SARS-CoV-2 receptor. These variable amino acids are clustered at certain positions, mostly at the periphery of the binding site, while changes of the invariable residues prevent S binding or infection of the respective animal. Some ACE2 proteins even tolerate the loss or acquisition of N-glycosylation sites located near the S interface. Of note, pigs and dogs, which are not infected or are not effectively infected and have only a few changes in the binding site, exhibit relatively low levels of ACE2 in the respiratory tract. Comparison of the RBD of S of SARS-CoV-2 with that from bat coronavirus strain RaTG13 (Bat-CoV-RaTG13) and pangolin coronavirus (Pangolin-CoV) strain hCoV-19/pangolin/Guangdong/1/2019 revealed that the latter contains only one substitution, whereas Bat-CoV-RaTG13 exhibits five. However, ACE2 of pangolin exhibits seven changes relative to human ACE2, and a similar number of substitutions is present in ACE2 of bats, raccoon dogs, and civets, suggesting that SARS-CoV-2 may not be especially adapted to ACE2 of any of its putative intermediate hosts. These analyses provide new insight into the receptor usage and animal source/origin of SARS-CoV-2.IMPORTANCE SARS-CoV-2 is threatening people worldwide, and there are no drugs or vaccines available to mitigate its spread. The origin of the virus is still unclear, and whether pets and livestock can be infected and transmit SARS-CoV-2 are important and unknown scientific questions. Effective binding to the host receptor ACE2 is the first prerequisite for infection of cells and determines the host range. Our analysis provides a framework for the prediction of potential hosts of SARS-CoV-2. We found that ACE2 from species known to support SARS-CoV-2 infection tolerate many amino acid changes, indicating that the species barrier might be low. Exceptions are dogs and especially pigs, which revealed relatively low ACE2 expression levels in the respiratory tract. Monitoring of animals is necessary to prevent the generation of a new coronavirus reservoir. Finally, our analysis also showed that SARS-CoV-2 may not be specifically adapted to any of its putative intermediate hosts.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral , Enzima de Conversão de Angiotensina 2 , Animais , Animais Domésticos , Betacoronavirus/metabolismo , COVID-19 , Quirópteros/virologia , Infecções por Coronavirus/metabolismo , Cães , Glicosilação , Interações Hospedeiro-Patógeno , Humanos , Modelos Animais , Pandemias , Animais de Estimação , Pneumonia Viral/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Guaxinins/virologia , SARS-CoV-2 , Alinhamento de Sequência , Análise de Sequência de Proteína , Suínos , Viverridae/virologia
3.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31619551

RESUMO

Canine parvovirus (CPV) is a highly successful pathogen that has sustained pandemic circulation in dogs for more than 40 years. Here, integrating full-genome and deep-sequencing analyses, structural information, and in vitro experimentation, we describe the macro- and microscale features that accompany CPV's evolutionary success. Despite 40 years of viral evolution, all CPV variants are more than ∼99% identical in nucleotide sequence, with only a limited number (<40) of substitutions becoming fixed or widespread during this time. Notably, most substitutions in the major capsid protein (VP2) gene are nonsynonymous, altering amino acid residues that fall within, or adjacent to, the overlapping receptor footprint or antigenic regions, suggesting that natural selection has channeled much of CPV evolution. Among the limited number of variable sites, CPV genomes exhibit complex patterns of variation that include parallel evolution, reversion, and recombination, compromising phylogenetic inference. At the intrahost level, deep sequencing of viral DNA in original clinical samples from dogs and other host species sampled between 1978 and 2018 revealed few subconsensus single nucleotide variants (SNVs) above ∼0.5%, and experimental passages demonstrate that substantial preexisting genetic variation is not necessarily required for rapid host receptor-driven adaptation. Together, these findings suggest that although CPV is capable of rapid host adaptation, a relatively low mutation rate, pleiotropy, and/or a lack of selective challenges since its initial emergence have inhibited the long-term accumulation of genetic diversity. Hence, continuously high levels of inter- and intrahost diversity are not necessarily required for virus host adaptation.IMPORTANCE Rapid mutation rates and correspondingly high levels of intra- and interhost diversity are often cited as key features of viruses with the capacity for emergence and sustained transmission in a new host species. However, most of this information comes from studies of RNA viruses, with relatively little known about evolutionary processes in viruses with single-stranded DNA (ssDNA) genomes. Here, we provide a unique model of virus evolution, integrating both long-term global-scale and short-term intrahost evolutionary processes of an ssDNA virus that emerged to cause a pandemic in a new host animal. Our analysis reveals that successful host jumping and sustained transmission does not necessarily depend on a high level of intrahost diversity nor result in the continued accumulation of high levels of long-term evolution change. These findings indicate that all aspects of the biology and ecology of a virus are relevant when considering their adaptability.


Assuntos
Proteínas do Capsídeo/genética , DNA Viral/genética , Doenças do Cão/epidemiologia , Genoma Viral , Infecções por Parvoviridae/veterinária , Parvovirus Canino/genética , Proteínas não Estruturais Virais/genética , Adaptação Fisiológica/genética , Animais , Evolução Biológica , Proteínas do Capsídeo/classificação , Proteínas do Capsídeo/metabolismo , DNA Viral/metabolismo , Doenças do Cão/transmissão , Doenças do Cão/virologia , Cães , Raposas/virologia , Especificidade de Hospedeiro/genética , Modelos Moleculares , Mutação , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/transmissão , Infecções por Parvoviridae/virologia , Parvovirus Canino/classificação , Parvovirus Canino/patogenicidade , Filogenia , Conformação Proteica , Cães Guaxinins/virologia , Guaxinins/virologia , Proteínas não Estruturais Virais/classificação , Proteínas não Estruturais Virais/metabolismo , Sequenciamento Completo do Genoma
4.
Virus Genes ; 54(4): 591-595, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29740778

RESUMO

Serological surveys have shown that wild raccoons are exposed to influenza A viruses (IAVs); however, no genetic evidence for this IAV infection has been found. In the present study, we first detected IAV genes in wild raccoons captured during periods other than the wintering season of migratory waterfowl and epidemic season of influenza in Japan. Viral matrix (M) and nucleoprotein (NP) genes were detected by a conventional reverse transcription-polymerase chain reaction assay from three suckling siblings and one juvenile without any noticeable clinical signs, although the NP gene could not be detected from one sibling. The sequences of M gene fragments detected from the rectal swabs of three suckling siblings were comparable with each other but different from those detected from the nasal swab of the juvenile raccoon caught from a different site. The sequences of NP gene fragments detected from two suckling siblings were also comparable. These genetic evidences suggest that IAV is maintained among raccoon populations in the northern part of Japan. Further genetic and virological investigation of IAV infection in wild raccoons is needed to better understand the IAV ecology in the field.


Assuntos
Vírus da Influenza A/isolamento & purificação , Proteínas de Ligação a RNA/genética , Guaxinins/virologia , Proteínas do Core Viral/genética , Proteínas da Matriz Viral/genética , Animais , Análise por Conglomerados , Vírus da Influenza A/genética , Japão , Cavidade Nasal/virologia , Proteínas do Nucleocapsídeo , Filogenia , Reto/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência
5.
Emerg Infect Dis ; 23(9): 1454-1461, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28820138

RESUMO

Disease control programs aim to constrain and reduce the spread of infection. Human disease interventions such as wildlife vaccination play a major role in determining the limits of a pathogen's spatial distribution. Over the past few decades, a raccoon-specific variant of rabies virus (RRV) has invaded large areas of eastern North America. Although expansion into Canada has been largely prevented through vaccination along the US border, several outbreaks have occurred in Canada. Applying phylogeographic approaches to 289 RRV whole-genome sequences derived from isolates collected in Canada and adjacent US states, we examined the processes underlying these outbreaks. RRV incursions were attributable predominantly to systematic virus leakage of local strains across areas along the border where vaccination has been conducted but also to single stochastic events such as long-distance translocations. These results demonstrate the utility of phylogeographic analysis of pathogen genomes for understanding transboundary outbreaks.


Assuntos
Surtos de Doenças , Genoma Viral , Vacina Antirrábica/administração & dosagem , Vírus da Raiva/genética , Raiva/epidemiologia , Raiva/prevenção & controle , Vacinação/veterinária , Administração Oral , Animais , Encéfalo/patologia , Encéfalo/virologia , Canadá/epidemiologia , Humanos , Filogenia , Filogeografia , RNA Viral/genética , Raiva/transmissão , Raiva/virologia , Vírus da Raiva/classificação , Vírus da Raiva/isolamento & purificação , Guaxinins/virologia , Análise de Sequência de DNA , Estados Unidos/epidemiologia
6.
Syst Biol ; 65(6): 1041-1056, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27368344

RESUMO

Effective population size characterizes the genetic variability in a population and is a parameter of paramount importance in population genetics and evolutionary biology. Kingman's coalescent process enables inference of past population dynamics directly from molecular sequence data, and researchers have developed a number of flexible coalescent-based models for Bayesian nonparametric estimation of the effective population size as a function of time. Major goals of demographic reconstruction include identifying driving factors of effective population size, and understanding the association between the effective population size and such factors. Building upon Bayesian nonparametric coalescent-based approaches, we introduce a flexible framework that incorporates time-varying covariates that exploit Gaussian Markov random fields to achieve temporal smoothing of effective population size trajectories. To approximate the posterior distribution, we adapt efficient Markov chain Monte Carlo algorithms designed for highly structured Gaussian models. Incorporating covariates into the demographic inference framework enables the modeling of associations between the effective population size and covariates while accounting for uncertainty in population histories. Furthermore, it can lead to more precise estimates of population dynamics. We apply our model to four examples. We reconstruct the demographic history of raccoon rabies in North America and find a significant association with the spatiotemporal spread of the outbreak. Next, we examine the effective population size trajectory of the DENV-4 virus in Puerto Rico along with viral isolate count data and find similar cyclic patterns. We compare the population history of the HIV-1 CRF02_AG clade in Cameroon with HIV incidence and prevalence data and find that the effective population size is more reflective of incidence rate. Finally, we explore the hypothesis that the population dynamics of musk ox during the Late Quaternary period were related to climate change. [Coalescent; effective population size; Gaussian Markov random fields; phylodynamics; phylogenetics; population genetics.


Assuntos
Modelos Biológicos , Raiva/epidemiologia , Animais , Teorema de Bayes , Camarões/epidemiologia , Mudança Climática , Genética Populacional , Infecções por HIV/epidemiologia , HIV-1/fisiologia , Humanos , América do Norte/epidemiologia , Filogenia , Densidade Demográfica , Dinâmica Populacional , Porto Rico/epidemiologia , Vírus da Raiva/fisiologia , Guaxinins/virologia
7.
J Gen Virol ; 97(11): 2939-2948, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27600312

RESUMO

Polyomavirus infection often results in persistence of the viral genome with little or no virion production. However, infection of certain cell types can result in high viral gene transcription and either cytolysis or neoplastic transformation. While infection by polyomavirus is common in humans and many animals, major questions regarding viral persistence of most polyomaviruses remain unanswered. Specifically, identification of target cells for viral infection and the mechanisms polyomaviruses employ to maintain viral genomes within cells are important not only in ascribing causality to polyomaviruses in disease, but in understanding specific mechanisms by which they cause disease. Here, we characterize the cell of origin in raccoon polyomavirus (RacPyV)-associated neuroglial brain tumours as a neural stem cell. Moreover, we identify an association between the viral genome and the host cell bromodomain protein, BRD4, which is involved in numerous cellular functions, including cell cycle progression, differentiation of stem cells, tethering of persistent DNA viruses, and regulation of viral and host-cell gene transcription. We demonstrate that inhibition of BRD4 by the small molecule inhibitors (+)-JQ1 and IBET-151 (GSK1210151A) results in reduced RacPyV genome within cells in vitro, as well as significant reduction of viral gene transcripts LT and VP1, highlighting its importance in both maintenance of the viral genome and in driving oncogenic transformation by RacPyV. This work implicates BRD4 as a central protein involved in RacPyV neuroglial tumour cell proliferation and in the maintenance of a stem cell state.


Assuntos
Neuroglia/virologia , Infecções por Polyomavirus/veterinária , Polyomavirus/genética , Guaxinins/virologia , Células-Tronco/virologia , Fatores de Transcrição/metabolismo , Infecções Tumorais por Vírus/veterinária , Proteínas Virais/genética , Animais , Proliferação de Células , Transformação Celular Neoplásica , Genoma Viral , Neuroglia/metabolismo , Polyomavirus/metabolismo , Infecções por Polyomavirus/metabolismo , Infecções por Polyomavirus/fisiopatologia , Infecções por Polyomavirus/virologia , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Infecções Tumorais por Vírus/metabolismo , Infecções Tumorais por Vírus/fisiopatologia , Infecções Tumorais por Vírus/virologia , Proteínas Virais/metabolismo
8.
Vet Pathol ; 53(3): 674-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26374278

RESUMO

Canine distemper virus commonly infects free-ranging, terrestrial mesopredators throughout the United States. Due to the immunosuppressive effects of the virus, concurrent opportunistic infections are also common. Among these, secondary systemic protozoal infections have been described in a number of species. We report an unusual presentation of necrotizing encephalitis associated withSarcocystissp in four raccoons and one skunk concurrently infected with canine distemper virus. Lesions were characterized by variably sized necrotizing cavitations composed of abundant mineral admixed with inflammatory cells and protozoa.Sarcocystissp was confirmed via immunohistochemistry using a monoclonal antibody toSarcocystis neurona The pathologic changes are similar to lesions in human AIDS patients infected withToxoplasma gondii.


Assuntos
Vírus da Cinomose Canina , Cinomose/diagnóstico , Encefalite Infecciosa/veterinária , Mephitidae , Guaxinins , Sarcocistose/veterinária , Animais , Calcinose/veterinária , Cinomose/complicações , Cinomose/patologia , Cinomose/virologia , Vírus da Cinomose Canina/isolamento & purificação , Imuno-Histoquímica/veterinária , Encefalite Infecciosa/complicações , Encefalite Infecciosa/diagnóstico , Encefalite Infecciosa/patologia , Mephitidae/parasitologia , Mephitidae/virologia , Necrose/veterinária , Guaxinins/parasitologia , Guaxinins/virologia , Sarcocystis/imunologia , Sarcocystis/isolamento & purificação , Sarcocistose/complicações , Sarcocistose/diagnóstico , Sarcocistose/patologia , Estados Unidos
9.
J Gen Virol ; 95(Pt 1): 16-25, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24085257

RESUMO

Zoonotic wildlife diseases pose significant health risks not only to their primary vectors but also to humans and domestic animals. Rabies is a lethal encephalitis caused by rabies virus (RV). This RNA virus can infect a range of terrestrial mammals but each viral variant persists in a particular reservoir host. Active management of these host vectors is needed to minimize the negative impacts of this disease, and an understanding of the immune response to RV infection aids strategies for host vaccination. Current knowledge of immune responses to RV infection comes primarily from rodent models in which an innate immune response triggers activation of several genes and signalling pathways. It is unclear, however, how well rodent models represent the immune response of natural hosts. This study investigates the innate immune response of a primary host, the raccoon, to a peripheral challenge using the raccoon rabies virus (RRV). The extent and temporal course of this response during RRV infection was analysed using genes predicted to be upregulated during infection (IFNs; IFN regulatory factors; IL-6; Toll like receptor-3; TNF receptor). We found that RRV activated components of the innate immune system, with changes in levels of transcripts correlated with presence of viral RNA. Our results suggest that natural reservoirs of rabies may not mimic the immune response triggered in rodent models, highlighting the need for further studies of infection in primary hosts.


Assuntos
Modelos Animais de Doenças , Imunidade Inata , Vírus da Raiva/fisiologia , Raiva , Guaxinins/imunologia , Animais , Humanos , Interferons/genética , Interferons/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Raiva/genética , Raiva/imunologia , Raiva/virologia , Vírus da Raiva/imunologia , Guaxinins/virologia
10.
Mol Ecol ; 23(9): 2287-98, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24655158

RESUMO

Local adaptation is necessary for population survival and depends on the interplay between responses to selective forces and demographic processes that introduce or retain adaptive and maladaptive attributes. Host-parasite systems are dynamic, varying in space and time, where both host and parasites must adapt to their ever-changing environment in order to survive. We investigated patterns of local adaptation in raccoon populations with varying temporal exposure to the raccoon rabies virus (RRV). RRV infects approximately 85% of the population when epizootic and has been presumed to be completely lethal once contracted; however, disease challenge experiments and varying spatial patterns of RRV spread suggest some level of immunity may exist. We first assessed patterns of local adaptation in raccoon populations along the eastern seaboard of North America by contrasting spatial patterns of neutral (microsatellite loci) and functional, major histocompatibility complex (MHC) genetic diversity and structure. We explored variation of MHC allele frequencies in the light of temporal population exposure to RRV (0-60 years) and specific RRV strains in infected raccoons. Our results revealed high levels of MHC variation (66 DRB exon 2 alleles) and pronounced genetic structure relative to neutral microsatellite loci, indicative of local adaptation. We found a positive association linking MHC genetic diversity and temporal RRV exposure, but no association with susceptibility and resistance to RRV strains. These results have implications for landscape epidemiology studies seeking to predict the spread of RRV and present an example of how population demographics influence the degree to which populations adapt to local selective pressures.


Assuntos
Adaptação Biológica/genética , Variação Genética , Genética Populacional , Raiva/genética , Guaxinins/genética , Animais , Resistência à Doença/genética , Frequência do Gene , Complexo Principal de Histocompatibilidade/genética , Repetições de Microssatélites , América do Norte , Raiva/epidemiologia , Guaxinins/imunologia , Guaxinins/virologia
11.
Proc Natl Acad Sci U S A ; 108(25): 10208-13, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21646516

RESUMO

Rabies is an acute viral infection that is typically fatal. Most rabies modeling has focused on disease dynamics and control within terrestrial mammals (e.g., raccoons and foxes). As such, rabies in bats has been largely neglected until recently. Because bats have been implicated as natural reservoirs for several emerging zoonotic viruses, including SARS-like corona viruses, henipaviruses, and lyssaviruses, understanding how pathogens are maintained within a population becomes vital. Unfortunately, little is known about maintenance mechanisms for any pathogen in bat populations. We present a mathematical model parameterized with unique data from an extensive study of rabies in a Colorado population of big brown bats (Eptesicus fuscus) to elucidate general maintenance mechanisms. We propose that life history patterns of many species of temperate-zone bats, coupled with sufficiently long incubation periods, allows for rabies virus maintenance. Seasonal variability in bat mortality rates, specifically low mortality during hibernation, allows long-term bat population viability. Within viable bat populations, sufficiently long incubation periods allow enough infected individuals to enter hibernation and survive until the following year, and hence avoid an epizootic fadeout of rabies virus. We hypothesize that the slowing effects of hibernation on metabolic and viral activity maintains infected individuals and their pathogens until susceptibles from the annual birth pulse become infected and continue the cycle. This research provides a context to explore similar host ecology and viral dynamics that may explain seasonal patterns and maintenance of other bat-borne diseases.


Assuntos
Quirópteros/virologia , Ecologia , Modelos Teóricos , Raiva/epidemiologia , Animais , Colorado/epidemiologia , Vetores de Doenças , Raposas/virologia , Raiva/virologia , Guaxinins/virologia , Zoonoses/epidemiologia , Zoonoses/transmissão , Zoonoses/virologia
12.
J Wildl Dis ; 60(3): 745-752, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38685759

RESUMO

Wildlife translocation and cross-species transmission can impede control and elimination of emerging zoonotic diseases. Tracking the geographic origin of both host and virus (i.e., translocation versus local infection) may help determine the most effective response when high-risk cases of emerging pathogens are identified in wildlife. In May 2022, a coyote (Canis latrans) infected with the raccoon (Procyon lotor) rabies virus variant (RRV) was collected in Lewis County, West Virginia, USA, an area free from RRV. We applied host population genomics and RRV phylogenetic analyses to determine the most likely geographic origin of the rabid coyote. Coyote genomic analyses included animals from multiple eastern states bordering West Virginia, with the probable origin of the rabid coyote being the county of collection. The RRV phylogenetic analyses included cases detected from West Virginia and neighboring states, with most similar RRV sequences collected in a county 80 km to the northeast, within the oral rabies vaccination zone. The combined results suggest that the coyote was infected in an RRV management area and carried the RRV to Lewis County, a pattern consistent with coyote local movement ecology. Distant cross-species transmission and subsequent host movement presents a low risk for onward transmission in raccoon populations. This information helped with emergency response decision-making, thereby saving time and resources.


Assuntos
Coiotes , Filogenia , Vírus da Raiva , Raiva , Animais , Coiotes/virologia , West Virginia/epidemiologia , Raiva/veterinária , Raiva/epidemiologia , Vírus da Raiva/genética , Vírus da Raiva/isolamento & purificação , Vírus da Raiva/classificação , Guaxinins/virologia , Animais Selvagens
13.
Nat Commun ; 15(1): 6210, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075057

RESUMO

Pervasive SARS-CoV-2 infections in humans have led to multiple transmission events to animals. While SARS-CoV-2 has a potential broad wildlife host range, most documented infections have been in captive animals and a single wildlife species, the white-tailed deer. The full extent of SARS-CoV-2 exposure among wildlife communities and the factors that influence wildlife transmission risk remain unknown. We sampled 23 species of wildlife for SARS-CoV-2 and examined the effects of urbanization and human use on seropositivity. Here, we document positive detections of SARS-CoV-2 RNA in six species, including the deer mouse, Virginia opossum, raccoon, groundhog, Eastern cottontail, and Eastern red bat between May 2022-September 2023 across Virginia and Washington, D.C., USA. In addition, we found that sites with high human activity had three times higher seroprevalence than low human-use areas. We obtained SARS-CoV-2 genomic sequences from nine individuals of six species which were assigned to seven Pango lineages of the Omicron variant. The close match to variants circulating in humans at the time suggests at least seven recent human-to-animal transmission events. Our data support that exposure to SARS-CoV-2 has been widespread in wildlife communities and suggests that areas with high human activity may serve as points of contact for cross-species transmission.


Assuntos
Animais Selvagens , COVID-19 , SARS-CoV-2 , Animais , COVID-19/transmissão , COVID-19/epidemiologia , COVID-19/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Animais Selvagens/virologia , Humanos , Estudos Soroepidemiológicos , Filogenia , Quirópteros/virologia , Virginia/epidemiologia , Guaxinins/virologia , District of Columbia/epidemiologia , Cervos/virologia , Genoma Viral , Urbanização , Anticorpos Antivirais/sangue , RNA Viral/genética
14.
Emerg Infect Dis ; 19(1): 77-84, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23260029

RESUMO

Tumors of any type are exceedingly rare in raccoons. High-grade brain tumors, consistently located in the frontal lobes and olfactory tracts, were detected in 10 raccoons during March 2010-May 2012 in California and Oregon, suggesting an emerging, infectious origin. We have identified a candidate etiologic agent, dubbed raccoon polyomavirus, that was present in the tumor tissue of all affected animals but not in tissues from 20 unaffected animals. Southern blot hybridization and rolling circle amplification showed the episomal viral genome in the tumors. The multifunctional nuclear protein large T-antigen was detectable by immunohistochemical analyses in a subset of neoplastic cells. Raccoon polyomavirus may contribute to the development of malignant brain tumors of raccoons.


Assuntos
Neoplasias Encefálicas/veterinária , Infecções por Polyomavirus/veterinária , Polyomavirus/genética , Guaxinins/virologia , Infecções Tumorais por Vírus/veterinária , Animais , Antígenos Virais de Tumores/imunologia , Southern Blotting , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/virologia , California/epidemiologia , Lobo Frontal/patologia , Lobo Frontal/virologia , Imuno-Histoquímica , Condutos Olfatórios/patologia , Condutos Olfatórios/virologia , Oregon/epidemiologia , Filogenia , Plasmídeos/genética , Polyomavirus/classificação , Polyomavirus/imunologia , Polyomavirus/patogenicidade , Infecções por Polyomavirus/epidemiologia , Infecções por Polyomavirus/patologia , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia
15.
J Virol ; 86(2): 865-72, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072763

RESUMO

Understanding the mechanisms of cross-species virus transmission is critical to anticipating emerging infectious diseases. Canine parvovirus type 2 (CPV-2) emerged as a variant of a feline parvovirus when it acquired mutations that allowed binding to the canine transferrin receptor type 1 (TfR). However, CPV-2 was soon replaced by a variant virus (CPV-2a) that differed in antigenicity and receptor binding. Here we show that the emergence of CPV involved an additional host range variant virus that has circulated undetected in raccoons for at least 24 years, with transfers to and from dogs. Raccoon virus capsids showed little binding to the canine TfR, showed little infection of canine cells, and had altered antigenic structures. Remarkably, in capsid protein (VP2) phylogenies, most raccoon viruses fell as evolutionary intermediates between the CPV-2 and CPV-2a strains, suggesting that passage through raccoons assisted in the evolution of CPV-2a. This highlights the potential role of alternative hosts in viral emergence.


Assuntos
Transmissão de Doença Infecciosa/veterinária , Especificidade de Hospedeiro , Pandemias/veterinária , Infecções por Parvoviridae/veterinária , Parvovirus/fisiologia , Guaxinins/virologia , Animais , Evolução Biológica , Proteínas do Capsídeo/genética , Gatos , Linhagem Celular , Cães , Dados de Sequência Molecular , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/transmissão , Infecções por Parvoviridae/virologia , Parvovirus/classificação , Parvovirus/genética , Parvovirus/isolamento & purificação , Filogenia , Estados Unidos/epidemiologia
16.
Virol J ; 10: 109, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23566727

RESUMO

BACKGROUND: Canine distemper virus (CDV) infects a variety of carnivores, including wild and domestic Canidae. In this study, we sequenced and phylogenetic analyses of the hemagglutinin (H) genes from eight canine distemper virus (CDV) isolates obtained from seven raccoon dogs (Nyctereutes procyonoides) and a giant panda (Ailuropoda melanoleuca) in China. RESULTS: Phylogenetic analysis of the partial hemagglutinin gene sequences showed close clustering for geographic lineages, clearly distinct from vaccine strains and other wild-type foreign CDV strains, all the CDV strains were characterized as Asia-1 genotype and were highly similar to each other (91.5-99.8% nt and 94.4-99.8% aa). The giant panda and raccoon dogs all were 549Y on the HA protein in this study, irrespective of the host species. CONCLUSIONS: These findings enhance our knowledge of the genetic characteristics of Chinese CDV isolates, and may facilitate the development of effective strategies for monitoring and controlling CDV for wild canids and non-canids in China.


Assuntos
Vírus da Cinomose Canina/classificação , Vírus da Cinomose Canina/genética , Hemaglutininas Virais/genética , Filogeografia , Guaxinins/virologia , Ursidae/virologia , Animais , China , Análise por Conglomerados , Vírus da Cinomose Canina/isolamento & purificação , Variação Genética , Dados de Sequência Molecular , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
17.
JAMA ; 310(4): 398-407, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23917290

RESUMO

IMPORTANCE: The rabies virus causes a fatal encephalitis and can be transmitted through tissue or organ transplantation. In February 2013, a kidney recipient with no reported exposures to potentially rabid animals died from rabies 18 months after transplantation. OBJECTIVES: To investigate whether organ transplantation was the source of rabies virus exposure in the kidney recipient, and to evaluate for and prevent rabies in other transplant recipients from the same donor. DESIGN: Organ donor and all transplant recipient medical records were reviewed. Laboratory tests to detect rabies virus-specific binding antibodies, rabies virus neutralizing antibodies, and rabies virus antigens were conducted on available specimens, including serum, cerebrospinal fluid, and tissues from the donor and the recipients. Viral ribonucleic acid was extracted from tissues and amplified for nucleoprotein gene sequencing for phylogenetic comparisons. MAIN OUTCOMES AND MEASURES: Determination of whether the donor died from undiagnosed rabies and whether other organ recipients developed rabies. RESULTS: In retrospect, the donor's clinical presentation (which began with vomiting and upper extremity paresthesias and progressed to fever, seizures, dysphagia, autonomic dysfunction, and brain death) was consistent with rabies. Rabies virus antigen was detected in archived autopsy brain tissue collected from the donor. The rabies viruses infecting the donor and the deceased kidney recipient were consistent with the raccoon rabies virus variant and were more than 99.9% identical across the entire N gene (1349/1350 nucleotides), thus confirming organ transplantation as the route of transmission. The 3 other organ recipients remained asymptomatic, with rabies virus neutralizing antibodies detected in their serum after completion of postexposure prophylaxis (range, 0.3-40.8 IU/mL). CONCLUSIONS AND RELEVANCE: Unlike the 2 previous clusters of rabies virus transmission through solid organ transplantation, there was a long incubation period in the recipient who developed rabies, and survival of 3 other recipients without pretransplant rabies vaccination. Rabies should be considered in patients with acute progressive encephalitis of unexplained etiology, especially for potential organ donors. A standard evaluation of potential donors who meet screening criteria for infectious encephalitis should be considered, and risks and benefits for recipients of organs from these donors should be evaluated.


Assuntos
Período de Incubação de Doenças Infecciosas , Transplante de Rim/efeitos adversos , Vírus da Raiva/genética , Raiva/transmissão , Doadores de Tecidos , Animais , Humanos , Masculino , Reação em Cadeia da Polimerase , Raiva/diagnóstico , Raiva/fisiopatologia , Raiva/prevenção & controle , Vacina Antirrábica/uso terapêutico , Vírus da Raiva/isolamento & purificação , Guaxinins/virologia , Estudos Retrospectivos
18.
Emerg Infect Dis ; 18(7): 1170-2, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22709617

RESUMO

In 2009, an outbreak of raccoon rabies in Central Park in New York City, New York, USA, infected 133 raccoons. Five persons and 2 dogs were exposed but did not become infected. A trap-vaccinate-release program vaccinated ≈ 500 raccoons and contributed to the end of the epizootic.


Assuntos
Animais Selvagens/virologia , Controle de Doenças Transmissíveis/métodos , Surtos de Doenças , Vacina Antirrábica/administração & dosagem , Raiva/prevenção & controle , Guaxinins/virologia , Vacinação/veterinária , Animais , Cidade de Nova Iorque , Avaliação de Programas e Projetos de Saúde , Raiva/epidemiologia , Raiva/virologia , Resultado do Tratamento
19.
Proc Biol Sci ; 278(1703): 204-10, 2011 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20667873

RESUMO

Inverse correlations between genetic variability and parasitism are important concerns for conservation biologists. We examined correlations between neutral genetic variability and the presence of antibodies to canine distemper virus (CDV) and feline parvovirus (FPV) in a free-ranging population of raccoons. Over 3 years there was a strong relationship between age and seroprevalence rates. Most young animals were seronegative to CDV and FPV, but the oldest age class was greater than 80 per cent seropositive to both viruses. CDV-seropositive animals had greater heterozygosity and lower measures of inbreeding compared with CDV-seronegative animals. This relationship was strongest among the youngest animals and did not occur during a 1 year CDV epidemic. In contrast, FPV-seropositive animals only had significantly lower measures of inbreeding in 1 year, perhaps because FPV-associated mortality is relatively low or primarily occurs among very young individuals that were under-represented in our sampling. These results suggest that even in large outcrossing populations, animals with lower heterozygosity and higher measures of inbreeding are less likely to successfully mount an immune response when challenged by highly pathogenic parasites.


Assuntos
Vírus da Cinomose Canina/imunologia , Vírus da Panleucopenia Felina/imunologia , Variação Genética , Imunidade Inata/genética , Guaxinins/virologia , Animais , Anticorpos Antivirais/sangue , Heterozigoto , Endogamia , Guaxinins/sangue , Guaxinins/genética , Guaxinins/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA