Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.594
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Pathog ; 19(1): e1011129, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36716341

RESUMO

Parasitic roundworms (nematodes) have lost genes involved in the de novo biosynthesis of haem, but have evolved the capacity to acquire and utilise exogenous haem from host animals. However, very little is known about the processes or mechanisms underlying haem acquisition and utilisation in parasites. Here, we reveal that HRG-1 is a conserved and unique haem transporter in a broad range of parasitic nematodes of socioeconomic importance, which enables haem uptake via intestinal cells, facilitates cellular haem utilisation through the endo-lysosomal system, and exhibits a conspicuous distribution at the basal laminae covering the alimentary tract, muscles and gonads. The broader tissue expression pattern of HRG-1 in Haemonchus contortus (barber's pole worm) compared with its orthologues in the free-living nematode Caenorhabditis elegans indicates critical involvement of this unique haem transporter in haem homeostasis in tissues and organs of the parasitic nematode. RNAi-mediated gene knockdown of hrg-1 resulted in sick and lethal phenotypes of infective larvae of H. contortus, which could only be rescued by supplementation of exogenous haem in the early developmental stage. Notably, the RNAi-treated infective larvae could not establish infection or survive in the mammalian host, suggesting an indispensable role of this haem transporter in the survival of this parasite. This study provides new insights into the haem biology of a parasitic nematode, demonstrates that haem acquisition by HRG-1 is essential for H. contortus survival and infection, and suggests that HRG-1 could be an intervention target candidate in a range of parasitic nematodes.


Assuntos
Proteínas de Caenorhabditis elegans , Haemonchus , Nematoides , Parasitos , Animais , Nematoides/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Haemonchus/genética , Haemonchus/metabolismo , Heme/metabolismo , Parasitos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mamíferos
2.
BMC Genomics ; 25(1): 188, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368335

RESUMO

BACKGROUND: Haemonchus contortus (H. contortus) is the most common parasitic nematode in ruminants and is prevalent worldwide. H. contortus resistance to albendazole (ABZ) hinders the efficacy of anthelmintic drugs, but little is known about the molecular mechanisms that regulate this of drug resistance. Recent research has demonstrated that long noncoding RNAs (lncRNAs) can exert significant influence as pivotal regulators of the emergence of drug resistance. RESULTS: In this study, transcriptome sequencing was conducted on both albendazole-sensitive (ABZ-sensitive) and albendazole-resistant (ABZ-resistant) H. contortus strains, with three biological replicates for each group. The analysis of lncRNA in the transcriptomic data revealed that there were 276 differentially expressed lncRNA (DElncRNA) between strains with ABZ-sensitive and ABZ-resistant according to the criteria of |log2Foldchange|≥ 1 and FDR < 0.05. Notably, MSTRG.12969.2 and MSTRG.9827.1 exhibited the most significant upregulation and downregulation, respectively, in the resistant strains. The potential roles of the DElncRNAs included catalytic activity, stimulus response, regulation of drug metabolism, and modulation of the immune response. Moreover, we investigated the interactions between DElncRNAs and other RNAs, specifically MSTRG.12741.1, MSTRG.11848.1, MSTRG.5895.1, and MSTRG.14070.1, involved in regulating drug stimulation through cis/trans/antisense/lncRNA‒miRNA-mRNA interaction networks. This regulation leads to a decrease (or increase) in the expression of relevant genes, consequently enhancing the resistance of H. contortus to albendazole. Furthermore, through comprehensive analysis of competitive endogenous RNAs (ceRNAs) involved in drug resistance-related pathways, such as the mTOR signalling pathway and ABC transporter signalling pathway, the relevance of the MSTRG.2499.1-novel-m0062-3p-HCON_00099610 interaction was identified to mainly involve the regulation of catalytic activity, metabolism, ubiquitination and transcriptional regulation of gene promoters. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) validation indicated that the transcription profiles of six DElncRNAs and six DEmRNAs were consistent with those obtained by RNA-seq. CONCLUSIONS: The results of the present study allowed us to better understand the changes in the lncRNA expression profile of ABZ-resistant H. contortus. In total, these results suggest that the lncRNAs MSTRG.963.1, MSTRG.12741.1, MSTRG.11848.1 and MSTRG.2499.1 play important roles in the development of ABZ resistance and can serve as promising biomarkers for further study.


Assuntos
Anti-Helmínticos , Haemonchus , RNA Longo não Codificante , Animais , Albendazol/farmacologia , Albendazol/análise , Albendazol/metabolismo , Haemonchus/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcriptoma , Anti-Helmínticos/farmacologia , Anti-Helmínticos/metabolismo , Anti-Helmínticos/uso terapêutico
3.
PLoS Pathog ; 18(6): e1010545, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35696434

RESUMO

The antiparasitic drug ivermectin plays an essential role in human and animal health globally. However, ivermectin resistance is widespread in veterinary helminths and there are growing concerns of sub-optimal responses to treatment in related helminths of humans. Despite decades of research, the genetic mechanisms underlying ivermectin resistance are poorly understood in parasitic helminths. This reflects significant uncertainty regarding the mode of action of ivermectin in parasitic helminths, and the genetic complexity of these organisms; parasitic helminths have large, rapidly evolving genomes and differences in evolutionary history and genetic background can confound comparisons between resistant and susceptible populations. We undertook a controlled genetic cross of a multi-drug resistant and a susceptible reference isolate of Haemonchus contortus, an economically important gastrointestinal nematode of sheep, and ivermectin-selected the F2 population for comparison with an untreated F2 control. RNA-seq analyses of male and female adults of all populations identified high transcriptomic differentiation between parental isolates, which was significantly reduced in the F2, allowing differences associated specifically with ivermectin resistance to be identified. In all resistant populations, there was constitutive upregulation of a single gene, HCON_00155390:cky-1, a putative pharyngeal-expressed transcription factor, in a narrow locus on chromosome V previously shown to be under ivermectin selection. In addition, we detected sex-specific differences in gene expression between resistant and susceptible populations, including constitutive upregulation of a P-glycoprotein, HCON_00162780:pgp-11, in resistant males only. After ivermectin selection, we identified differential expression of genes with roles in neuronal function and chloride homeostasis, which is consistent with an adaptive response to ivermectin-induced hyperpolarisation of neuromuscular cells. Overall, we show the utility of a genetic cross to identify differences in gene expression that are specific to ivermectin selection and provide a framework to better understand ivermectin resistance and response to treatment in parasitic helminths.


Assuntos
Anti-Helmínticos , Haemonchus , Nematoides , Animais , Anti-Helmínticos/farmacologia , Cloretos/metabolismo , Cloretos/farmacologia , Resistência a Medicamentos/genética , Feminino , Homeostase , Ivermectina/metabolismo , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Masculino , Nematoides/genética , Plasticidade Neuronal , Ovinos/genética , Transcriptoma
4.
Parasite Immunol ; 46(6): e13054, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38922988

RESUMO

Pathogen recognition is an essential component to achieve the desired outcome of host protection. Nod-like receptor pyrin containing domain 3 (NLRP3) is a cytoplasmic pattern recognition receptor (PRR) with a wide array of agonists, such as PAMPs, DAMPs, ATP, bacterial product and viral products. Stimulation of the NLRP3 inflammasome results in proteolytic activation of IL-1ß and IL-18, cell pyroptosis and classically, the induction of proinflammatory responses. St. Croix (STC) sheep have resistance traits exhibiting the appropriate T-helper type 2 immune response ensuing protection during helminth parasitic infection whereas parasite-susceptible Suffolk (SUF) sheep have an impaired response resulting in parasite establishment and adverse symptoms. The objective of these experiments was to determine if NLRP3 protein in H. contortus-infected SUF sheep was defective using the classical activation pathway of NLRP3 inflammasome. Peripheral blood mononuclear cells (PBMCs) derived from H. contortus-infected STC and SUF sheep were isolated from whole blood and treated (MCC950 treatment for 2 h followed by LPS treatment for 3 h, 1400 W treatment for 2 h followed by LPS treatment for 3 h, LPS treatment for 3 h or culture media for 3 h). qPCR analysis of LPS-stimulated PBMC revealed an upregulation in inflammatory associated genes IL-1ß, TLR4, TNFα and NFκB (p < 0.0001) in STC PBMC and downregulation in IFNγ, IL-6 and iNOS for SUF PBMC. Pharmacological inhibition of iNOS in SUF PBMC resulted in an upregulation in the expression of IFNγ. These preliminary data begin to discover a relationship between NLRP3 activation and TLR4 signalling in PBMC of STC and SUF sheep.


Assuntos
Hemoncose , Haemonchus , Leucócitos Mononucleares , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças dos Ovinos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Ovinos , Lipopolissacarídeos/imunologia , Leucócitos Mononucleares/imunologia , Hemoncose/imunologia , Hemoncose/veterinária , Hemoncose/parasitologia , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/parasitologia , Haemonchus/imunologia , Células Cultivadas , Citocinas/metabolismo
5.
Vet Res ; 55(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172997

RESUMO

The intestine of Haemonchus contortus is an essential tissue that has been indicated to be a major target for the prevention of haemonchosis caused by this parasitic nematode of small ruminants. Biological peculiarities of the intestine warrant in-depth exploitation, which can be leveraged for future disease control efforts. Here, we determined the intestinal ncRNA (lncRNA, circRNA and miRNA) atlas using whole-transcriptome sequencing and bioinformatics approaches. In total, 4846 novel lncRNA, 982 circRNA, 96 miRNA (65 known and 31 novel) and 8821 mRNA were identified from the H. contortus intestine. The features of lncRNA, circRNA and miRNA were fully characterized. Comparison of miRNA from the intestines and extracellular vesicles supported the speculation that the miRNA from the latter were of intestinal origin in H. contortus. Further function analysis suggests that the cis-lncRNA targeted genes were involved in protein binding, intracellular anatomical structure, organelle and cellular process, whereas the circRNA parental genes were mainly enriched in molecular function categories, such as ribonucleotide binding, nucleotide binding, ATP binding and carbohydrate derivative binding. The miRNA target genes were related to the cellular process, cellular response to stimulus, cellular protein modification process and signal transduction. Moreover, competing endogenous RNA network analysis revealed that the majority of lncRNA, circRNA and mRNA only have one or two binding sites with specific miRNA. Lastly, randomly selected circRNA, lncRNA and miRNA were verified successfully using RT-PCR. Collectively, these data provide the most comprehensive compilation of intestinal transcripts and their functions, and it will be helpful to decipher the biological and molecular complexity of the intestine and lay the foundation for further functional research.


Assuntos
Haemonchus , MicroRNAs , RNA Longo não Codificante , Animais , Haemonchus/genética , Haemonchus/metabolismo , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo
6.
Vet Res ; 55(1): 7, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225645

RESUMO

Carbonyl-reducing enzymes (CREs) catalyse the reduction of carbonyl groups in many eobiotic and xenobiotic compounds in all organisms, including helminths. Previous studies have shown the important roles of CREs in the deactivation of several anthelmintic drugs (e.g., flubendazole and mebendazole) in adults infected with the parasitic nematode Haemonchus contortus, in which the activity of a CRE is increased in drug-resistant strains. The aim of the present study was to compare the abilities of nematodes of both a drug-susceptible strain (ISE) and a drug-resistant strain (IRE) to reduce the carbonyl group of flubendazole (FLU) in different developmental stages (eggs, L1/2 larvae, L3 larvae, and adults). In addition, the effects of selected CRE inhibitors (e.g., glycyrrhetinic acid, naringenin, silybin, luteolin, glyceraldehyde, and menadione) on the reduction of FLU were evaluated in vitro and ex vivo in H. contortus adults. The results showed that FLU was reduced by H. contortus in all developmental stages, with adult IRE females being the most metabolically active. Larvae (L1/2 and L3) and adult females of the IRE strain reduced FLU more effectively than those of the ISE strain. Data from the in vitro inhibition study (performed with cytosolic-like fractions of H. contortus adult homogenate) revealed that glycyrrhetinic acid, naringenin, mebendazole and menadione are effective inhibitors of FLU reduction. Ex vivo study data showed that menadione inhibited FLU reduction and also decreased the viability of H. contortus adults to a similar extent. Naringenin and mebendazole were not toxic at the concentrations tested, but they did not inhibit the reduction of FLU in adult worms ex vivo.


Assuntos
Anti-Helmínticos , Ácido Glicirretínico , Haemonchus , Feminino , Animais , Mebendazol/farmacologia , Mebendazol/uso terapêutico , Vitamina K 3/farmacologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Larva , Ácido Glicirretínico/farmacologia
7.
Mol Cell Probes ; 73: 101946, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38097144

RESUMO

Haemonchus contortus is a parasitic haematophagous nematode that primarily affects small ruminants and causes significant economic loss to the global livestock industry. Treatment of haemonchosis typically relies on broad-spectrum anthelmintics, resistance to which is an important cause of treatment failure. Resistance to levamisole remains less widespread than to other major anthelmintic classes, prompting the need for more effective and accurate surveillance to maintain its efficacy. Loop-primer endonuclease cleavage loop-mediated isothermal amplification (LEC-LAMP) is a recently developed diagnostic method that facilitates multiplex target detection with single nucleotide polymorphism (SNP) specificity and portable onsite testing. In this study, we designed a new LEC-LAMP assay and applied it to detect the levamisole resistance marker S168T in H. contortus. We explored multiplexing probes for both the resistant S168T and the susceptible S168 alleles in a single-tube assay. We then included a generic probe to detect the acr-8 gene in the multiplex assay, which could facilitate the quantification of both resistance markers and overall genetic material from H. contortus in a single step. Our results showed promising application of these technologies, demonstrating a proof-of-concept assay which is amenable to detection of resistance alleles within the parasite population, with the potential for multiplex detection, and point-of-care application enabled by lateral flow end-point detection. However, further optimisation and validation is necessary.


Assuntos
Anti-Helmínticos , Haemonchus , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Animais , Levamisol/farmacologia , Haemonchus/genética , Resistência a Medicamentos/genética , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico
8.
J Nat Prod ; 87(6): 1532-1539, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38853528

RESUMO

Nematode infections affect a fifth of the human population, livestock, and crops worldwide, imposing a burden to global public health and economies, particularly in developing nations. Resistance to commercial anthelmintics has increased over the years in livestock infections and driven the pursuit for new drugs. We herein present a rapid, cost-effective, and automated assay for nematicide discovery using the free-living nematode Caenorhabditis elegans to screen a highly diverse natural product library enriched in bioactive molecules. Screening of 10,240 fractions obtained from extracts of various biological sources allowed the identification of 7 promising hit fractions, all from marine sponges. These fractions were further assayed for nematicidal activity against the sheep nematode parasite Haemonchus contortus and for innocuity in zebrafish. The most active extracts against parasites and innocuous toward vertebrates belong to two chemotypes. High-performance liquid chromatography (HPLC) coupled with nuclear magnetic resonance (NMR) revealed that the most abundant compound in one chemotype is halaminol A, an aminoalcohol previously identified in a small screen against H. contortus. Terpene-nucleotide hybrids known as agelasines predominate in the other chemotype. This study reinforces the power of C. elegans for nematicide discovery from large collections and the potential of the chemical diversity derived from marine invertebrate biota.


Assuntos
Antinematódeos , Caenorhabditis elegans , Poríferos , Animais , Poríferos/química , Antinematódeos/farmacologia , Antinematódeos/química , Caenorhabditis elegans/efeitos dos fármacos , Estrutura Molecular , Peixe-Zebra , Haemonchus/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos
9.
Exp Parasitol ; 262: 108777, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735520

RESUMO

This study describes the in vitro anthelmintic effect of a hydroalcoholic extract (HA-E) and its fractions from Cyrtocarpa procera fruits against Haemonchus contortus eggs and infective larvae. The HA-E was subjected to bipartition using ethyl acetate, which resulted in an aqueous fraction (Aq-F) and an organic fraction (EtOAc-F). The HA-E and both fractions were tested using the egg hatching inhibition assay (EHIA) and the larval mortality test (LMT). Fractionation of the EtOAc-F was achieved using different chromatographic processes, i.e., open glass column and HPLC analysis. Fractionation of the EtOAc-F gave 18 subfractions (C1R1-C1R18), and those that showed the highest yields (C1R15, C1R16, C1R17 and C1R18) were subjected to anthelmintic assays. The HA-E and the EtOAc-F displayed 100% egg hatching inhibition at 3 and 1 mg/mL, respectively, whereas Aq-F exhibited 92.57% EHI at 3 mg/mL. All subfractions tested showed ovicidal effect. Regarding the larval mortality test, HA-E and EtOAc-F exhibited a larvicidal effect higher than 50% at 50 and 30 mg/mL, respectively. The subfractions that showed the highest larval mortality against H. contortus were C1R15 and C1R17, with larval mortalities of 53.57% and 60.23% at 10 mg/mL, respectively. Chemical analysis of these bioactive subfractions (C1R15 and C1R17) revealed the presence of gallic acid, protocatechuic acid, and ellagic acid. This study shows evidence about the ovicidal and larvicidal properties of C. procera fruits that could make these plant products to be considered as a natural potential anthelmintic agents for controlling haemonchosis in goats and sheep.


Assuntos
Anti-Helmínticos , Frutas , Haemonchus , Larva , Óvulo , Extratos Vegetais , Animais , Haemonchus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Larva/efeitos dos fármacos , Frutas/química , Anti-Helmínticos/farmacologia , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/química , Óvulo/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Ovinos , Hemoncose/parasitologia , Hemoncose/veterinária , Doenças dos Ovinos/parasitologia
10.
Exp Parasitol ; 256: 108670, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092297

RESUMO

Ivermectin (IVM) resistance in parasitic nematodes such as Haemonchus contortus has spurred a search for substances that help to recover its efficacy. One potential agent is the natural product curcumin (CUR). In this study, CUR was combined with polyvinylpyrrolidone (PVP) (CUR/PVP) to improve its solubility and biological applicability. This study determined the effect of CUR preincubation on the effective concentration 50% (EC50) of IVM in three H. contortus isolates with different susceptibilities to IVM. The IVM EC50 was determined for three H. contortus isolates with different IVM susceptibilities using the larval migration inhibition (LMI) test. The three isolates were (i) PARAISO (IVM resistant), (ii) FMVZ-UADY (IVM susceptible), and (iii) CENID-SAI INIFAP (reference IVM susceptible). The L3 of each isolate were preincubated for 3 h with one of three concentrations of CUR (µg curcumin/mL): CONC-1 (3.67), CONC-2 (5.67), or CONC-3 (8.48). Corresponding controls were performed without CUR. The EC50 of IVM was determined for each isolate after they were exposed to the different CUR concentrations. The EC50 of IVM differed between the isolates PARAISO > FMVZ-UADY > CENID-SAI INIFAP (P < 0.05). The CUR preincubation at CONC-1 did not decrease the EC50 of IVM for any of the three isolates, suggesting a hormetic effect. By contrast, CUR preincubation at CONC-2 or CONC-3 decreased the IVM EC50 for the PARAISO isolate (P < 0.05) compared with the reference isolate and reduced the EC50 of IVM for the FMVZ-UADY and CENID-SAI INIFAP isolates below the EC50 for the CENID-SAI INIFAP isolate without CUR preincubation. In conclusion, preincubation of H. contortus L3 with CUR reduced the EC50 of IVM for field isolates classified as resistant and susceptible to IVM. The CUR preincubation reduced the IVM resistance factor in the different isolates tested.


Assuntos
Anti-Helmínticos , Curcumina , Hemoncose , Haemonchus , Animais , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Povidona/farmacologia , Povidona/uso terapêutico , Resistência a Medicamentos , Larva , Hemoncose/tratamento farmacológico , Hemoncose/veterinária
11.
Exp Parasitol ; 261: 108768, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679124

RESUMO

This study describes the anthelmintic efficacy of an organic fraction (EtOAc-F) from Guazuma ulmifolia leaves and the evaluation of its reactive oxidative stress on Haemonchus contortus. The first step was to assess the anthelmintic effect of EtOAc-F at 0.0, 3.5, 7.0 and 14 mg kg of body weight (BW) in gerbil's (Meriones unguiculatus) artificially infected with H. contortus infective larvae (L3). The second step was to evaluate the preliminary toxicity after oral administration of the EtOAc-F in gerbils. Finally, the third step was to determine the relative expression of biomarkers such as glutathione (GPx), catalase (CAT), and superoxide dismutase (SOD) against H. contortus L3 post-exposition to EtOAc-F. Additionally, the less-polar compounds of EtOAc-F were identified by gas mass spectrophotometry (GC-MS). The highest anthelmintic efficacy (97.34%) of the organic fraction was found in the gerbils treated with the 14 mg/kg of BW. Histopathological analysis did not reveal changes in tissues. The relative expression reflects overexpression of GPx (p<0.05, fold change: 14.35) and over expression of SOD (p≤0.05, fold change: 0.18) in H. contortus L3 exposed to 97.44 mg/mL of EtOAc-F compared with negative control. The GC-MS analysis revealed the presence of 4-hydroxybenzaldehyde (1), leucoanthocyanidin derivative (2), coniferyl alcohol (3), ferulic acid methyl ester acetate (4), 2,3,4-trimethoxycinnamic acid (5) and epiyangambin (6) as major compounds. According to these results, the EtOAc-F from G. ulmifolia leaves exhibit anthelmintic effect and increased the stress biomarkers on H. contortus.


Assuntos
Anti-Helmínticos , Catalase , Gerbillinae , Glutationa , Hemoncose , Haemonchus , Estresse Oxidativo , Extratos Vegetais , Folhas de Planta , Superóxido Dismutase , Animais , Haemonchus/efeitos dos fármacos , Folhas de Planta/química , Estresse Oxidativo/efeitos dos fármacos , Hemoncose/veterinária , Hemoncose/tratamento farmacológico , Hemoncose/parasitologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Catalase/análise , Glutationa/metabolismo , Glutationa/análise , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Contagem de Ovos de Parasitas/veterinária , Biomarcadores , Glutationa Peroxidase/metabolismo , Feminino
12.
Exp Parasitol ; 262: 108778, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735517

RESUMO

Sheep haemonchosis is a disease that causes serious losses in livestock production, particularly with the increase of cases of anthelmintic resistance around the world. This justifies the urgent need of alternative solutions. The aim of this study was to determine the chemical profile, in vitro, and, in vivo, anthelmintic properties of Thymus capitatus essential oil. To evaluate the, in vitro, anthelmintic activity of the T. capitatus EO on Haemonchus contortus, two tests were used: egg hatch assay (EHA) and adult worm motility (AWM) assay. The nematicidal effect of this oil was evaluated, in vivo, in mice infected artificially with Heligmosomoides polygyrus using faecal egg count reduction (FECR) and total worm count reduction (TWCR). Chromatographic characterization of T.capitatus composition using gas chromatography coupled to mass spectrometry (GC-MS) demonstrated the presence of carvacrol (81.16%), as the major constituents. The IC50 values obtained was 1.9 mg/mL in the EHT. In the AWM assay; T. capitatus essential oil achieved 70.8% inhibition at 1 mg/mL after 8 h incubation. The in vivo, evaluation on H. polygyrus revealed a significant nematicidal effect 7 days post-treatment by inducing 49.5% FECR and 64.5% TWCR, using the highest dose (1600 mg/kg). The results of present study, demonstrate that T.capitatus EO possess a significant anthelmintic properties. Furthermore, it could be an alternative source of anthelmintic agents against gastrointestinal infections caused by H. contortus.


Assuntos
Anti-Helmínticos , Fezes , Flores , Cromatografia Gasosa-Espectrometria de Massas , Hemoncose , Haemonchus , Nematospiroides dubius , Óleos Voláteis , Contagem de Ovos de Parasitas , Infecções por Strongylida , Thymus (Planta) , Animais , Haemonchus/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Camundongos , Nematospiroides dubius/efeitos dos fármacos , Thymus (Planta)/química , Hemoncose/veterinária , Hemoncose/tratamento farmacológico , Hemoncose/parasitologia , Infecções por Strongylida/tratamento farmacológico , Infecções por Strongylida/veterinária , Infecções por Strongylida/parasitologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/química , Fezes/parasitologia , Contagem de Ovos de Parasitas/veterinária , Flores/química , Feminino , Ovinos , Concentração Inibidora 50 , Monoterpenos/farmacologia , Monoterpenos/isolamento & purificação , Monoterpenos/química , Masculino , Doenças dos Ovinos/parasitologia , Doenças dos Ovinos/tratamento farmacológico , Cimenos
13.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431676

RESUMO

Pathogen interactions arising during coinfection can exacerbate disease severity, for example when the immune response mounted against one pathogen negatively affects defense of another. It is also possible that host immune responses to a pathogen, shaped by historical evolutionary interactions between host and pathogen, may modify host immune defenses in ways that have repercussions for other pathogens. In this case, negative interactions between two pathogens could emerge even in the absence of concurrent infection. Parasitic worms and tuberculosis (TB) are involved in one of the most geographically extensive of pathogen interactions, and during coinfection worms can exacerbate TB disease outcomes. Here, we show that in a wild mammal natural resistance to worms affects bovine tuberculosis (BTB) severity independently of active worm infection. We found that worm-resistant individuals were more likely to die of BTB than were nonresistant individuals, and their disease progressed more quickly. Anthelmintic treatment moderated, but did not eliminate, the resistance effect, and the effects of resistance and treatment were opposite and additive, with untreated, resistant individuals experiencing the highest mortality. Furthermore, resistance and anthelmintic treatment had nonoverlapping effects on BTB pathology. The effects of resistance manifested in the lungs (the primary site of BTB infection), while the effects of treatment manifested almost entirely in the lymph nodes (the site of disseminated disease), suggesting that resistance and active worm infection affect BTB progression via distinct mechanisms. Our findings reveal that interactions between pathogens can occur as a consequence of processes arising on very different timescales.


Assuntos
Búfalos/imunologia , Resistência à Doença , Hemoncose/microbiologia , Pulmão/imunologia , Linfonodos/imunologia , Tricostrongilose/microbiologia , Tuberculose Bovina/microbiologia , Animais , Antinematódeos/farmacologia , Búfalos/microbiologia , Búfalos/parasitologia , Bovinos , Coinfecção , Progressão da Doença , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Eosinófilos/microbiologia , Eosinófilos/parasitologia , Fezes/parasitologia , Feminino , Fenbendazol/farmacologia , Hemoncose/tratamento farmacológico , Hemoncose/mortalidade , Hemoncose/parasitologia , Haemonchus/efeitos dos fármacos , Haemonchus/genética , Haemonchus/patogenicidade , Imunoglobulina A/sangue , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Pulmão/parasitologia , Linfonodos/efeitos dos fármacos , Linfonodos/microbiologia , Linfonodos/parasitologia , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Mastócitos/microbiologia , Mastócitos/parasitologia , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium bovis/patogenicidade , Índice de Gravidade de Doença , Análise de Sobrevida , Tricostrongilose/tratamento farmacológico , Tricostrongilose/mortalidade , Tricostrongilose/parasitologia , Trichostrongylus/efeitos dos fármacos , Trichostrongylus/genética , Trichostrongylus/patogenicidade , Tuberculose Bovina/tratamento farmacológico , Tuberculose Bovina/mortalidade , Tuberculose Bovina/parasitologia
14.
Parasitol Res ; 123(5): 227, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814495

RESUMO

The species Haemonchus contortus occurs in many regions worldwide, mainly parasitising small ruminants and economically impacting animal production. Climate change is considered a driving force for the risk of diseases caused by helminths and can also affect relationships between parasites and their hosts, with the potential to cause losses in both animal production and biodiversity in general. The aim of this study was to model the potential distribution of H. contortus in South America. We used MaxEnt to perform the analyses and describe the contribution of important bioclimatic variables involved in the species distribution. Our results show that H. contortus colonised most of the areas with habitats that suit the species' environmental requirements and that this parasite presents habitat suitability in a future scenario. Understanding the effects of climate change on the occurrence and distribution of parasite species is essential for monitoring these pathogens, in addition to predicting the areas that tend to present future parasite outbreaks and identify opportunities to mitigate the impacts of the emergence of diseases caused by these organisms.


Assuntos
Hemoncose , Haemonchus , Animais , Haemonchus/classificação , América do Sul , Hemoncose/veterinária , Hemoncose/parasitologia , Hemoncose/epidemiologia , Mudança Climática , Ecossistema
15.
Parasitol Res ; 123(5): 201, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698272

RESUMO

Gastrointestinal nematodes (GINs) are a common threat faced by pastoral livestock. Since their major introduction to the UK in the early 1990s, South American camelids have been cograzed with sheep, horses, and other livestock, allowing exposure to a range of GIN species. However, there have been no molecular-based studies to investigate the GIN populations present in these camelids. In the current study, we sampled nine alpaca herds from northern England and southern Scotland and used high-throughput metabarcoded sequencing to describe their GIN species composition. A total of 71 amplicon sequence variants (ASVs) were identified representing eight known GIN species. Haemonchus contortus was the most prevalent species found in almost all herds in significant proportions. The identification of H. contortus in other livestock species is unusual in the northern UK, implying that alpacas may be suitable hosts and potential reservoirs for infection in other hosts. In addition, the camelid-adapted GIN species Camelostrongylus mentulatus was identified predominantly in herds with higher faecal egg counts. These findings highlight the value of applying advanced molecular methods, such as nemabiome metabarcoding to describe the dynamics of gastrointestinal nematode infections in novel situations. The results provide a strong base for further studies involving cograzing animals to confirm the potential role of alpacas in transmitting GIN species between hosts.


Assuntos
Camelídeos Americanos , Hemoncose , Haemonchus , Animais , Camelídeos Americanos/parasitologia , Haemonchus/genética , Haemonchus/classificação , Haemonchus/isolamento & purificação , Prevalência , Hemoncose/veterinária , Hemoncose/parasitologia , Hemoncose/epidemiologia , Código de Barras de DNA Taxonômico , Reino Unido/epidemiologia , Infecções por Strongylida/veterinária , Infecções por Strongylida/parasitologia , Infecções por Strongylida/epidemiologia , Fezes/parasitologia , Inglaterra/epidemiologia , Escócia/epidemiologia
16.
Parasitol Res ; 123(5): 226, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814484

RESUMO

In this study, 858 novel long non-coding RNAs (lncRNAs) were predicted as sensitive and resistant strains of Haemonchus contortus to ivermectin. These lncRNAs underwent bioinformatic analysis. In total, 205 lncRNAs significantly differed using log2 (difference multiplicity) > 1 or log2 (difference multiplicity) < - 1 and FDR < 0.05 as the threshold for significant difference analysis. We selected five lncRNAs based on significant differences in expression, cis-regulation, and their association with the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. These expressions of lncRNAs, namely MSTRG.12610.1, MSTRG.8169.1, MSTRG.6355.1, MSTRG.980.1, and MSTRG.9045.1, were significantly downregulated. These findings were consistent with the results of transcriptomic sequencing. We further investigated the relative expression of target gene mRNAs and the regulation of mRNA and miRNA, starting with lncRNA cis-regulation of mRNA, and constructed a lncRNA-mRNA-miRNA network regulation. After a series of statistical analyses, we finally screened out UGT8, Unc-116, Fer-related kinase-1, GGPP synthase 1, and sart3, which may be involved in developing drug resistance under the regulation of their corresponding lncRNAs. The findings of this study provide a novel direction for future studies on drug resistance targets.


Assuntos
Resistência a Medicamentos , Haemonchus , Ivermectina , RNA Longo não Codificante , Animais , Haemonchus/genética , Haemonchus/efeitos dos fármacos , RNA Longo não Codificante/genética , Ivermectina/farmacologia , Resistência a Medicamentos/genética , Hemoncose/parasitologia , Hemoncose/veterinária , Anti-Helmínticos/farmacologia , MicroRNAs/genética , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos
17.
J Basic Microbiol ; 64(3): e2300365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38012466

RESUMO

The chlamydospores of Duddingtonia flagrans are an essential survival and reproductive structure and also an effective ingredient for the biocontrol of parasitic nematodes in livestock. In this study, entering and exiting dormancy conditions and predatory activity of the fungal chlamydospores were conducted. During this fungal growth process, the cultivation time is negatively correlated with spore germination rates. After the spores were processed by vacuum drying for 168 h, their germination rate dropped to 0.94%. In contrast, the percentage of living spores remained 54.82%, suggesting that the spores entered structural dormancy in the arid environment. Meanwhile, the efficacies of the spore against Haemonchus contortus larvae were 93.05% (0 h), 92.19% (16 h), 92.77% (96 h), and 86.45% (168 h), respectively. After dormant spores were stored at 4°C, -20°C, and 28°C (RH90 ~ 95%) for 7 days, their germination rate began to increase significantly (p < 0.05). For in vitro predation assay under the condition of 28°C (RH90 ~ 95%), the predation rate was significantly higher on the 7th day after incubation than that on the 3rd day (p < 0.05). During the period when spores were stored at room temperature for 8 months, their germination rate decreased in the first 5 months and then increased slowly to reach a peak in the 7th month. However, the reduction rate of H. contortus L3 in feces captured by spores remained above 71% for the first 7 months. These results will help us increase the end products yield and the quality of biological control of parasitic nematodes in livestock.


Assuntos
Ascomicetos , Duddingtonia , Haemonchus , Animais , Comportamento Predatório , Controle Biológico de Vetores/métodos , Haemonchus/microbiologia , Fezes/microbiologia , Esporos Fúngicos , Larva/microbiologia
18.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000124

RESUMO

Over the years, comprehensive explorations of the model organisms Caenorhabditis elegans (elegant worm) and Drosophila melanogaster (vinegar fly) have contributed substantially to our understanding of complex biological processes and pathways in multicellular organisms generally. Extensive functional genomic-phenomic, genomic, transcriptomic, and proteomic data sets have enabled the discovery and characterisation of genes that are crucial for life, called 'essential genes'. Recently, we investigated the feasibility of inferring essential genes from such data sets using advanced bioinformatics and showed that a machine learning (ML)-based workflow could be used to extract or engineer features from DNA, RNA, protein, and/or cellular data/information to underpin the reliable prediction of essential genes both within and between C. elegans and D. melanogaster. As these are two distantly related species within the Ecdysozoa, we proposed that this ML approach would be particularly well suited for species that are within the same phylum or evolutionary clade. In the present study, we cross-predicted essential genes within the phylum Nematoda (evolutionary clade V)-between C. elegans and the pathogenic parasitic nematode H. contortus-and then ranked and prioritised H. contortus proteins encoded by these genes as intervention (e.g., drug) target candidates. Using strong, validated predictors, we inferred essential genes of H. contortus that are involved predominantly in crucial biological processes/pathways including ribosome biogenesis, translation, RNA binding/processing, and signalling and which are highly transcribed in the germline, somatic gonad precursors, sex myoblasts, vulva cell precursors, various nerve cells, glia, or hypodermis. The findings indicate that this in silico workflow provides a promising avenue to identify and prioritise panels/groups of drug target candidates in parasitic nematodes for experimental validation in vitro and/or in vivo.


Assuntos
Caenorhabditis elegans , Genes Essenciais , Haemonchus , Aprendizado de Máquina , Animais , Haemonchus/genética , Caenorhabditis elegans/genética , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Biologia Computacional/métodos , Drosophila melanogaster/genética
19.
J Helminthol ; 98: e19, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356358

RESUMO

The aim of the study was to compare the relative gene expression of Haemonchus contortus P-glycoprotein genes (Hco-pgp) between fourth (L4), infective (L3), and transitory infective (xL3) larval stages as laboratory models to study ivermectin (IVM) resistance. The H. contortus resistant to IVM (IVMr) and susceptible to IVM (IVMs) strains were used to develop xL3in vitro culture and to infect Meriones unguiculatus (gerbils) to collect L4 stages. Morphometric differences were evaluated from 25 individuals of H. contortus from each strain. Relative gene expression from xL3 and L4 was determined between comparison of IVMr stages and from IVMr vs IVMs stages. Seven Hco-pgp genes (1, 2, 3, 4, 9, 10, and 16) were analysed by RT-qPCR using L3 stage as control group, per strain, and GAPDH and ß-tubulin as constitutive genes. Morphological changes were confirmed between xL3 and L4 developing oral shape, oesophagus, and intestinal tube. In addition, the body length and width showed statistical differences (p < 0.05). The Hco-pgp1, 2, 3, and 4 genes (p < 0.05) were upregulated from 7.1- to 463.82-fold changes between IVMr stages, and Hco-pgp9 (13.12-fold) and Hco-pgp10 (13.56-fold) genes showed differences between L4 and xL3, respectively. The comparative study between IVMr vs IVMs strains associated to xL3 and L4 displayed significant upregulation for most of the Hco-pgp genes among 4.89-188.71 fold-change. In conclusion, these results suggest the use of H. contortus xL3 and L4 as suitable laboratory models to study IVMr associated with Hco-pgp genes to contribute to the understanding of anthelmintic resistance.


Assuntos
Anti-Helmínticos , Hemoncose , Haemonchus , Humanos , Animais , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Gerbillinae , Haemonchus/genética , Larva/genética , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Resistência a Medicamentos/genética , Hemoncose/veterinária , Hemoncose/tratamento farmacológico
20.
Trop Anim Health Prod ; 56(2): 81, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368294

RESUMO

The use of herbal medicine to treat various diseases is becoming increasingly important as an alternative therapy. Numerous plants have been traditionally used for different purposes, including antiparasitic in humans and animals. Diseases caused by gastrointestinal parasites in ruminants, especially by the nematode Haemonchus contortus, cause large economic losses to the producers, whether by complications of the diseases or the cost of treatment. The main way of handling nematodiasis is by administering anthelmintic drugs, but their excessive use has the disadvantage of causing drug resistance; therefore, an alternative is the use of herbal medicine for this purpose. Mesquite (Prosopis spp.) has been used in Mexico to treat gastrointestinal diseases attributed to helminths. The present study aimed to characterize the rheological properties of mesquite flour using the SeDeM Expert System to determine its suitability for tablet production by direct compression. Direct compression technology facilitates the tableting process by reducing manufacturing costs. The results of the present study indicate that mesquite flour can be processed by direct compression. The latter could allow the manufacturing of economic tablets to treat infections by H. contortus in ruminants.


Assuntos
Anti-Helmínticos , Haemonchus , Prosopis , Doenças dos Ovinos , Humanos , Ovinos , Animais , Antiparasitários , Farinha , Extratos Vegetais , Comprimidos , Ruminantes , Doenças dos Ovinos/tratamento farmacológico , Doenças dos Ovinos/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA