Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 46(1): 3-14, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36175366

RESUMO

Arginase 1 Deficiency (ARG1-D) is a rare urea cycle disorder that results in persistent hyperargininemia and a distinct, progressive neurologic phenotype involving developmental delay, intellectual disability, and spasticity, predominantly affecting the lower limbs and leading to mobility impairment. Unlike the typical presentation of other urea cycle disorders, individuals with ARG1-D usually appear healthy at birth and hyperammonemia is comparatively less severe and less common. Clinical manifestations typically begin to develop in early childhood in association with high plasma arginine levels, with hyperargininemia (and not hyperammonemia) considered to be the primary driver of disease sequelae. Nearly five decades of clinical experience with ARG1-D and empirical studies in genetically manipulated models have generated a large body of evidence that, when considered in aggregate, implicates arginine directly in disease pathophysiology. Severe dietary protein restriction to minimize arginine intake and diversion of ammonia from the urea cycle are the mainstay of care. Although this approach does reduce plasma arginine and improve patients' cognitive and motor/mobility manifestations, it is inadequate to achieve and maintain sufficiently low arginine levels and prevent progression in the long term. This review presents a comprehensive discussion of the clinical and scientific literature, the effects and limitations of the current standard of care, and the authors' perspectives regarding the past, current, and future management of ARG1-D.


Assuntos
Hiperamonemia , Hiperargininemia , Distúrbios Congênitos do Ciclo da Ureia , Pré-Escolar , Humanos , Arginase/genética , Arginina , Hiperamonemia/metabolismo
2.
Mol Genet Metab ; 137(1-2): 153-163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36049366

RESUMO

BACKGROUND: Arginase 1 Deficiency (ARG1-D) is a rare, progressive, metabolic disorder that is characterized by devastating manifestations driven by elevated plasma arginine levels. It typically presents in early childhood with spasticity (predominately affecting the lower limbs), mobility impairment, seizures, developmental delay, and intellectual disability. This systematic review aims to identify and describe the published evidence outlining the epidemiology, diagnosis methods, measures of disease progression, clinical management, and outcomes for ARG1-D patients. METHODS: A comprehensive literature search across multiple databases such as MEDLINE, Embase, and a review of clinical studies in ClinicalTrials.gov (with results reported) was carried out per PRISMA guidelines on 20 April 2020 with no date restriction. Pre-defined eligibility criteria were used to identify studies with data specific to patients with ARG1-D. Two independent reviewers screened records and extracted data from included studies. Quality was assessed using the modified Newcastle-Ottawa Scale for non-comparative studies. RESULTS: Overall, 55 records reporting 40 completed studies and 3 ongoing studies were included. Ten studies reported the prevalence of ARG1-D in the general population, with a median of 1 in 1,000,000. Frequently reported diagnostic methods included genetic testing, plasma arginine levels, and red blood cell arginase activity. However, routine newborn screening is not universally available, and lack of disease awareness may prevent early diagnosis or lead to misdiagnosis, as the disease has overlapping symptomology with other diseases, such as cerebral palsy. Common manifestations reported at time of diagnosis and assessed for disease progression included spasticity (predominately affecting the lower limbs), mobility impairment, developmental delay, intellectual disability, and seizures. Severe dietary protein restriction, essential amino acid supplementation, and nitrogen scavenger administration were the most commonly reported treatments among patients with ARG1-D. Only a few studies reported meaningful clinical outcomes of these interventions on intellectual disability, motor function and adaptive behavior assessment, hospitalization, or death. The overall quality of included studies was assessed as good according to the Newcastle-Ottawa Scale. CONCLUSIONS: Although ARG1-D is a rare disease, published evidence demonstrates a high burden of disease for patients. The current standard of care is ineffective at preventing disease progression. There remains a clear need for new treatment options as well as improved access to diagnostics and disease awareness to detect and initiate treatment before the onset of clinical manifestations to potentially enable more normal development, improve symptomatology, or prevent disease progression.


Assuntos
Hiperargininemia , Deficiência Intelectual , Recém-Nascido , Humanos , Pré-Escolar , Arginase/genética , Hiperargininemia/diagnóstico , Hiperargininemia/epidemiologia , Hiperargininemia/genética , Convulsões/diagnóstico , Convulsões/epidemiologia , Convulsões/etiologia , Espasticidade Muscular/diagnóstico , Espasticidade Muscular/epidemiologia , Espasticidade Muscular/genética , Arginina/uso terapêutico , Aminoácidos Essenciais , Progressão da Doença , Nitrogênio
3.
Proc Natl Acad Sci U S A ; 116(42): 21150-21159, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31501335

RESUMO

Arginase deficiency is caused by biallelic mutations in arginase 1 (ARG1), the final step of the urea cycle, and results biochemically in hyperargininemia and the presence of guanidino compounds, while it is clinically notable for developmental delays, spastic diplegia, psychomotor function loss, and (uncommonly) death. There is currently no completely effective medical treatment available. While preclinical strategies have been demonstrated, disadvantages with viral-based episomal-expressing gene therapy vectors include the risk of insertional mutagenesis and limited efficacy due to hepatocellular division. Recent advances in messenger RNA (mRNA) codon optimization, synthesis, and encapsulation within biodegradable liver-targeted lipid nanoparticles (LNPs) have potentially enabled a new generation of safer, albeit temporary, treatments to restore liver metabolic function in patients with urea cycle disorders, including ARG1 deficiency. In this study, we applied such technologies to successfully treat an ARG1-deficient murine model. Mice were administered LNPs encapsulating human codon-optimized ARG1 mRNA every 3 d. Mice demonstrated 100% survival with no signs of hyperammonemia or weight loss to beyond 11 wk, compared with controls that perished by day 22. Plasma ammonia, arginine, and glutamine demonstrated good control without elevation of guanidinoacetic acid, a guanidino compound. Evidence of urea cycle activity restoration was demonstrated by the ability to fully metabolize an ammonium challenge and by achieving near-normal ureagenesis; liver arginase activity achieved 54% of wild type. Biochemical and microscopic data showed no evidence of hepatotoxicity. These results suggest that delivery of ARG1 mRNA by liver-targeted nanoparticles may be a viable gene-based therapeutic for the treatment of arginase deficiency.


Assuntos
Hiperargininemia/tratamento farmacológico , Lipídeos/farmacologia , Hepatopatias/tratamento farmacológico , Fígado/efeitos dos fármacos , Nanopartículas/administração & dosagem , RNA Mensageiro/metabolismo , Amônia/metabolismo , Animais , Arginase/metabolismo , Arginina/metabolismo , Códon/metabolismo , Modelos Animais de Doenças , Glutamina/metabolismo , Hiperamonemia/tratamento farmacológico , Hiperamonemia/metabolismo , Hiperargininemia/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ureia/metabolismo
4.
Pediatr Int ; 64(1): e14945, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34343381

RESUMO

BACKGROUND: Arginase-1 deficiency is a rare, autosomal recessively inherited disorder of the urea cycle. In this study, we describe the clinical and molecular details of six patients who were diagnosed with argininemia, and we describe two of the patients with hyperargininemia who carried two novel variations of the Arginase-1 gene. METHODS: The clinical and demographic characteristics of the patients were retrospectively evaluated. RESULTS: The ages of the six patients ranged from 1 day to 20 years, and each patient had consanguineous parents. Neuromotor retardation and spastic paraparesis were found in all patients except one, who was diagnosed prenatally. Hyperargininemia was present in all patients. Urinary orotic acid excretion was increased in four of the six patients. The diagnosis was confirmed by genetic analysis in all the patients. Elevated liver enzymes were detected in three patients and blood urea nitrogen levels were normal in each of the six patients. CONCLUSIONS: In this study, we describe the two patients with hyperargininemia who carried two novel variations of the ARG1 gene. Also, we present a patient with normal neurodevelopment who was diagnosed prenatally and treated at an early stage of the disease.


Assuntos
Arginase , Hiperargininemia , Hepatopatias , Adolescente , Arginase/genética , Criança , Pré-Escolar , Humanos , Hiperargininemia/diagnóstico , Hiperargininemia/genética , Lactente , Mutação , Estudos Retrospectivos , Adulto Jovem
5.
J Inherit Metab Dis ; 44(4): 847-856, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33325055

RESUMO

Hyperargininemia in patients with arginase 1 deficiency (ARG1-D) is considered a key driver of disease manifestations, including spasticity, developmental delay, and seizures. Pegzilarginase (AEB1102) is an investigational enzyme therapy which is being developed as a novel arginine lowering approach. We report the safety and efficacy of intravenously (IV) administered pegzilarginase in pediatric and adult ARG1-D patients (n = 16) from a Phase 1/2 study (101A) and the first 12 weeks of an open-label extension study (102A). Substantial disease burden at baseline included lower-limb spasticity, developmental delay, and previous hyperammonemic episodes in 75%, 56%, and 44% of patients, respectively. Baseline plasma arginine (pArg) was elevated (median 389 µM, range 238-566) on standard disease management. Once weekly repeat dosing resulted in a median decrease of pArg of 277 µM after 20 cumulative doses (n = 14) with pArg in the normal range (40 to 115 µM) in 50% of patients at 168 hours post dose (mean pegzilarginase dose 0.10 mg/kg). Lowering pArg was accompanied by improvements in one or more key mobility assessments (6MWT, GMFM-D & E) in 79% of patients. In 101A, seven hypersensitivity reactions occurred in four patients (out of 162 infusions administered). Other common treatment-related adverse events (AEs) included vomiting, hyperammonemia, pruritus, and abdominal pain. Treatment-related serious AEs that occurred in five patients were all observed in 101A. Pegzilarginase was effective in lowering pArg levels with an accompanying clinical response in patients with ARG1-D. The improvements with pegzilarginase occurred in patients receiving standard treatment approaches, which suggests that pegzilarginase could offer benefit over existing disease management.


Assuntos
Arginase/genética , Arginase/uso terapêutico , Arginina/sangue , Hiperargininemia/tratamento farmacológico , Adolescente , Adulto , Arginase/efeitos adversos , Arginase/sangue , Arginina/metabolismo , Criança , Pré-Escolar , Gerenciamento Clínico , Feminino , Humanos , Hiperamonemia/etiologia , Hiperargininemia/sangue , Hiperargininemia/genética , Hiperargininemia/metabolismo , Masculino , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/uso terapêutico , Estados Unidos , Vômito/etiologia , Adulto Jovem
6.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053818

RESUMO

Arginine is one of the most important nutrients of living organisms as it plays a major role in important biological pathways. However, the accumulation of arginine as consequence of metabolic defects causes hyperargininemia, an autosomal recessive disorder. Therefore, the efficient detection of the arginine is a field of relevant biomedical/biotechnological interest. Here, we developed protein variants suitable for arginine sensing by mutating and dissecting the multimeric and multidomain structure of Thermotoga maritima arginine-binding protein (TmArgBP). Indeed, previous studies have shown that TmArgBP domain-swapped structure can be manipulated to generate simplified monomeric and single domain scaffolds. On both these stable scaffolds, to measure tryptophan fluorescence variations associated with the arginine binding, a Phe residue of the ligand binding pocket was mutated to Trp. Upon arginine binding, both mutants displayed a clear variation of the Trp fluorescence. Notably, the single domain scaffold variant exhibited a good affinity (~3 µM) for the ligand. Moreover, the arginine binding to this variant could be easily reverted under very mild conditions. Atomic-level data on the recognition process between the scaffold and the arginine were obtained through the determination of the crystal structure of the adduct. Collectively, present data indicate that TmArgBP scaffolds represent promising candidates for developing arginine biosensors.


Assuntos
Arginina/química , Arginina/metabolismo , Fenômenos Fisiológicos Bacterianos , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Thermotoga maritima/metabolismo , Proteínas de Transporte/genética , Hiperargininemia/diagnóstico , Hiperargininemia/etiologia , Hiperargininemia/metabolismo , Ligantes , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Thermotoga maritima/genética
7.
Mov Disord ; 34(5): 625-636, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30913345

RESUMO

The term "cerebral palsy mimic" is used to describe a number of neurogenetic disorders that may present with motor symptoms in early childhood, resulting in a misdiagnosis of cerebral palsy. Cerebral palsy describes a heterogeneous group of neurodevelopmental disorders characterized by onset in infancy or early childhood of motor symptoms (including hypotonia, spasticity, dystonia, and chorea), often accompanied by developmental delay. The primary etiology of a cerebral palsy syndrome should always be identified if possible. This is particularly important in the case of genetic or metabolic disorders that have specific disease-modifying treatment. In this article, we discuss clinical features that should alert the clinician to the possibility of a cerebral palsy mimic, provide a practical framework for selecting and interpreting neuroimaging, biochemical, and genetic investigations, and highlight selected conditions that may present with predominant spasticity, dystonia/chorea, and ataxia. Making a precise diagnosis of a genetic disorder has important implications for treatment, and for advising the family regarding prognosis and genetic counseling. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Paralisia Cerebral/diagnóstico , Diagnóstico Diferencial , Transtornos dos Movimentos/diagnóstico , Adenilil Ciclases/genética , Ataxia/fisiopatologia , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/fisiopatologia , Ataxia Telangiectasia/terapia , Encéfalo/diagnóstico por imagem , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/fisiopatologia , Encefalopatias Metabólicas Congênitas/terapia , Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/fisiopatologia , Erros Inatos do Metabolismo dos Carboidratos/terapia , Paralisia Cerebral/fisiopatologia , Coreia/fisiopatologia , Creatina/deficiência , Creatina/genética , Discinesias/diagnóstico , Discinesias/genética , Discinesias/fisiopatologia , Discinesias/terapia , Distonia/fisiopatologia , Deficiência de Ácido Fólico/diagnóstico , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/fisiopatologia , Deficiência de Ácido Fólico/terapia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Humanos , Hiperargininemia/diagnóstico , Hiperargininemia/genética , Hiperargininemia/fisiopatologia , Hiperargininemia/terapia , Síndrome de Lesch-Nyhan/diagnóstico , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/fisiopatologia , Síndrome de Lesch-Nyhan/terapia , Imageamento por Ressonância Magnética , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Deficiência Intelectual Ligada ao Cromossomo X/terapia , Proteínas de Transporte de Monossacarídeos/deficiência , Proteínas de Transporte de Monossacarídeos/genética , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/fisiopatologia , Transtornos dos Movimentos/terapia , Deficiência Múltipla de Carboxilase/diagnóstico , Deficiência Múltipla de Carboxilase/genética
8.
J Inherit Metab Dis ; 42(3): 407-413, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30671984

RESUMO

PURPOSE: We report a patient with a human cationic amino acid transporter 2 (CAT-2) defect discovered due to a suspected arginase 1 deficiency observed in newborn screening (NBS). METHODS: A NBS sample was analyzed using tandem mass spectrometry. Screen results were confirmed by plasma and urine amino acid quantification. Molecular diagnosis was done using clinical exome sequencing. Dimethylated arginines were determined by HPLC and nitrate/nitrite levels by a colorimetric assay. The metabolomic profile was analyzed using 1D nuclear magnetic resonance spectroscopy. RESULTS: A Spanish boy of nonconsanguineous parents had high arginine levels in a NBS blood sample. Plasma and urinary cationic amino acids were high. Arginase enzyme activity in erythrocytes was normal and no pathogenic mutations were identified in the ARG1 gene. Massive parallel sequencing detected two loss-of-function mutations in the SLC7A2 gene. Currently, the child receives a protein-controlled diet of 1.2 g/kg/day with protein-and amino-acid free infant formula, 30 g/day, and is asymptomatic. CONCLUSION: We identified a novel defect in human CAT-2 due to biallelic pathogenic variants in the SLC7A2 gene. The characteristic biochemical profile includes high plasma and urine arginine, ornithine, and lysine levels. NBS centers should know of this disorder since it can be detected in arginase 1 deficiency screening.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Transportador 2 de Aminoácidos Catiônicos/deficiência , Doenças Metabólicas/genética , Arginase/genética , Dieta com Restrição de Proteínas , Humanos , Hiperargininemia/genética , Recém-Nascido , Masculino , Doenças Metabólicas/dietoterapia , Mutação , Triagem Neonatal
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 36(10): 996-998, 2019 Oct 10.
Artigo em Zh | MEDLINE | ID: mdl-31598944

RESUMO

OBJECTIVE: To explore the genetic basis for an infant with early-onset argininemia. METHODS: Potential variant was detected with an Ion Torrent semiconductor sequencer using a gene panel for inherited diseases. Suspected variants were verified by Sanger sequencing. RESULTS: Genetic testing indicated that he has carried c.560+2T>C and c.811T>C compound heterozygous variant of the AGR1 gene, which were inherited from his father and mother, respectively. Among these, c.560+2T>C was suspected to be pathogenic, while c.811T>C was of unknown clinical significance, and both were not reported previously. CONCLUSION: The c.560+2T>C and c.811T>C compound heterozygous variants of the AGR1 gene probably underlies the argininemia in this child. Above finding has enriched the variant spectrum of the AGR1 gene.


Assuntos
Arginase/genética , Hiperargininemia/genética , Feminino , Testes Genéticos , Humanos , Lactente , Masculino
10.
J Inherit Metab Dis ; 41(4): 657-667, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29423830

RESUMO

Urea cycle disorders often present as devastating metabolic conditions, resulting in high mortality and significant neuropsychological damage, despite treatment. The Urea Cycle Disorders Longitudinal Study is a natural history study that collects data from regular clinical follow-up and neuropsychological testing. This report examines links between biochemical markers (ammonia, glutamine, arginine, citrulline) and primary neuropsychological endpoints in three distal disorders, argininosuccinic acid synthetase deficiency (ASD or citrullinemia type I), argininosuccinic acid lyase deficiency (ASA or ALD), and arginase deficiency (ARGD). Laboratory results and test scores from neuropsychological evaluations were assessed in 145 study participants, ages 3 years and older, with ASD (n = 64), ASA (n = 65) and ARGD (n = 16). Mean full scale IQ was below the population mean of 100 ± 15 for all groups: (ASD = 79 ± 24; ASA = 71 ± 21; ARGD = 65 ± 19). The greatest deficits were noted in visual performance and motor skills for all groups. While ammonia levels remain prominent as prognostic biomarkers, other biomarkers may be equally valuable as correlates of neuropsychological functioning. Cumulative exposure to the biomarkers included in the study proved to be highly sensitive indicators of neuropsychological outcomes, even when below the cut-off levels generally considered toxic. Blood levels of biomarkers obtained on the day of neuropsychological evaluations were not correlated with measures of functioning for any disorder in any domain. The importance of cumulative exposure supports early identification and confirms the need for well-controlled management of all biochemical abnormalities (and not just ammonia) that occur in urea cycle disorders.


Assuntos
Acidúria Argininossuccínica/sangue , Biomarcadores/sangue , Citrulinemia/sangue , Hiperargininemia/sangue , Adolescente , Adulto , Amônia/sangue , Arginina/sangue , Criança , Pré-Escolar , Citrulina/sangue , Feminino , Glutamina/sangue , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Adulto Jovem
11.
RNA Biol ; 15(7): 914-922, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29923457

RESUMO

Arginase I (ARG1) deficiency is an autosomal recessive urea cycle disorder, caused by deficiency of the enzyme Arginase I, resulting in accumulation of arginine in blood. Current Standard of Care (SOC) for ARG1 deficiency in patients or those having detrimental mutations of ARG1 gene is diet control. Despite diet and drug therapy with nitrogen scavengers, ~25% of patients suffer from severe mental deficits and loss of ambulation. 75% of patients whose symptoms can be managed through diet therapy continue to suffer neuro-cognitive deficits. In our research, we demonstrate in vitro and in vivo that administration of ARG1 mRNA increased ARG1 protein expression and specific activity in relevant cell types, including ARG1-deficient patient cell lines, as well as in wild type mice for up to 4 days. These studies demonstrate that ARG1 mRNA treatment led to increased functional protein expression of ARG1 and subsequently an increase in urea. Hence, ARG1 mRNA therapy could be a potential treatment option to develop for patients.


Assuntos
Arginase/metabolismo , Arginina/metabolismo , Terapia Biológica/métodos , Hiperargininemia/terapia , RNA Mensageiro/administração & dosagem , Animais , Arginase/genética , Células HeLa , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Ureia/metabolismo
12.
Acta Haematol ; 140(4): 221-225, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30355940

RESUMO

BACKGROUND: Argininemia is an autosomal recessive urea cycle disorder (UCD). Unlike other UCD, hyperammonemia is rarely seen. Patients usually present in childhood with neurological symptoms. Uncommon presentations like neonatal cholestasis or cirrhosis have been reported. Although transient elevations of liver transaminases and coagulopathy have been reported during hyperammonemia episodes, a permanent coagulopathy has never been reported. METHODS: In this retrospective study, coagulation disturbances are examined in 6 argininemia patients. All of the patients were routinely followed up for hepatic involvement due to argininemia. Laboratory results, including liver transaminases, albumin, prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), and clotting factor levels, were assessed in all of the patients. RESULTS: All of the patients had a prolonged PT and an increased INR, while none of the patients had a prolonged aPTT. Five patients had slightly elevated liver transaminases. A liver biopsy was performed in 1 patient but neither cirrhosis nor cholestasis was documented. Five of the 6 patients had low factor VII and factor IX levels, while other clotting factors were normal. CONCLUSIONS: Argininemia patients should be investigated for coagulation disorders even if there is no apparent liver dysfunction or major bleeding symptoms.


Assuntos
Hiperargininemia/diagnóstico , Adolescente , Fatores de Coagulação Sanguínea/metabolismo , Criança , Feminino , Humanos , Coeficiente Internacional Normatizado , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Masculino , Tempo de Tromboplastina Parcial , Tempo de Protrombina , Estudos Retrospectivos , Albumina Sérica/metabolismo , Transaminases/metabolismo
13.
Metab Brain Dis ; 33(5): 1775-1778, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29961243

RESUMO

Argininemia is a rare hereditary disease due to a deficiency of hepatic arginase, which is the last enzyme of the urea cycle and hydrolyzes arginine to ornithine and urea. Herein we report a patient with arginase I (ARG1) deficiency who presented with recurrent nonconvulsive status epilepticus and liver failure. A novel homozygous frameshift mutation c.703_707delGGACTinsAGACTGGACC (p.G235Rfs*20) was detected.


Assuntos
Arginase/genética , Hiperargininemia/complicações , Falência Hepática/etiologia , Estado Epiléptico/etiologia , Encéfalo/diagnóstico por imagem , Pré-Escolar , Feminino , Humanos , Hiperargininemia/diagnóstico por imagem , Hiperargininemia/genética , Falência Hepática/diagnóstico por imagem , Falência Hepática/genética , Imageamento por Ressonância Magnética , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/genética
14.
J Neurosci ; 36(25): 6680-90, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27335400

RESUMO

UNLABELLED: Arginase 1 deficiency is a urea cycle disorder associated with hyperargininemia, spastic diplegia, loss of ambulation, intellectual disability, and seizures. To gain insight on how loss of arginase expression affects the excitability and synaptic connectivity of the cortical neurons in the developing brain, we used anatomical, ultrastructural, and electrophysiological techniques to determine how single-copy and double-copy arginase deletion affects cortical circuits in mice. We find that the loss of arginase 1 expression results in decreased dendritic complexity, decreased excitatory and inhibitory synapse numbers, decreased intrinsic excitability, and altered synaptic transmission in layer 5 motor cortical neurons. Hepatic arginase 1 gene therapy using adeno-associated virus rescued nearly all these abnormalities when administered to neonatal homozygous knock-out animals. Therefore, gene therapeutic strategies can reverse physiological and anatomical markers of arginase 1 deficiency and therefore may be of therapeutic benefit for the neurological disabilities in this syndrome. SIGNIFICANCE STATEMENT: These studies are one of the few investigations to try to understand the underlying neurological dysfunction that occurs in urea cycle disorders and the only to examine arginase deficiency. We have demonstrated by multiple modalities that, in murine layer 5 cortical neurons, a gradation of abnormalities exists based on the functional copy number of arginase: intrinsic excitability is altered, there is decreased density in asymmetrical and perisomatic synapses, and analysis of the dendritic complexity is lowest in the homozygous knock-out. With neonatal administration of adeno-associated virus expressing arginase, there is near-total recovery of the abnormalities in neurons and cortical circuits, supporting the concept that neonatal gene therapy may prevent the functional abnormalities that occur in arginase deficiency.


Assuntos
Arginase/uso terapêutico , Terapia Genética , Hiperargininemia/patologia , Hiperargininemia/terapia , Córtex Motor/fisiologia , Recuperação de Função Fisiológica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Amônia/sangue , Animais , Animais Recém-Nascidos , Arginase/genética , Arginase/metabolismo , Modelos Animais de Doenças , Hiperargininemia/sangue , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Córtex Motor/citologia , Córtex Motor/ultraestrutura , Rede Nervosa/patologia , Rede Nervosa/fisiologia , Rede Nervosa/ultraestrutura , Neurônios/fisiologia , Neurônios/ultraestrutura , Picrotoxina/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Sinapses/ultraestrutura , Tetrodotoxina/farmacologia
15.
Hum Mol Genet ; 24(22): 6417-27, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26358771

RESUMO

Arginase deficiency is caused by deficiency of arginase 1 (ARG1), a urea cycle enzyme that converts arginine to ornithine. Clinical features of arginase deficiency include elevated plasma arginine levels, spastic diplegia, intellectual disability, seizures and growth deficiency. Unlike other urea cycle disorders, recurrent hyperammonemia is typically less severe in this disorder. Normalization of plasma arginine levels is the consensus treatment goal, because elevations of arginine and its metabolites are suspected to contribute to the neurologic features. Using data from patients enrolled in a natural history study conducted by the Urea Cycle Disorders Consortium, we found that 97% of plasma arginine levels in subjects with arginase deficiency were above the normal range despite conventional treatment. Recently, arginine-degrading enzymes have been used to deplete arginine as a therapeutic strategy in cancer. We tested whether one of these enzymes, a pegylated human recombinant arginase 1 (AEB1102), reduces plasma arginine in murine models of arginase deficiency. In neonatal and adult mice with arginase deficiency, AEB1102 reduced the plasma arginine after single and repeated doses. However, survival did not improve likely, because this pegylated enzyme does not enter hepatocytes and does not improve hyperammonemia that accounts for lethality. Although murine models required dosing every 48 h, studies in cynomolgus monkeys indicate that less frequent dosing may be possible in patients. Given that elevated plasma arginine rather than hyperammonemia is the major treatment challenge, we propose that AEB1102 may have therapeutic potential as an arginine-reducing agent in patients with arginase deficiency.


Assuntos
Arginase/uso terapêutico , Arginina/sangue , Hiperargininemia/tratamento farmacológico , Animais , Arginase/sangue , Arginase/genética , Arginina/metabolismo , Encéfalo/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Humanos , Hiperamonemia/sangue , Hiperamonemia/metabolismo , Hiperargininemia/sangue , Hiperargininemia/genética , Hiperargininemia/metabolismo , Estudos Longitudinais , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/uso terapêutico , Convulsões/sangue , Convulsões/metabolismo
16.
Mol Genet Metab ; 121(4): 308-313, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28659245

RESUMO

Hyperargininemia caused by Arginase 1 deficiency is a rare disorder of the urea cycle that can be diagnosed by elevation of arginine in newborn screening blood spots when analyzed by tandem mass spectrometry. Hyperargininemia is currently included as a secondary target on the U.S. Recommended Uniform Screening Panel, which directly influences state-based newborn screening. Because of the apparent low disease frequency and lack of case detection and treatment data, detailed attention has not been given to a model newborn screening algorithm including appropriate analytical cutoff values for disease indicators. In this paper we assess the frequency of hyperargininemia in the U.S. identified by newborn screening to date and document the current status and variability of hyperargininemia newborn screening across U.S. newborn screening programs. We also review other data that support improved screening efficacy by utilizing the arginine/ornithine ratio and other amino acid ratios as discriminators in the screening algorithm. Analysis of archived California screening data showed that an arginine cutoff of 50µM combined with an arginine/ornithine ratio of 1.4 would have resulted in a recall rate of 0.01%. Using an arginine cutoff of 60µM and an arginine/(phenylalanine x leucine) ratio of 1.4, reportedly used in one screening program, or the R4S Tool Runner, would have resulted in a recall rate of <0.005%. All 9 diagnosed patients would have been found for either protocol. Thus, use of appropriate ratios as part of the screening algorithm has the potential to increase both screening sensitivity and specificity. Improved newborn screening effectiveness should lead to better case detection and more rapid treatment to lower plasma arginine levels hence improving long term outcome of individuals with hyperargininemia.


Assuntos
Arginase/genética , Hiperargininemia/diagnóstico , Triagem Neonatal , Algoritmos , Arginina/sangue , California , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Hiperargininemia/sangue , Hiperargininemia/epidemiologia , Incidência , Recém-Nascido , Masculino , Sensibilidade e Especificidade , Estados Unidos/epidemiologia
17.
J Biochem Mol Toxicol ; 31(1): 1-7, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27489181

RESUMO

We investigated the in vitro and in vivo effects of arginine (Arg) on thiobarbituric acid-reactive substances (TBA-RS) and on the activities of catalase (CAT), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) in renal tissues of rats. We also studied the influence of antioxidants (α-tocopherol plus ascorbic acid) and nitric oxide synthase inhibitor NG -nitro-l-arginine methyl ester (l-NAME) on the effects elicited by Arg. Results showed that Arg in vitro (1.5 mM) decreased SOD activity and increased the levels of TBA-RS in the renal medulla. Acute administration of Arg [0.8 g/kg, intraperitoneal injection] decreased CAT activity, increased SOD activity and TBA-RS levels in the renal medulla, and decreased CAT activity in the renal cortex of rats. Most results were prevented by antioxidants and/or l-NAME. Data indicate that Arg causes an oxidative imbalance in the renal tissues studied; however, in the presence of antioxidants and l-NAME, some of these alterations in oxidative stress were prevented.


Assuntos
Antioxidantes/farmacologia , Hiperargininemia/prevenção & controle , Rim/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Estresse Oxidativo/efeitos dos fármacos , alfa-Tocoferol/farmacologia , Animais , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Hiperargininemia/induzido quimicamente , Hiperargininemia/metabolismo , Masculino , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
19.
BMC Pediatr ; 16(1): 142, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27549856

RESUMO

BACKGROUND: Argininemia is rare inborn error of metabolism which, when untreated, presents in late infancy with growth delay and developmental regression. In developed countries, argininemia is diagnosed early by newborn screening and is treated immediately with a protein-restricted diet. In developing countries, diagnosis may be delayed by the assumption that stunting is related to malnutrition alone. CASE PRESENTATION: We describe the diagnosis and treatment of argininemia in a 60-month-old Kaqchikel Maya girl in rural Guatemala. The patient initially presented with severe stunting and developmental regression. The initial diagnosis of argininemia was made by a screening test in dried blood spots and confirmed with urine and serum amino acid profiles. The patient was treated with a low-protein diet using locally available foods, leading to significant improvement in her growth and development. CONCLUSIONS: This case demonstrates that the identification, diagnosis and treatment of IEM in developing countries are increasingly feasible, as well as ethically imperative. Providers working with malnourished children in developing countries should suspect IEM in malnourished children who do not respond to standard therapies.


Assuntos
Transtornos do Crescimento/etiologia , Hiperargininemia/diagnóstico , Pré-Escolar , Doença Crônica , Diagnóstico Tardio , Países em Desenvolvimento , Feminino , Guatemala , Humanos , Hiperargininemia/complicações
20.
Gene Ther ; 22(2): 111-5, 2015 02.
Artigo em Inglês | MEDLINE | ID: mdl-25474440

RESUMO

Hyperammonemia is less severe in arginase 1 deficiency compared with other urea cycle defects. Affected patients manifest hyperargininemia and infrequent episodes of hyperammonemia. Patients typically suffer from neurological impairment with cortical and pyramidal tract deterioration, spasticity, loss of ambulation, seizures and intellectual disability; death is less common than with other urea cycle disorders. In a mouse model of arginase I deficiency, the onset of symptoms begins with weight loss and gait instability, which progresses toward development of tail tremor with seizure-like activity; death typically occurs at about 2 weeks of life. Adeno-associated viral vector gene replacement strategies result in long-term survival of mice with this disorder. With neonatal administration of vector, the viral copy number in the liver greatly declines with hepatocyte proliferation in the first 5 weeks of life. Although the animals do survive, it is not known from a functional standpoint how well the urea cycle is functioning in the adult animals that receive adeno-associated virus. In these studies, we administered [1-13C] acetate to both littermate controls and adeno-associated virus-treated arginase 1 knockout animals and examined flux through the urea cycle. Circulating ammonia levels were mildly elevated in treated animals. Arginine and glutamine also had perturbations. Assessment 30 min after acetate administration demonstrated that ureagenesis was present in the treated knockout liver at levels as low at 3.3% of control animals. These studies demonstrate that only minimal levels of hepatic arginase activity are necessary for survival and ureagenesis in arginase-deficient mice and that this level of activity results in control of circulating ammonia. These results may have implications for potential therapy in humans with arginase deficiency.


Assuntos
Dependovirus/genética , Hiperargininemia/terapia , Amônia/sangue , Animais , Arginase/genética , Arginase/metabolismo , Modelos Animais de Doenças , Terapia Genética , Hiperamonemia/sangue , Hiperamonemia/genética , Hiperamonemia/terapia , Hiperargininemia/sangue , Hiperargininemia/genética , Fígado/enzimologia , Fígado/patologia , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA