Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 585(7824): 225-233, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908268

RESUMO

Isoprene is the dominant non-methane organic compound emitted to the atmosphere1-3. It drives ozone and aerosol production, modulates atmospheric oxidation and interacts with the global nitrogen cycle4-8. Isoprene emissions are highly uncertain1,9, as is the nonlinear chemistry coupling isoprene and the hydroxyl radical, OH-its primary sink10-13. Here we present global isoprene measurements taken from space using the Cross-track Infrared Sounder. Together with observations of formaldehyde, an isoprene oxidation product, these measurements provide constraints on isoprene emissions and atmospheric oxidation. We find that the isoprene-formaldehyde relationships measured from space are broadly consistent with the current understanding of isoprene-OH chemistry, with no indication of missing OH recycling at low nitrogen oxide concentrations. We analyse these datasets over four global isoprene hotspots in relation to model predictions, and present a quantification of isoprene emissions based directly on satellite measurements of isoprene itself. A major discrepancy emerges over Amazonia, where current underestimates of natural nitrogen oxide emissions bias modelled OH and hence isoprene. Over southern Africa, we find that a prominent isoprene hotspot is missing from bottom-up predictions. A multi-year analysis sheds light on interannual isoprene variability, and suggests the influence of the El Niño/Southern Oscillation.


Assuntos
Atmosfera/química , Butadienos/análise , Butadienos/química , Mapeamento Geográfico , Hemiterpenos/análise , Hemiterpenos/química , Imagens de Satélites , África , Austrália , Brasil , Conjuntos de Dados como Assunto , El Niño Oscilação Sul , Formaldeído/química , Radical Hidroxila/análise , Radical Hidroxila/química , Ciclo do Nitrogênio , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Oxirredução , Estações do Ano , Sudeste dos Estados Unidos
2.
Proc Natl Acad Sci U S A ; 119(38): e2118014119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095176

RESUMO

Emissions of biogenic volatile organic compounds (BVOCs) are a crucial component of biosphere-atmosphere interactions. In northern latitudes, climate change is amplified by feedback processes in which BVOCs have a recognized, yet poorly quantified role, mainly due to a lack of measurements and concomitant modeling gaps. Hence, current Earth system models mostly rely on temperature responses measured on vegetation from lower latitudes, rendering their predictions highly uncertain. Here, we show how tundra isoprene emissions respond vigorously to temperature increases, compared to model results. Our unique dataset of direct eddy covariance ecosystem-level isoprene measurements in two contrasting ecosystems exhibited Q10 (the factor by which the emission rate increases with a 10 °C rise in temperature) temperature coefficients of up to 20.8, that is, 3.5 times the Q10 of 5.9 derived from the equivalent model calculations. Crude estimates using the observed temperature responses indicate that tundra vegetation could enhance their isoprene emissions by up to 41% (87%)-that is, 46% (55%) more than estimated by models-with a 2 °C (4 °C) warming. Our results demonstrate that tundra vegetation possesses the potential to substantially boost its isoprene emissions in response to future rising temperatures, at rates that exceed the current Earth system model predictions.


Assuntos
Butadienos , Aquecimento Global , Hemiterpenos , Desenvolvimento Vegetal , Tundra , Compostos Orgânicos Voláteis , Butadienos/análise , Hemiterpenos/análise , Temperatura , Compostos Orgânicos Voláteis/análise
3.
Environ Res ; 205: 112465, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863985

RESUMO

The ambient biogenic volatile organic compounds (BVOCs), mainly isoprene, are potentially involved in the formation of secondary pollutants, hence, they are significant in terms of air quality and climate. Although the largest sources of BVOCs are tropical regions, the measurements of isoprene in the Indian subcontinent are limited. We conducted the measurements of isoprene, benzene, and toluene at an urban site in a hillocky megacity of India using a high-sensitivity proton transfer reaction quadrupole mass spectrometer (PTR-QMS). The mixing ratios of isoprene were compared with those of aromatic compounds like benzene and toluene, which represent typical anthropogenic VOCs. Isoprene and isoprene/benzene (>5 ppbv ppbv-1) showed higher levels in the pre-monsoon months, most likely due to large emissions by urban vegetation during physiological activities in plants which was enhanced by the high ambient temperatures and solar radiation. While Benzene and toluene showed higher mixing ratios during winter, which were due to shallower boundary layer depths and transport of air masses from polluted Indo-Gangetic Plain during this season. The mixing ratios of VOCs show significant diurnal variation as a result of their different origins and the role of different meteorological parameters. The robust emission ratios of isoprene/benzene obtained from nighttime data were used to separate the non-anthropogenic and anthropogenic isoprene emissions. ∼30% enhancement observed in non-anthropogenic emissions to isoprene from winter to pre-monsoon season when temperatures and solar radiation were stronger, although traffic in the city. Isoprene/benzene ratio at lower temperatures (<25 °C) and solar radiation (<100 W m-2) was predominantly controlled by anthropogenic sources. Overall, toluene and isoprene are the most frequent species in terms of having the highest ozone-forming potential (OFP) values but biogenic isoprene became more important to ozone formation during the afternoon hours in the pre-monsoon months with high air temperatures (>25 °C).


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Butadienos , Monitoramento Ambiental , Hemiterpenos/análise , Índia , Meteorologia , Ozônio/análise , Compostos Orgânicos Voláteis/análise
4.
Proc Natl Acad Sci U S A ; 116(39): 19318-19323, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501347

RESUMO

The emissions, deposition, and chemistry of volatile organic compounds (VOCs) are thought to be influenced by underlying landscape heterogeneity at intermediate horizontal scales of several hundred meters across different forest subtypes within a tropical forest. Quantitative observations and scientific understanding at these scales, however, remain lacking, in large part due to a historical absence of canopy access and suitable observational approaches. Herein, horizontal heterogeneity in VOC concentrations in the near-canopy atmosphere was examined by sampling from an unmanned aerial vehicle (UAV) flown horizontally several hundred meters over the plateau and slope forests in central Amazonia during the morning and early afternoon periods of the wet season of 2018. Unlike terpene concentrations, the isoprene concentrations in the near-canopy atmosphere over the plateau forest were 60% greater than those over the slope forest. A gradient transport model constrained by the data suggests that isoprene emissions differed by 220 to 330% from these forest subtypes, which is in contrast to a 0% difference implemented in most present-day biosphere emissions models (i.e., homogeneous emissions). Quantifying VOC concentrations, emissions, and other processes at intermediate horizontal scales is essential for understanding the ecological and Earth system roles of VOCs and representing them in climate and air quality models.


Assuntos
Atmosfera/química , Butadienos/análise , Florestas , Hemiterpenos/análise , Compostos Orgânicos Voláteis/análise , Brasil , Estações do Ano , Árvores/classificação , Árvores/fisiologia
5.
Environ Sci Technol ; 55(2): 842-853, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33410677

RESUMO

The formation of isoprene nitrates (IsN) can lead to significant secondary organic aerosol (SOA) production and they can act as reservoirs of atmospheric nitrogen oxides. In this work, we estimate the rate of production of IsN from the reactions of isoprene with OH and NO3 radicals during the summertime in Beijing. While OH dominates the loss of isoprene during the day, NO3 plays an increasingly important role in the production of IsN from the early afternoon onwards. Unusually low NO concentrations during the afternoon resulted in NO3 mixing ratios of ca. 2 pptv at approximately 15:00, which we estimate to account for around a third of the total IsN production in the gas phase. Heterogeneous uptake of IsN produces nitrooxyorganosulfates (NOS). Two mono-nitrated NOS were correlated with particulate sulfate concentrations and appear to be formed from sequential NO3 and OH oxidation. Di- and tri-nitrated isoprene-related NOS, formed from multiple NO3 oxidation steps, peaked during the night. This work highlights that NO3 chemistry can play a key role in driving biogenic-anthropogenic interactive chemistry in Beijing with respect to the formation of IsN during both the day and night.


Assuntos
Hemiterpenos , Nitratos , Aerossóis/análise , Pequim , Butadienos/análise , Hemiterpenos/análise , Nitratos/análise
6.
J Nat Prod ; 83(10): 2867-2876, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33052045

RESUMO

Two new hydroxylated ethacrylic acid derivatives (compounds 1 and 2) and 11 new hydroxylated tiglic acid derivatives (compounds 3-13), together with one known compound (compound 14), were isolated from the stems and branches of Enkianthus chinensis. Their structures were established by extensive spectroscopic analyses, while their absolute configurations were determined by X-ray crystallographic methods (compounds 1 and 2), Mo2(OAc)4-induced electronic circular dichroism experiments (compounds 3 and 4), and chemical methods (compounds 5-11). This study is the first investigation on the secondary metabolites of this species. The anti-inflammatory activities of all isolated compounds were evaluated in an LPS-induced mouse peritoneal macrophage model. Notably, compounds 3 and 12 both exerted potent inhibitory effects on NO production with IC50 values of 2.9 and 1.2 µM, respectively.


Assuntos
Anti-Inflamatórios/análise , Crotonatos/análise , Ericaceae/química , Hemiterpenos/análise , Animais , Anti-Inflamatórios/farmacologia , Crotonatos/farmacologia , Cristalografia por Raios X , Hemiterpenos/farmacologia , Hidroxilação , Camundongos , Estrutura Molecular
7.
Molecules ; 25(21)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114417

RESUMO

Volatile organic compounds (VOCs) from leaves of geranium (Pelargonium graveolens L' Herit) were extracted by dynamic headspace using Porapak Q (HSD-P) as adsorbent and peat, a novel adsorbent in the extraction of plant volatiles, analyzed by gas chromatography-mass spectrometry (GC/MS) and gas chromatography-flame ionization (GC/FID), and the results were compared with those obtained by hydrodistillation (HD). The yield volatiles changed with the extraction method. HD was more efficient for extracting linalool (11.19%) and citronellyl formate (9.41%). Citronellol (28.06%), geraniol (38.26%) and 6,9-guaiadiene (9.55%) and geranyl tiglate (8.21%) were the major components identified by dynamic headspace using peat (HSD-T), while citronellol (16.88%), geraniol (13.63%), 6,9-guaiadiene (16.98%) and citronellyl formate (6.95%) were identified by dynamic headspace using Porapak Q (HSD-P). Furthermore, this work showed, for the first time, that in natura peat is useful to extract VOCs from leaves of geranium.


Assuntos
Geranium/química , Óleos Voláteis/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Solo/química , Compostos Orgânicos Voláteis/isolamento & purificação , Monoterpenos Acíclicos/análise , Monoterpenos Acíclicos/isolamento & purificação , Adsorção , Crotonatos/análise , Crotonatos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Hemiterpenos/análise , Hemiterpenos/isolamento & purificação , Monoterpenos/análise , Monoterpenos/isolamento & purificação , Extratos Vegetais/análise , Porosidade , Propriedades de Superfície , Compostos Orgânicos Voláteis/análise
8.
Microb Cell Fact ; 18(1): 4, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626394

RESUMO

BACKGROUND: As an essential platform chemical mostly used for rubber synthesis, isoprene is produced in industry through chemical methods, derived from petroleum. As an alternative, bio-production of isoprene has attracted much attention in recent years. Previous researches were mostly focused on key enzymes to improve isoprene production. In this research, besides screening of key enzymes, we also paid attention to expression intensity of non-key enzymes. RESULTS: Firstly, screening of key enzymes, IDI, MK and IspS, from other organisms and then RBS optimization of the key enzymes were carried out. The strain utilized IDIsa was firstly detected to produce more isoprene than other IDIs. IDIsa expression was improved after RBS modification, leading to 1610-fold increase of isoprene production. Secondly, RBS sequence optimization was performed to reduce translation initiation rate value of non-key enzymes, ERG19 and MvaE. Decreased ERG19 and MvaE expression and increased isoprene production were detected. The final strain showed 2.6-fold increase in isoprene production relative to the original strain. Furthermore, for the first time, increased key enzyme expression and decreased non-key enzyme expression after RBS sequence optimization were obviously detected through SDS-PAGE analysis. CONCLUSIONS: This study prove that desired enzyme expression and increased isoprene production were obtained after RBS sequence optimization. RBS optimization of genes could be a powerful strategy for metabolic engineering of strain. Moreover, to increase the production of engineered strain, attention should not only be focused on the key enzymes, but also on the non-key enzymes.


Assuntos
Enzimas/metabolismo , Escherichia coli/metabolismo , Hemiterpenos/biossíntese , Engenharia Metabólica , Ribossomos/metabolismo , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Técnicas de Cultura Celular por Lotes , Sítios de Ligação , Butadienos/análise , Carboxiliases/genética , Carboxiliases/metabolismo , Cromatografia Gasosa , Enzimas/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hemiterpenos/análise , Isomerases/genética , Isomerases/metabolismo , Redes e Vias Metabólicas/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ribossomos/química , Ribossomos/genética
9.
Analyst ; 144(6): 2026-2033, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30702091

RESUMO

In this report, we present a post hoc analysis from two observational cohorts, comparing the global breath volatile profile captured when using polymer sampling bags (mixed breath) versus Bio-VOC™ (alveolar breath). The cohorts were originally designed to characterize the breath volatile profiles of Malawian children with and without uncomplicated falciparum malaria. Children aged 3-15 years were recruited from ambulatory pediatric centers in Lilongwe, Malawi. Breath sampling was carried out two months apart (one study using a Bio-VOC™ and the second using sampling bags), and all samples were analyzed by gas chromatography/mass spectrometry. The efficacy of breath collection was assessed by quantifying levels of two high prevalence breath compounds, acetone and isoprene, as well as determining the overall number of breath compounds collected and their abundance. We found that the mean number of volatiles detected using sampling bags was substantially higher than when using the Bio-VOC™ (137 vs. 47). Breath collection by Bio-VOC™ also yielded reduced levels of endogenous breath volatiles, isoprene and acetone, even after breath volume correction. This suggests that the Bio-VOC™ dilutes the volatiles and introduces dead air or ambient air. Our results suggest that sampling bags are better suited for biomarker discovery and untargeted search of volatiles in pediatric populations, as evidenced by superior breath volatile detection.


Assuntos
Biomarcadores/análise , Testes Respiratórios/métodos , Malária Falciparum/diagnóstico , Plasmodium falciparum/isolamento & purificação , Polímeros/química , Compostos Orgânicos Voláteis/análise , Adolescente , Butadienos/análise , Criança , Pré-Escolar , Estudos de Coortes , Cromatografia Gasosa-Espectrometria de Massas , Hemiterpenos/análise , Humanos
10.
J Environ Sci (China) ; 79: 1-10, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30784434

RESUMO

Methacrolein (MACR) and methyl vinyl ketone (MVK) are two major intermediate products from the photochemical oxidation of isoprene, the most important biogenic volatile organic compound. In addition, MACR and MVK have primary emissions. Investigating the sources and evolution of MACR and MVK could provide helpful information for the oxidative capacity of the atmosphere. In this study, hourly measurements of isoprene, MACR, and MVK were conducted at a receptor site in the Pearl River Delta region (PRD), i.e., the Heshan site (HS), from 22 October to 20 November, 2014. The average mixing ratios of isoprene, MACR and MVK were 151 ±â€¯17, 91 ±â€¯6 and 79 ±â€¯6 pptv, respectively. The daily variations and the ratios of MVK/MACR during daytime and nighttime suggested that other sources besides isoprene photooxidation influenced the MACR and MVK abundances at the HS. Positive matrix factorization was utilized to resolve the sources of MACR and MVK. Five sources were identified and quantified, including biogenic emissions, biomass burning, secondary formation, diesel, and gasoline vehicular emissions. Among them, secondary formation made the greatest contribution to observed MACR and MVK with average contributions of ~45% and ~70%, respectively. Through the yields of secondary products from the oxidation of MACR and MVK by the OH radical and the concentrations of MACR and MVK, it was found that methylglyoxal and formaldehyde were the main oxidation products of MACR and MVK at the HS site. Overall, this study evaluated the roles of primary emissions on ambient levels of MACR and MVK and advanced the understanding of photochemical oxidation of MACR and MVK in the PRD.


Assuntos
Acroleína/análogos & derivados , Poluentes Atmosféricos/análise , Butadienos/análise , Butanonas/análise , Hemiterpenos/análise , Acroleína/análise , Acroleína/química , Poluentes Atmosféricos/química , Biomassa , Butanonas/química , China , Monitoramento Ambiental , Formaldeído/química , Gasolina , Modelos Teóricos , Oxirredução , Aldeído Pirúvico/química , Emissões de Veículos
11.
Anal Chem ; 90(8): 4940-4945, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29601182

RESUMO

Earthquakes are lethal natural disasters frequently burying people alive under collapsed buildings. Tracking entrapped humans from their unique volatile chemical signature with hand-held devices would accelerate urban search and rescue (USaR) efforts. Here, a pilot study is presented with compact and orthogonal sensor arrays to detect the breath- and skin-emitted metabolic tracers acetone, ammonia, isoprene, CO2, and relative humidity (RH), all together serving as sign of life. It consists of three nanostructured metal-oxide sensors (Si-doped WO3, Si-doped MoO3, and Ti-doped ZnO), each specifically tailored at the nanoscale for highly sensitive and selective tracer detection along with commercial CO2 and humidity sensors. When tested on humans enclosed in plethysmography chambers to simulate entrapment, this sensor array rapidly detected sub-ppm acetone, ammonia, and isoprene concentrations with high accuracies (19, 21, and 3 ppb, respectively) and precision, unprecedented by portable sensors but required for USaR. These results were in good agreement (Pearson's correlation coefficients ≥0.9) with benchtop selective reagent ionization time-of-flight mass spectrometry (SRI-TOF-MS). As a result, an inexpensive sensor array is presented that can be integrated readily into hand-held or even drone-carried detectors for first responders to rapidly screen affected terrain.


Assuntos
Acetona/análise , Amônia/análise , Butadienos/análise , Dióxido de Carbono/análise , Hemiterpenos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Testes Respiratórios/métodos , Desastres , Humanos , Nanopartículas Metálicas/química , Análise em Microsséries , Molibdênio/química , Óxidos/química , Projetos Piloto , Pletismografia , Trabalho de Resgate , Pele/química , Pele/metabolismo , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Tungstênio/química , Óxido de Zinco/análise
12.
New Phytol ; 220(2): 435-446, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29974469

RESUMO

The prediction of vegetation responses to climate requires a knowledge of how climate-sensitive plant traits mediate not only the responses of individual plants, but also shifts in the species and functional compositions of whole communities. The emission of isoprene gas - a trait shared by one-third of tree species - is known to protect leaf biochemistry under climatic stress. Here, we test the hypothesis that isoprene emission shapes tree species compositions in tropical forests by enhancing the tolerance of emitting trees to heat and drought. Using forest inventory data, we estimated the proportional abundance of isoprene-emitting trees (pIE) at 103 lowland tropical sites. We also quantified the temporal composition shifts in three tropical forests - two natural and one artificial - subjected to either anomalous warming or drought. Across the landscape, pIE increased with site mean annual temperature, but decreased with dry season length. Through time, pIE strongly increased under high temperatures, and moderately increased following drought. Our analysis shows that isoprene emission is a key plant trait determining species responses to climate. For species adapted to seasonal dry periods, isoprene emission may tradeoff with alternative strategies, such as leaf deciduousness. Community selection for isoprene-emitting species is a potential mechanism for enhanced forest resilience to climatic change.


Assuntos
Butadienos/análise , Mudança Climática , Hemiterpenos/análise , Filogenia , Árvores/fisiologia , Clima Tropical , Florestas , Fatores de Tempo
13.
New Phytol ; 220(3): 799-810, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30047151

RESUMO

Insect herbivores cause substantial changes in the leaves they attack, but their effects on the ecophysiology of neighbouring, nondamaged leaves have never been quantified in natural canopies. We studied how winter moth (Operophtera brumata), a common herbivore in temperate forests, affects the photosynthetic and isoprene emission rates of its host plant, the pedunculate oak (Quercus robur). Through a manipulative experiment, we measured leaves on shoots damaged by caterpillars or mechanically by cutting, or left completely intact. To quantify the effects at the canopy scale, we surveyed the extent and patterns of leaf area loss in the canopy. Herbivory reduced photosynthesis both in damaged leaves and in their intact neighbours. Isoprene emission rates significantly increased after mechanical leaf damage. When scaled up to canopy-level, herbivory reduced photosynthesis by 48 ± 10%. The indirect effects of herbivory on photosynthesis in undamaged leaves (40%) were much more important than the direct effects of leaf area loss (6%). If widespread across other plant-herbivore systems, these findings suggest that insect herbivory has major and previously underappreciated influences in modifying ecosystem carbon cycling, with potential effects on atmospheric chemistry.


Assuntos
Butadienos/análise , Hemiterpenos/análise , Herbivoria/fisiologia , Mariposas/fisiologia , Fotossíntese , Folhas de Planta/fisiologia , Quercus/fisiologia , Animais , Modelos Teóricos
14.
New Phytol ; 220(3): 773-784, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29120052

RESUMO

The emission of isoprenoids (e.g. isoprene and monoterpenes) by plants plays an important defensive role against biotic and abiotic stresses. Little is known, however, about the functional traits linked to species-specific variability in the types and rates of isoprenoids emitted and about possible co-evolution of functional traits with isoprenoid emission type (isoprene emitter, monoterpene emitter or both). We combined data for isoprene and monoterpene emission rates per unit dry mass with key functional traits (foliar nitrogen (N) and phosphorus (P) concentrations, and leaf mass per area) and climate for 113 plant species, covering the boreal, wet temperate, Mediterranean and tropical biomes. Foliar N was positively correlated with isoprene emission, and foliar P was negatively correlated with both isoprene and monoterpene emission rate. Nonemitting plants generally had the highest nutrient concentrations, and those storing monoterpenes had the lowest concentrations. Our phylogenetic analyses found that the type of isoprenoid emission followed an adaptive, rather than a random model of evolution. Evolution of isoprenoids may be linked to nutrient availability. Foliar N and P are good predictors of the type of isoprenoid emission and the rate at which monoterpenes, and to a lesser extent isoprene, are emitted.


Assuntos
Butadienos/análise , Hemiterpenos/análise , Nitrogênio/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Compostos Orgânicos Voláteis/análise , Clima , Modelos Teóricos , Filogenia , Análise de Componente Principal
15.
Bull Environ Contam Toxicol ; 100(1): 184-188, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29236157

RESUMO

The potential role of isoprene oxidative processes, as well as the possible impact of air pollution on isoprene emissions, are more important in tropical cities, surrounded by rainforests. In this study, the contribution of isoprene to ozone formation was determined considering different scenarios, mainly volatile organic compounds/NO x (VOC/NO x ) ratios, and typical atmospheric conditions for the city of Rio de Janeiro, where more than 36% of the urbanized area is covered by vegetation. Ozone isopleths and incremental reactivity coefficients (IR) were evaluated to understand the direct contribution of isoprene to ground-level ozone formation and the negative impact of anthropogenic NO x emissions on the natural atmospheric balance. Although isoprene accounted for only 2.7% of the total VOC mass, excluding the isoprene concentration from the model reduced the maximum ozone value by 14.1%. The calculated IR coefficient (grams of O3 formed per gram of added isoprene) was 2.2 for a VOC/NO x ratio of 8.86.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Butadienos/análise , Monitoramento Ambiental , Hemiterpenos/análise , Ozônio/análise , Pentanos/análise , Compostos Orgânicos Voláteis/análise , Brasil , Cidades , Clima
16.
J Environ Sci (China) ; 71: 150-167, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30195674

RESUMO

Continuous observation of isoprene, α-pinene and ß-pinene was carried out in a typical urban area of Beijing from March 2014 to February 2015, using an AirmoVOC online analyzer. Based on the analysis of the ambient level and variation characteristics of isoprene, α-pinene and ß-pinene, the chemical reactivity was studied, and their sources were identified. Results showed that the concentrations of isoprene, α-pinene and ß-pinene in the urban area of Beijing were lower than those in richly vegetated areas; the concentrations of isoprene were at a moderate level compared with those of previous studies of Beijing. Concentrations of isoprene, α-pinene and ß-pinene showed different seasonal, monthly, daily and diurnal variations, and all of the three species showed higher level at night than those in the daytime as a whole, the variations of isoprene, α-pinene and ß-pinene mainly influenced by emission of sources, photochemical reaction, and meteorological parameters. Isoprene was the largest contributor to the total OFP values than α-pinene and ß-pinene. α-Pinene was the largest contributor to the total SOAFP values than isoprene and ß-pinene in autumn, while isoprene was the largest one in other seasons. Isoprene, α-pinene and ß-pinene were derived mainly from biological sources; and α-pinene level were also affected by industrial sources. To reduce the concentrations of isoprene, α-pinene and ß-pinene, it is necessary to scientifically select urban green plant species, and more strict control measures should be taken to reduce the emission of α-pinene from industrial sources, such as artificial flavors and resins synthesis processes.


Assuntos
Poluentes Atmosféricos/análise , Butadienos/análise , Monitoramento Ambiental , Hemiterpenos/análise , Pentanos/análise , Poluição do Ar/estatística & dados numéricos , Atmosfera/química , Pequim
17.
Plant Cell Environ ; 40(9): 1960-1971, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28634994

RESUMO

Concentration- and flux-based O3 dose-responses of isoprene emission from single leaves and whole plants were developed. Two poplar clones differing in O3 sensitivity were exposed to five O3 levels in open-top chambers for 97 d: charcoal-filtered ambient air (CF), non-filtered ambient air (NF) and NF plus 20 ppb (NF + 20), 40 ppb (NF + 40) and 60 ppb (NF + 60). At both leaf and plant level, isoprene emission was significantly decreased by NF + 40 and NF + 60 for both clones. Although intra-specific variability was found when the emissions were up-scaled to the whole plant, both leaf- and plant-level emissions decreased linearly with increasing concentration-based (AOT40, cumulative exposure to hourly O3 concentrations >40 ppb) and flux-based indices (PODY , cumulative stomatal uptake of O3  > Y nmol O3 m-2 PLA s-1 ). AOT40- and POD7 -based dose-responses performed equally well. The two clones responded differently to AOT40 and similarly to PODY (with a slightly higher R2 for POD7 ) when the emission was expressed as change relative to clean air. We thus recommend POD7 as a large-scale risk assessment metric to estimate isoprene emission responses to O3 in poplar.


Assuntos
Butadienos/análise , Hemiterpenos/análise , Ozônio/farmacologia , Pentanos/análise , Folhas de Planta/química , Populus/química , Análise de Variância , Clorofila/análise , Células Clonais , Folhas de Planta/efeitos dos fármacos , Populus/efeitos dos fármacos
19.
Lung ; 195(2): 247-254, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28247041

RESUMO

Purpose Human breath analysis is proposed with increasing frequency as a useful tool in clinical application. We performed this study to find the characteristic volatile organic compounds (VOCs) in the exhaled breath of patients with idiopathic pulmonary fibrosis (IPF) for discrimination from healthy subjects. Methods VOCs in the exhaled breath of 40 IPF patients and 55 healthy controls were measured using a multi-capillary column and ion mobility spectrometer. The patients were examined by pulmonary function tests, blood gas analysis, and serum biomarkers of interstitial pneumonia. Results We detected 85 VOC peaks in the exhaled breath of IPF patients and controls. IPF patients showed 5 significant VOC peaks; p-cymene, acetoin, isoprene, ethylbenzene, and an unknown compound. The VOC peak of p-cymene was significantly lower (p < 0.001), while the VOC peaks of acetoin, isoprene, ethylbenzene, and the unknown compound were significantly higher (p < 0.001 for all) compared with the peaks of controls. Comparing VOC peaks with clinical parameters, negative correlations with VC (r =-0.393, p = 0.013), %VC (r =-0.569, p < 0.001), FVC (r = -0.440, p = 0.004), %FVC (r =-0.539, p < 0.001), DLco (r =-0.394, p = 0.018), and %DLco (r =-0.413, p = 0.008) and a positive correlation with KL-6 (r = 0.432, p = 0.005) were found for p-cymene. Conclusion We found characteristic 5 VOCs in the exhaled breath of IPF patients. Among them, the VOC peaks of p-cymene were related to the clinical parameters of IPF. These VOCs may be useful biomarkers of IPF.


Assuntos
Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/fisiopatologia , Compostos Orgânicos Voláteis/análise , Acetoína/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Derivados de Benzeno/análise , Testes Respiratórios , Butadienos/análise , Estudos de Casos e Controles , Cimenos , Feminino , Voluntários Saudáveis , Hemiterpenos/análise , Humanos , Masculino , Pessoa de Meia-Idade , Monoterpenos/análise , Mucina-1/sangue , Oxigênio/sangue , Pressão Parcial , Pentanos/análise , Capacidade de Difusão Pulmonar , Capacidade Vital , Adulto Jovem
20.
BMC Biotechnol ; 16: 5, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26786050

RESUMO

BACKGROUND: To deal with the increasingly severe energy crisis and environmental consequences, biofuels and biochemicals generated from renewable resources could serve as a promising alternative for replacing petroleum as a source of fuel and chemicals, among which isoprene (2-methyl-1,3-butadiene) in particular is of great significance in that it is an important platform chemical, which has been used in industrial production of synthetic rubber for tires and coatings or aviation fuel. RESULTS: We firstly introduced fatty acid decarboxylase (OleTJE) from Jeotgalicoccus species into E. coli to directly convert MVA(mevalonate) into 3-methy-3-buten-1-ol. And then to transform 3-methy-3-buten-1-ol to isoprene, oleate hydratase (OhyAEM) from Elizabethkingia meningoseptica was overexpressed in E. coli. A novel biosynthetic pathway of isoprene in E. coli was established by co-expressing the heterologous mvaE gene encoding acetyl-CoA acetyltransferase/HMG-CoA reductase and mvaS gene encoding HMG-CoA synthase from Enterococcus faecalis, fatty acid decarboxylase (OleTJE) and oleate hydratase (OhyAEM). Furthermore, to enhance isoprene production, a further optimization of expression level of OleTJE, OhyAEM was carried out by using different promoters and copy numbers of plasmids. Thereafter, the fermentation process was also optimized to improve the production of isoprene. The final engineered strain, YJM33, bearing the innovative biosynthetic pathway of isoprene, was found to produce isoprene up to 2.2 mg/L and 620 mg/L under flask and fed-batch fermentation conditions, respectively. CONCLUSIONS: In this study, by using metabolic engineering techniques, the novel MVA-mediated biosynthetic pathway of isoprene was successfully assembled in E. coli BL21(DE3) with the heterologous MVA upper pathway, OleTJE from Jeotgalicoccus species and OhyAEM from Elizabethkingia meningoseptica. Compared with traditional MVA pathway, the novel pathway is shortened by 3 steps. In addition, this is the first report on the reaction of converting MVA into 3-methy-3-buten-1-ol by fatty acid decarboxylase (OleTJE) from Jeotgalicoccus species. In brief, this study provided an alternative method for isoprene biosynthesis, which is largely different from the well-developed MEP pathway or MVA pathway.


Assuntos
Butadienos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hemiterpenos/metabolismo , Engenharia Metabólica/métodos , Ácido Mevalônico/metabolismo , Pentanos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Butadienos/análise , Carboxiliases/genética , Carboxiliases/metabolismo , Fermentação , Hemiterpenos/análise , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Redes e Vias Metabólicas/genética , Pentanos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA