Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 341
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432633

RESUMO

Regulators of G protein signaling (RGS) proteins constrain G protein-coupled receptor (GPCR)-mediated and other responses throughout the body primarily, but not exclusively, through their GTPase-activating protein activity. Asthma is a highly prevalent condition characterized by airway hyper-responsiveness (AHR) to environmental stimuli resulting in part from amplified GPCR-mediated airway smooth muscle contraction. Rgs2 or Rgs5 gene deletion in mice enhances AHR and airway smooth muscle contraction, whereas RGS4 KO mice unexpectedly have decreased AHR because of increased production of the bronchodilator prostaglandin E2 (PGE2) by lung epithelial cells. Here, we found that knockin mice harboring Rgs4 alleles encoding a point mutation (N128A) that sharply curtails RGS4 GTPase-activating protein activity had increased AHR, reduced airway PGE2 levels, and augmented GPCR-induced bronchoconstriction compared with either RGS4 KO mice or WT controls. RGS4 interacted with the p85α subunit of PI3K and inhibited PI3K-dependent PGE2 secretion elicited by transforming growth factor beta in airway epithelial cells. Together, these findings suggest that RGS4 affects asthma severity in part by regulating the airway inflammatory milieu in a G protein-independent manner.


Assuntos
Asma , Proteínas RGS , Animais , Humanos , Camundongos , Asma/metabolismo , Asma/genética , Asma/patologia , Broncoconstrição/genética , Dinoprostona/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/patologia , Proteínas RGS/metabolismo , Proteínas RGS/genética , Linhagem Celular
2.
FASEB J ; 38(2): e23428, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38236184

RESUMO

Asthma is a chronic inflammatory disease of the airways characterized by recurrent episodes of airway obstruction, hyperresponsiveness, remodeling, and eosinophilia. Phospholipase A2 s (PLA2 s), which release fatty acids and lysophospholipids from membrane phospholipids, have been implicated in exacerbating asthma by generating pro-asthmatic lipid mediators, but an understanding of the association between individual PLA2 subtypes and asthma is still incomplete. Here, we show that group III-secreted PLA2 (sPLA2 -III) plays an ameliorating, rather than aggravating, role in asthma pathology. In both mouse and human lungs, sPLA2 -III was expressed in bronchial epithelial cells and decreased during the asthmatic response. In an ovalbumin (OVA)-induced asthma model, Pla2g3-/- mice exhibited enhanced airway hyperresponsiveness, eosinophilia, OVA-specific IgE production, and type 2 cytokine expression as compared to Pla2g3+/+ mice. Lipidomics analysis showed that the pulmonary levels of several lysophospholipids, including lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidic acid (LPA), were decreased in OVA-challenged Pla2g3-/- mice relative to Pla2g3+/+ mice. LPA receptor 2 (LPA2 ) agonists suppressed thymic stromal lymphopoietin (TSLP) expression in bronchial epithelial cells and reversed airway hyperresponsiveness and eosinophilia in Pla2g3-/- mice, suggesting that sPLA2 -III negatively regulates allergen-induced asthma at least by producing LPA. Thus, the activation of the sPLA2 -III-LPA pathway may be a new therapeutic target for allergic asthma.


Assuntos
Asma , Eosinofilia , Fosfolipases A2 Secretórias , Hipersensibilidade Respiratória , Humanos , Animais , Camundongos , Lisofosfolipídeos , Fosfolipases A2 Secretórias/genética , Citocinas
3.
J Allergy Clin Immunol ; 153(5): 1181-1193, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395082

RESUMO

Airway hyperresponsiveness (AHR) is a key clinical feature of asthma. The presence of AHR in people with asthma provides the substrate for bronchoconstriction in response to numerous diverse stimuli, contributing to airflow limitation and symptoms including breathlessness, wheeze, and chest tightness. Dysfunctional airway smooth muscle significantly contributes to AHR and is displayed as increased sensitivity to direct pharmacologic bronchoconstrictor stimuli, such as inhaled histamine and methacholine (direct AHR), or to endogenous mediators released by activated airway cells such as mast cells (indirect AHR). Research in in vivo human models has shown that the disrupted airway epithelium plays an important role in driving inflammation that mediates indirect AHR in asthma through the release of cytokines such as thymic stromal lymphopoietin and IL-33. These cytokines upregulate type 2 cytokines promoting airway eosinophilia and induce the release of bronchoconstrictor mediators from mast cells such as histamine, prostaglandin D2, and cysteinyl leukotrienes. While bronchoconstriction is largely due to airway smooth muscle contraction, airway structural changes known as remodeling, likely mediated in part by epithelial-derived mediators, also lead to airflow obstruction and may enhance AHR. In this review, we outline the current knowledge of the role of the airway epithelium in AHR in asthma and its implications on the wider disease. Increased understanding of airway epithelial biology may contribute to better treatment options, particularly in precision medicine.


Assuntos
Asma , Mucosa Respiratória , Humanos , Asma/imunologia , Asma/fisiopatologia , Animais , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Citocinas/metabolismo , Citocinas/imunologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/fisiopatologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/fisiopatologia , Mastócitos/imunologia , Broncoconstrição
4.
Immunology ; 173(1): 185-195, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38859694

RESUMO

SET domain-containing 2 (SETD2) is a histone methyltransferase. It regulates the activity of H3K36me3 to enhance gene transcription. Macrophages (Mϕs) are one of the cell types involved in immune response. The purpose of this study is to clarify the role of SETD2 in regulating the immune property of Mϕ. The Mφs were isolated from the bronchoalveolar lavage fluid (BALF) and analysed through flow cytometry and RNA sequencing. A mouse strain carrying Mφs deficient in SETD2 was used. A mouse model of airway allergy was established with the ovalbumin/alum protocol. Less expression of SETD2 was observed in airway Mϕs in patients with allergic asthma. SETD2 of M2 cells was associated with the asthmatic clinical response. Sensitization reduced the expression of SETD2 in mouse respiratory tract M2 cells, which is associated with the allergic reaction. Depletion of SETD2 in Mφs resulted in Th2 pattern inflammation in the lungs. SETD2 maintained the immune regulatory ability in airway M2 cells. SETD2 plays an important role in the maintenance of immune regulatory property of airway Mφs.


Assuntos
Asma , Histona-Lisina N-Metiltransferase , Macrófagos , Animais , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Asma/imunologia , Asma/genética , Feminino , Modelos Animais de Doenças , Células Th2/imunologia , Camundongos Endogâmicos C57BL , Masculino , Camundongos Knockout , Hipersensibilidade Respiratória/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Ovalbumina/imunologia , Pulmão/imunologia , Pulmão/patologia , Hipersensibilidade/imunologia
5.
Immunology ; 172(2): 210-225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38366844

RESUMO

Numerous diseases of the immune system can be traced back to the malfunctioning of the regulatory T cells. The aetiology is unclear. Psychological stress can cause disruption to the immune regulation. The synergistic effects of psychological stress and immune response on immune regulation have yet to be fully understood. The intention of this study is to analyse the interaction between psychological stress and immune responses and how it affects the functional status of type 1 regulatory T (Tr1) cells. In this study, ovalbumin peptide T-cell receptor transgenic mice were utilised. Mice were subjected to restraint stress to induce psychological stress. An airway allergy murine model was established, in which a mouse strain with RING finger protein 20 (Rnf20)-deficient CD4+ T cells were used. The results showed that concomitant exposure to restraint stress and immune response could exacerbate endoplasmic reticulum stress in Tr1 cells. Corticosterone was responsible for the elevated expression of X-box protein-1 (XBP1) in mouse Tr1 cells after exposure to both restraint stress and immune response. XBP1 mediated the effects of corticosterone on inducing Rnf20 in Tr1 cells. The reduction of the interleukin-10 expression in Tr1 cells was facilitated by Rnf20. Inhibition of Rnf20 alleviated experimental airway allergy by restoring the immune regulatory ability of Tr1 cells. In conclusion, the functions of Tr1 cells are negatively impacted by simultaneous exposure to psychological stress and immune response. Tr1 cells' immune suppressive functions can be restored by inhibiting Rnf20, which has the translational potential for the treatment of diseases of the immune system.


Assuntos
Interleucina-10 , Camundongos Transgênicos , Ovalbumina , Estresse Psicológico , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Ovalbumina/imunologia , Estresse Psicológico/imunologia , Camundongos , Interleucina-10/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Corticosterona/sangue , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Estresse do Retículo Endoplasmático/imunologia , Modelos Animais de Doenças , Restrição Física , Camundongos Knockout , Camundongos Endogâmicos C57BL , Hipersensibilidade Respiratória/imunologia
6.
Mol Med ; 30(1): 120, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129025

RESUMO

BACKGROUND: Asthma is a heterogeneous, inflammatory disease with several phenotypes and endotypes. Severe asthmatics often exhibit mixed granulocytosis with reduced corticosteroid sensitivity. Bronchom is a newly developed Ayurvedic prescription medicine, indicated for the treatment of obstructive airway disorders. The purpose of the present study was to evaluate the in-vivo efficacy of Bronchom in mouse model of mixed granulocytic asthma with steroidal recalcitrance. METHODS: High-performance thin layer chromatography (HPTLC) and Ultra-high performance liquid chromatography (UHPLC) were employed to identify and quantitate the phytometabolites present in Bronchom. The preclinical effectiveness of Bronchom was assessed in house dust mite (HDM) and Complete Freund's adjuvant (CFA)-induced mixed granulocytic asthma model in mice. High dose of dexamethasone was tested parallelly. Specific-pathogen-free C57BL/6 mice were immunized with HDM and CFA and nineteen days later, they were intranasally challenged with HDM for four consecutive days. Then the mice were challenged with nebulized methacholine to evaluate airway hyperresponsiveness (AHR). Inflammatory cell influx was enumerated in the bronchoalveolar lavage fluid (BALF) followed by lung histology. Additionally, the concentrations of Th2 and pro-inflammatory cytokines was assessed in the BALF by multiplexed immune assay. The mRNA expression of pro-inflammatory cytokines and Mucin 5AC (MUC5AC) was also evaluated in the lung. RESULTS: HPTLC fingerprinting and UHPLC quantification of Bronchom revealed the presence of bioactive phytometabolites, namely, rosmarinic acid, gallic acid, methyl gallate, piperine, eugenol and glycyrrhizin. Bronchom effectively reduced AHR driven by HDM-CFA and the influx of total leukocytes, eosinophils and neutrophils in the BALF. In addition, Bronchom inhibited the infiltration of inflammatory cells in the lung as well as goblet cell metaplasia. Further, it also suppressed the elevated levels of Th2 cytokines and pro-inflammatory cytokines in the BALF. Similarly, Bronchom also regulated the mRNA expression of pro-inflammatory cytokines as well as MUC5AC in mice lungs. Reduced effectiveness of a high dose of the steroid, dexamethasone was observed in the model. CONCLUSIONS: We have demonstrated for the first time the robust pharmacological effects of an herbo-mineral medicine in an animal model of mixed granulocytic asthma induced by HDM and CFA. The outcomes suggest the potential utility of Bronchom in severe asthmatics with a mixed granulocytic phenotype.


Assuntos
Remodelação das Vias Aéreas , Asma , Modelos Animais de Doenças , Animais , Asma/tratamento farmacológico , Asma/imunologia , Asma/metabolismo , Camundongos , Remodelação das Vias Aéreas/efeitos dos fármacos , Corticosteroides/uso terapêutico , Corticosteroides/farmacologia , Citocinas/metabolismo , Ayurveda , Líquido da Lavagem Broncoalveolar , Feminino , Camundongos Endogâmicos C57BL , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Extratos Vegetais/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Inflamação/tratamento farmacológico , Hipersensibilidade Respiratória/tratamento farmacológico , Pyroglyphidae/imunologia
7.
Int Arch Allergy Immunol ; 185(8): 752-760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38599205

RESUMO

INTRODUCTION: Prostaglandin D2 (PGD2), which is produced mainly by Th2 cells and mast cells, promotes a type-2 immune response by activating Th2 cells, mast cells, eosinophils, and group 2 innate lymphoid cells (ILC2s) via its receptor, chemoattractant receptor-homologous molecules on Th2 cells (CRTH2). However, the role of CRTH2 in models of airway inflammation induced by sensitization without adjuvants, in which both IgE and mast cells may play major roles, remain unclear. METHODS: Wild-type (WT) and CRTH2-knockout (KO) mice were sensitized with ovalbumin (OVA) without an adjuvant and then challenged intranasally with OVA. Airway inflammation was assessed based on airway hyperresponsiveness (AHR), lung histology, number of leukocytes, and levels of type-2 cytokines in the bronchoalveolar lavage fluid (BALF). RESULTS: AHR was significantly reduced after OVA challenge in CRTH2 KO mice compared to WT mice. The number of eosinophils, levels of type-2 cytokines (IL-4, IL-5, and IL-13) in BALF, and IgE concentration in serum were decreased in CRTH2 KO mice compared to WT mice. However, lung histological changes were comparable between WT and CRTH2 KO mice. CONCLUSION: CRTH2 is responsible for the development of asthma responses in a mouse model of airway inflammation that features prominent involvement of both IgE and mast cells.


Assuntos
Citocinas , Camundongos Knockout , Ovalbumina , Receptores Imunológicos , Receptores de Prostaglandina , Animais , Receptores de Prostaglandina/genética , Receptores de Prostaglandina/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Camundongos , Ovalbumina/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Pulmão/patologia , Pulmão/imunologia , Asma/imunologia , Asma/patologia , Asma/metabolismo , Células Th2/imunologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Eosinófilos/imunologia , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/etiologia , Mastócitos/imunologia , Mastócitos/metabolismo , Inflamação/imunologia , Camundongos Endogâmicos C57BL
8.
Environ Sci Technol ; 58(10): 4680-4690, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412365

RESUMO

Formaldehyde (HCHO) exposures during a full year were calculated for different race/ethnicity groups living in Southeast Texas using a chemical transport model tagged to track nine emission categories. Petroleum and industrial emissions were the largest anthropogenic sources of HCHO exposure in Southeast Texas, accounting for 44% of the total HCHO population exposure. Approximately 50% of the HCHO exposures associated with petroleum and industrial sources were directly emitted (primary), while the other 50% formed in the atmosphere (secondary) from precursor emissions of reactive compounds such as ethylene and propylene. Biogenic emissions also formed secondary HCHO that accounted for 11% of the total population-weighted exposure across the study domain. Off-road equipment contributed 3.7% to total population-weighted exposure in Houston, while natural gas combustion contributed 5% in Beaumont. Mobile sources accounted for 3.7% of the total HCHO population exposure, with less than 10% secondary contribution. Exposure disparity patterns changed with the location. Hispanic and Latino residents were exposed to HCHO concentrations +1.75% above average in Houston due to petroleum and industrial sources and natural gas sources. Black and African American residents in Beaumont were exposed to HCHO concentrations +7% above average due to petroleum and industrial sources, off-road equipment, and food cooking. Asian residents in Beaumont were exposed to HCHO concentrations that were +2.5% above average due to HCHO associated with petroleum and industrial sources, off-road vehicles, and food cooking. White residents were exposed to below average HCHO concentrations in all domains because their homes were located further from primary HCHO emission sources. Given the unique features of the exposure disparities in each region, tailored solutions should be developed by local stakeholders. Potential options to consider in the development of those solutions include modifying processes to reduce emissions, installing control equipment to capture emissions, or increasing the distance between industrial sources and residential neighborhoods.


Assuntos
Poluentes Atmosféricos , Formaldeído/efeitos adversos , Petróleo , Hipersensibilidade Respiratória , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Texas , Gás Natural , Monitoramento Ambiental , Formaldeído/análise
9.
Biol Pharm Bull ; 47(1): 227-231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38246609

RESUMO

Between 5 and 10% of asthma patients do not respond to glucocorticoid therapy. Experimental animal models are indispensable for investigating the pathogenesis of steroid-resistant asthma; however, the majority of murine asthma models respond well to glucocorticoids. We previously reported that multiple intratracheal administration of ovalbumin (OVA) at a high dose (500 µg/animal) induced steroid-insensitive airway eosinophilia and remodeling with lung fibrosis, whereas a low dose (5 µg/animal) caused steroid-sensitive responses. The aims of the present study were as follows: 1) to clarify whether airway hyperresponsiveness (AHR) in the two models is also insensitive and sensitive to a glucocorticoid, respectively, and 2) to identify steroid-insensitive genes encoding extracellular matrix (ECM) components and pro-fibrotic factors in the lung. In comparisons with non-challenged group, the 5- and 500-µg OVA groups both exhibited AHR to methacholine. Daily intraperitoneal treatment with dexamethasone (1 mg/kg) significantly suppressed the development of AHR in the 5-µg OVA group, but not in the 500-µg OVA group. Among genes encoding ECM components and pro-fibrotic factors, increased gene expressions of fibronectin and collagen types I, III, and IV as ECM components as well as 7 matrix metalloproteinases, tissue inhibitor of metalloproteinase-1, transforming growth factor-ß1, and activin A/B as pro-fibrotic factors were insensitive to dexamethasone in the 500-µg OVA group, but were sensitive in the 5-µg OVA group. In conclusion, steroid-insensitive AHR developed in the 500-µg OVA group and steroid-insensitive genes encoding ECM components and pro-fibrotic factors were identified. Drugs targeting these molecules have potential in the treatment of steroid-resistant asthma.


Assuntos
Asma , Hipersensibilidade Respiratória , Humanos , Animais , Camundongos , Glucocorticoides , Inibidor Tecidual de Metaloproteinase-1 , Asma/tratamento farmacológico , Asma/genética , Esteroides , Ovalbumina , Pulmão , Matriz Extracelular , Expressão Gênica , Dexametasona/farmacologia , Dexametasona/uso terapêutico
10.
Ecotoxicol Environ Saf ; 278: 116403, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710145

RESUMO

RATIONALE: Diesel engine exhaust (DEE) is associated with the development and exacerbation of asthma. Studies have shown that DEE can aggravate allergen-induced eosinophilic inflammation in lung. However, it remains not clear that whether DEE alone could initiate non-allergic eosinophilic inflammation and airway hyperresponsiveness (AHR) through innate lymphoid cells (ILCs) pathway. OBJECTIVE: This study aims to investigate the airway inflammation and hyperresponsiveness and its relationship with ILC after DEE exposure. METHOD: Non-sensitized BALB/c mice were exposed in the chamber of diesel exhaust or filtered air for 2, 4, and 6 weeks (4 h/day, 6 days/week). Anti-CD4 mAb or anti-Thy1.2 mAb was administered by intraperitoneal injection to inhibit CD4+T or ILCs respectively. AHR、airway inflammation and ILCs were assessed. RESULT: DEE exposure induced significantly elevated level of neutrophils, eosinophils, collagen content at 4, 6 weeks. Importantly, the airway AHR was only significant in the 4weeks-DEE exposure group. No difference of the functional proportions of Th2 cells was found between exposure group and control group. The proportions of IL-5+ILC2, IL-17+ILC significantly increased in 2, 4weeks-DEE exposure group. After depletion of CD4+T cells, both the proportion of IL-5+ILC2 and IL-17A ILCs was higher in the 4weeks-DEE exposure group which induced AHR, neutrophilic and eosinophilic inflammation accompanied by the IL-5, IL-17A levels. CONCLUSION: Diesel engine exhaust alone can imitate asthmatic characteristics in mice model. Lung-resident ILCs are one of the major effectors cells responsible for a mixed Th2/Th17 response and AHR.


Assuntos
Poluentes Atmosféricos , Linfócitos , Camundongos Endogâmicos BALB C , Emissões de Veículos , Animais , Emissões de Veículos/toxicidade , Camundongos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Poluentes Atmosféricos/toxicidade , Inflamação/induzido quimicamente , Eosinófilos/imunologia , Eosinófilos/efeitos dos fármacos , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/induzido quimicamente , Feminino , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Masculino
11.
Allergol Immunopathol (Madr) ; 52(4): 1-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38970258

RESUMO

BACKGROUND: Dermatophagoides pteronyssinus and Dermatophagoides farinae belong to the family Pyroglyphidae (subfamily: "Dermatophagoidinae") and have the respective allergenic proteins of Der p1, Der p2, and Der p23 and Der f1 and Der f2. Euroglyphus maynei, belongs to the family Pyroglyphidae (subfamily: "Pyroglyphinae") and its main allergenic protein is Eur m1, a source of sensitization. Sensitization to D. pteronyssinus and D. farinae is assessed through skin tests, while sensitization to E. maynei is assessed less frequently. OBJECTIVE: This experimental work aims to analyze the prevalence of sensitization to E. maynei in patients with respiratory allergies treated at M. Albanesi Allergy and Immunology Unit in Bari, Italy, and the sequence homology of major allergenic proteins of E. maynei with D. farinae and D. pteronyssinus was analyzed. METHODS: In this real-life study, 65 patients were enrolled. In particular, patients with respiratory allergy were subjected to skin prick tests for common respiratory allergens, including Euroglyphus maynei. The sequence homology analysis was performed between the major allergenic proteins of E. maynei and those of D. pteronyssinus and D. farinae. RESULTS: Sensitization to E. maynei accounts for 41.5% of patients. All patients with E. maynei sensitization had concomitant sensitization to D. farinae and D. pteronyssinus. The analysis of sequence homology of Der p1 and Der f1 proteins with the sequence of Eur m1 protein demonstrated an identity of 84.4% and 86%, respectively. CONCLUSIONS: Nearly 50% of house dust mites-sensitized patients have a concomitant sensitization to E. maynei. The cross-sensitization could be due to Der f1, Der p1, and Eur m1 similarity.


Assuntos
Alérgenos , Antígenos de Dermatophagoides , Biologia Computacional , Hipersensibilidade Respiratória , Testes Cutâneos , Humanos , Animais , Masculino , Antígenos de Dermatophagoides/imunologia , Feminino , Adulto , Pessoa de Meia-Idade , Prevalência , Hipersensibilidade Respiratória/epidemiologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/diagnóstico , Itália/epidemiologia , Alérgenos/imunologia , Pyroglyphidae/imunologia , Proteínas de Artrópodes/imunologia , Adulto Jovem , Adolescente , Idoso
12.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(2): 101-119, 2024 Feb 12.
Artigo em Zh | MEDLINE | ID: mdl-38309959

RESUMO

The methacholine challenge test (MCT) is a standard evaluation method of assessing airway hyperresponsiveness (AHR) and its severity, and has significant clinical value in the diagnosis and treatment of bronchial asthma. A consensus working group consisting of experts from the Pulmonary Function and Clinical Respiratory Physiology Committee of the Chinese Association of Chest Physicians, the Task Force for Pulmonary Function of the Chinese Thoracic Society, and the Pulmonary Function Group of Respiratory Branch of the Chinese Geriatric Society jointly developed this consensus. Based on the "Guidelines for Pulmonary Function-Bronchial Provocation Test" published in 2014, the issues encountered in its use, and recent developments, the group has updated the Standard technical specifications of methacholine chloride (methacholine) bronchial challenge test (2023). Through an extensive collection of expert opinions, literature reviews, questionnaire surveys, and multiple rounds of online and offline discussions, the consensus addressed the eleven core issues in MCT's clinical practice, including indications, contraindications, preparation of provocative agents, test procedures and methods, quality control, safety management, interpretation of results, and reporting standards. The aim was to provide clinical pulmonary function practitioners in healthcare institutions with the tools to optimize the use of this technique to guide clinical diagnosis and treatment.Summary of recommendationsQuestion 1: Who is suitable for conducting MCT? What are contraindications for performing MCT?Patients with atypical symptoms and a clinical suspicion of asthma, patients diagnosed with asthma requiring assessment of the severity of airway hyperresponsiveness, individuals with allergic rhinitis who are at risk of developing asthma, patients in need of evaluating the effectiveness of asthma treatment, individuals in occupations with high safety risks due to airway hyperresponsiveness, patients with chronic diseases prone to airway hyperresponsiveness, others requiring assessment of airway reactivity.Absolute contraindications: (1) Patients who are allergic to methacholine (MCh) or other parasympathomimetic drugs, with allergic reactions including rash, itching/swelling (especially of the face, tongue, and throat), severe dizziness, and dyspnea; (2) Patients with a history of life-threatening asthma attacks or those who have required mechanical ventilation for asthma attacks in the past three months; (3) Patients with moderate to severe impairment of baseline pulmonary function [Forced Expiratory Volume in one second (FEV1) less than 60% of the predicted value or FEV1<1.0 L]; (4) Severe urticaria; (5) Other situations inappropriate for forced vital capacity (FVC) measurement, such as myocardial infarction or stroke in the past three months, poorly controlled hypertension, aortic aneurysm, recent eye surgery, or increased intracranial pressure.Relative contraindications: (1) Moderate or more severe impairment of baseline lung function (FEV1%pred<70%), but individuals with FEV1%pred>60% may still be considered for MCT with strict observation and adequate preparation; (2) Experiencing asthma acute exacerbation; (3) Poor cooperation with baseline lung function tests that do not meet quality control requirements; (4) Recent respiratory tract infection (<4 weeks); (5) Pregnant or lactating women; (6) Patients currently using cholinesterase inhibitors (for the treatment of myasthenia gravis); (7) Patients who have previously experienced airway spasm during pulmonary function tests, with a significant decrease in FEV1 even without the inhalation of provocative.Question 2: How to prepare and store the challenge solution for MCT?Before use, the drug must be reconstituted and then diluted into various concentrations for provocation. The dilution concentration and steps for MCh vary depending on the inhalation method and provocation protocol used. It is important to follow specific steps. Typically, a specified amount of diluent is added to the methacholine reagent bottle for reconstitution, and the mixture is shaken until the solution becomes clear. The diluent is usually physiological saline, but saline with phenol (0.4%) can also be used. Phenol can reduce the possibility of bacterial contamination, and its presence does not interfere with the provocation test. After reconstitution, other concentrations of MCh solution are prepared using the same diluent, following the dilution steps, and then stored separately in sterile containers. Preparers should carefully verify and label the concentration and preparation time of the solution and complete a preparation record form. The reconstituted and diluted MCh solution is ready for immediate use without the need for freezing. It can be stored for two weeks if refrigerated (2-8 ℃). The reconstituted solution should not be stored directly in the nebulizer reservoir to prevent crystallization from blocking the capillary opening and affecting aerosol output. The temperature of the solution can affect the production of the nebulizer and cause airway spasms in the subject upon inhaling cold droplets. Thus, refrigerated solutions should be brought to room temperature before use.Question 3: What preparation is required for subjects prior to MCT?(1) Detailed medical history inquiry and exclusion of contraindications.(2) Inquiring about factors and medications that may affect airway reactivity and assessing compliance with medication washout requirements: When the goal is to evaluate the effectiveness of asthma treatment, bronchodilators other than those used for asthma treatment do not need to be discontinued. Antihistamines and cromolyn have no effect on MCT responses, and the effects of a single dose of inhaled corticosteroids and leukotriene modifiers are minimal, thus not requiring cessation before the test. For patients routinely using corticosteroids, whether to discontinue the medication depends on the objective of the test: if assisting in the diagnosis of asthma, differential diagnosis, aiding in step-down therapy for asthma, or exploring the effect of discontinuing anti-inflammatory treatment, corticosteroids should be stopped before the provocation test; if the patient is already diagnosed with asthma and the objective is to observe the level of airway reactivity under controlled medication conditions, then discontinuation is not necessary. Medications such as IgE monoclonal antibodies, IL-4Rα monoclonal antibodies, traditional Chinese medicine, and ethnic medicines may interfere with test results, and clinicians should decide whether to discontinue these based on the specific circumstances.(3) Explaining the test procedure and potential adverse reactions, and obtaining informed consent if necessary.Question 4: What are the methods of the MCT? And which ones are recommended in current clinical practice?Commonly used methods for MCT in clinical practice include the quantitative nebulization method (APS method), Forced Oscillalion method (Astograph method), 2-minute tidal breathing method (Cockcroft method), hand-held quantitative nebulization method (Yan method), and 5-breath method (Chai 5-breath method). The APS method allows for precise dosing of inhaled Methacholine, ensuring accurate and reliable results. The Astograph method, which uses respiratory resistance as an assessment indicator, is easy for subjects to perform and is the simplest operation. These two methods are currently the most commonly used clinical practice in China.Question 5: What are the steps involved in MCT?The MCT consists of the following four steps:(1) Baseline lung function test: After a 15-minute rest period, the subjects assumes a seated position and wear a nose clip for the measurement of pulmonary function indicators [such as FEV1 or respiratory resistance (Rrs)]. FEV1 should be measured at least three times according to spirometer quality control standards, ensuring that the best two measurements differ by less than 150 ml and recording the highest value as the baseline. Usually, if FEV1%pred is below 70%, proceeding with the challenge test is not suitable, and a bronchodilation test should be considered. However, if clinical assessment of airway reactivity is necessary and FEV1%pred is between 60% and 70%, the provocation test may still be conducted under close observation, ensuring the subject's safety. If FEV1%pred is below 60%, it is an absolute contraindication for MCT.(2) Inhalation of diluent and repeat lung function test for control values: the diluent, serving as a control for the inhaled MCh, usually does not significantly impact the subject's lung function. the higher one between baseline value and the post-dilution FEV1 is used as the reference for calculating the rate of FEV1 decline. If post-inhalation FEV1 decreases, there are usually three scenarios: ①If FEV1 decreases by less than 10% compared to the baseline, the test can proceed, continue the test and administer the first dose of MCh. ②If the FEV1 decreases by≥10% and<20%, indicating a heightened airway reactivity to the diluent, proceed with the lowest concentration (dose) of the provoking if FEV1%pred has not yet reached the contraindication criteria for the MCT. if FEV1%pred<60% and the risk of continuing the challenge test is considerable, it is advisable to switch to a bronchodilation test and indicate the change in the test results report. ③If FEV1 decreases by≥20%, it can be directly classified as a positive challenge test, and the test should be discontinued, with bronchodilators administered to alleviate airway obstruction.(3) Inhalation of MCh and repeat lung function test to assess decline: prepare a series of MCh concentrations, starting from the lowest and gradually increasing the inhaled concentration (dose) using different methods. Perform pulmonaryfunction tests at 30 seconds and 90 seconds after completing nebulization, with the number of measurements limited to 3-4 times. A complete Forced Vital Capacity (FVC) measurement is unnecessary during testing; only an acceptable FEV1 measurement is required. The interval between two consecutive concentrations (doses) generally should not exceed 3 minutes. If FEV1 declines by≥10% compared to the control value, reduce the increment of methacholine concentration (dose) and adjust the inhalation protocol accordingly. If FEV1 declines by≥20% or more compared to the control value or if the maximum concentration (amount) has been inhaled, the test should be stopped. After inhaling the MCh, close observation of the subject's response is necessary. If necessary, monitor blood oxygen saturation and auscultate lung breath sounds. The test should be promptly discontinued in case of noticeable clinical symptoms or signs.(4) Inhalation of bronchodilator and repeat lung function test to assess recovery: when the bronchial challenge test shows a positive response (FEV1 decline≥20%) or suspiciously positive, the subject should receive inhaled rapid-acting bronchodilators, such as short-acting beta-agonists (SABA) or short-acting muscarinic antagonists (SAMA). Suppose the subject exhibits obvious symptoms of breathlessness, wheezing, or typical asthma manifestations, and wheezing is audible in the lungs, even if the positive criteria are not met. In that case, the challenge test should be immediately stopped, and rapid-acting bronchodilators should be administered. Taking salbutamol as an example, inhale 200-400 µg (100 µg per puff, 2-4 puffs, as determined by the physician based on the subject's condition). Reassess pulmonary function after 5-10 minutes. If FEV1 recovers to within 10% of the baseline value, the test can be concluded. However, if there is no noticeable improvement (FEV1 decline still≥10%), record the symptoms and signs and repeat the bronchodilation procedure as mentioned earlier. Alternatively, add Ipratropium bromide (SAMA) or further administer nebulized bronchodilators and corticosteroids for intensified treatment while keeping the subject under observation until FEV1 recovers to within 90% of the baseline value before allowing the subject to leave.Question 6: What are the quality control requirements for the APS and Astograph MCT equipment?(1) APS Method Equipment Quality Control: The APS method for MCT uses a nebulizing inhalation device that requires standardized flowmeters, compressed air power source pressure and flow, and nebulizer aerosol output. Specific quality control methods are as follows:a. Flow and volume calibration of the quantitative nebulization device: Connect the flowmeter, an empty nebulization chamber, and a nebulization filter in sequence, attaching the compressed air source to the bottom of the chamber to ensure airtight connections. Then, attach a 3 L calibration syringe to the subject's breathing interface and simulate the flow during nebulization (typically low flow:<2 L/s) to calibrate the flow and volume. If calibration results exceed the acceptable range of the device's technical standards, investigate and address potential issues such as air leaks or increased resistance due to a damp filter, then recalibrate. Cleaning the flowmeter or replacing the filter can change the resistance in the breathing circuit, requiring re-calibration of the flow.b. Testing the compressed air power source: Regularly test the device, connecting the components as mentioned above. Then, block the opening of the nebulization device with a stopper or hand, start the compressed air power source, and test its pressure and flow. If the test results do not meet the technical standards, professional maintenance of the equipment may be required.c. Verification of aerosol output of the nebulization chamber: Regularly verify all nebulization chambers used in provocation tests. Steps include adding a certain amount of saline to the chamber, weighing and recording the chamber's weight (including saline), connecting the nebulizer to the quantitative nebulization device, setting the nebulization time, starting nebulization, then weighing and recording the post-nebulization weight. Calculate the unit time aerosol output using the formula [(weight before nebulization-weight after nebulization)/nebulization time]. Finally, set the nebulization plan for the provocation test based on the aerosol output, considering the MCh concentration, single inhalation nebulization duration, number of nebulization, and cumulative dose to ensure precise dosing of the inhaled MCh.(2) Astograph method equipment quality control: Astograph method equipment for MCT consists of a respiratory resistance monitoring device and a nebulization medication device. Perform zero-point calibration, volume calibration, impedance verification, and nebulization chamber checks daily before tests to ensure the resistance measurement system and nebulization system function properly. Calibration is needed every time the equipment is turned on, and more frequently if there are significant changes in environmental conditions.a. Zero-point calibration: Perform zero-point calibration before testing each subject. Ensure the nebulization chamber is properly installed and plugged with no air leaks.b. Volume calibration: Use a 3 L calibration syringe to calibrate the flow sensor at a low flow rate (approximately 1 L/s).c. Resistance verification: Connect low impedance tubes (1.9-2.2 cmH2O·L-1·s-1) and high impedance tubes (10.2-10.7 cmH2O·L-1·s-1) to the device interface for verification.d. Bypass check: Start the bypass check and record the bypass value; a value>150 ml/s is normal.e. Nebulization chamber check: Check each of the 12 nebulization chambers daily, especially those containing bronchodilators, to ensure normal spraying. The software can control each nebulization chamber to produce spray automatically for a preset duration (e.g., 2 seconds). Observe the formation of water droplets on the chamber walls, indicating normal spraying. If no nebulization occurs, check for incorrect connections or blockages.Question 7: How to set up and select the APS method in MCT?The software program of the aerosol provocation system in the quantitative nebulization method can independently set the nebulizer output, concentration of the methacholine agent, administration time, and number of administrations and combine these parameters to create the challenge test process. In principle, the concentration of the methacholine agent should increase from low to high, and the dose should increase from small to large. According to the standard, a 2-fold or 4-fold incremental challenge process is generally used. In clinical practice, the dose can be simplified for subjects with good baseline lung function and no history of wheezing, such as using a recommended 2-concentration, 5-step method (25 and 50 g/L) and (6.25 and 25 g/L). Suppose FEV1 decreases by more than 10% compared to the baseline during the test to ensure subject safety. In that case, the incremental dose of the methacholine agent can be reduced, and the inhalation program can be adjusted appropriately. If the subject's baseline lung function declines or has recent daytime or nighttime symptoms such as wheezing or chest tightness, a low concentration, low dose incremental process should be selected.Question 8: What are the precautions for the operation process of the Astograph method in MCT?(1) Test equipment: The Astograph method utilizes the forced oscillation technique, applying a sinusoidal oscillating pressure at the mouthpiece during calm breathing. Subjects inhale nebulized MCh of increasing concentrations while continuous monitoring of respiratory resistance (Rrs) plots the changes, assessing airway reactivity and sensitivity. The nebulization system employs jet nebulization technology, comprising a compressed air pump and 12 nebulization cups. The first cup contains saline, cups 2 to 11 contain increasing concentrations of MCh, and the 12th cup contains a bronchodilator solution.(2) Provocation process: Prepare 10 solutions of MCh provocant with gradually increasing concentrations.(3) Operational procedure: The oscillation frequency is usually set to 3 Hz (7 Hz for children) during the test. The subject breathes calmly, inhales saline solution nebulized first, and records the baseline resistance value (if the subject's baseline resistance value is higher than 10 cmH2O·L-1·s-1, the challenge test should not be performed). Then, the subject gradually inhales increasing concentrations of methacholine solution. Each concentration solution is inhaled for 1 minute, and the nebulization system automatically switches to the next concentration for inhalation according to the set time. Each nebulizer cup contains 2-3 ml of solution, the output is 0.15 ml/min, and each concentration is inhaled for 1 minute. The dose-response curve is recorded automatically. Subjects should breathe tidally during the test, avoiding deep breaths and swallowing. Continue until Rrs significantly rises to more than double the baseline value, or if the subject experiences notable respiratory symptoms or other discomfort, such as wheezing in both lungs upon auscultation. At this point, the inhalation of the provocant should be stopped and the subject switchs to inhaling a bronchodilator until Rrs returns to pre-provocation levels. If there is no significant increase in Rrs, stop the test after inhaling the highest concentration of MCh.Question 9: How to interpret the results of the MCT?The method chosen for the MCT determines the specific indicators used for interpretation. The most commonly used indicator is FEV1, although other parameters such as Peak Expiratory Flow (PEF) and Rrs can also be used to assess airway hyperresponsiveness.Qualitative judgment: The test results can be classified as positive, suspiciously positive, or negative, based on a combination of the judgment indicators and changes in the subject's symptoms. If FEV1 decreases by≥20% compared to the baseline value after not completely inhaling at the highest concentration, the result can be judged as positive for Methacholine bronchial challenge test. If the patient has obvious wheezing symptoms or wheezing is heard in both lungs, but the challenge test does not meet the positive criteria (the highest dose/concentration has been inhaled), and FEV1 decreases between 10% and 20% compared to the baseline level, the result can also be judged as positive. If FEV1 decreases between 15% and 20% compared to the baseline value without dyspnea or wheezing attacks, the result can be judged as suspiciously positive. Astograph method: If Rrs rises to 2 times or more of the baseline resistance before reaching the highest inhalation concentration, or if the subject's lungs have wheezing and severe coughing, the challenge test can be judged as positive. Regardless of the result of the Methacholine bronchial challenge test, factors that affect airway reactivity, such as drugs, seasons, climate, diurnal variations, and respiratory tract infections, should be excluded.Quantitative judgment: When using the APS method, the severity of airway hyperresponsiveness can be graded based on PD20-FEV1 or PC20-FEV1. Existing evidence suggests that PD20 shows good consistency when different nebulizers, inhalation times, and starting concentrations of MCh are used for bronchial provocation tests, whereas there is more variability with PC20. Therefore, PD20 is often recommended as the quantitative assessment indicator. The threshold value for PD20 with the APS method is 2.5 mg.The Astograph method often uses the minimum cumulative dose (Dmin value, in Units) to reflect airway sensitivity. Dmin is the minimum cumulative dose of MCh required to produce a linear increase in Rrs. A dose of 1 g/L of the drug concentration inhaled for 1-minute equals 1 unit. It's important to note that with the continuous increase in inhaled provocant concentration, the concept of cumulative dose in the Astograph method should not be directly compared to other methods. Most asthma patients have a Dmin<10 Units, according to Japanese guidelines. The Astograph method, having been used in China for over twenty years, suggests a high likelihood of asthma when Dmin≤6 Units, with a smaller Dmin value indicating a higher probability. When Dmin is between 6 and 10 Units, further differential diagnosis is advised to ascertain whether the condition is asthma.Precautions:A negative methacholine challenge test (MCT) does not entirely rule out asthma. The test may yield negative results due to the following reasons:(1) Prior use of medications that reduce airway responsiveness, such as ß2 agonists, anticholinergic drugs, antihistamines, leukotriene receptor antagonists, theophylline, corticosteroids, etc., and insufficient washout time.(2) Failure to meet quality control standards in terms of pressure, flow rate, particle size, and nebulization volume of the aerosol delivery device.(3) Poor subject cooperation leads to inadequate inhalation of the methacholine agent.(4) Some exercise-induced asthma patients may not be sensitive to direct bronchial challenge tests like the Methacholine challenge and require indirect bronchial challenge tests such as hyperventilation, cold air, or exercise challenge to induce a positive response.(5) A few cases of occupational asthma may only react to specific antigens or sensitizing agents, requiring specific allergen exposure to elicit a positive response.A positive MCT does not necessarily indicate asthma. Other conditions can also present with airway hyperresponsiveness and yield positive results in the challenge test, such as allergic rhinitis, chronic bronchitis, viral upper respiratory infections, allergic alveolitis, tropical eosinophilia, cystic fibrosis, sarcoidosis, bronchiectasis, acute respiratory distress syndrome, post-cardiopulmonary transplant, congestive heart failure, and more. Furthermore, factors like smoking, air pollution, or exercise before the test may also result in a positive bronchial challenge test.Question 10: What are the standardized requirements for the MCT report?The report should include: (1) basic information about the subject; (2) examination data and graphics: present baseline data, measurement data after the last two challenge doses or concentrations in tabular form, and the percentage of actual measured values compared to the baseline; flow-volume curve and volume-time curve before and after challenge test; dose-response curve: showing the threshold for positive challenge; (3) opinions and conclusions of the report: including the operator's opinions, quality rating of the examination, and review opinions of the reviewing physician.Question 11: What are the adverse reactions and safety measures of MCT?During the MCT, the subject needs to repeatedly breathe forcefully and inhale bronchial challenge agents, which may induce or exacerbate bronchospasm and contraction and may even cause life-threatening situations. Medical staff should be fully aware of the indications, contraindications, medication use procedures, and emergency response plans for the MCT.


Assuntos
Asma , Hipersensibilidade Respiratória , Rinite Alérgica , Criança , Humanos , Feminino , Idoso , Cloreto de Metacolina/farmacologia , Testes de Provocação Brônquica/métodos , Broncodilatadores , Sons Respiratórios , Lactação , Aerossóis e Gotículas Respiratórios , Asma/diagnóstico , Asma/terapia , Dispneia , Corticosteroides , Anticorpos Monoclonais , Antagonistas dos Receptores Histamínicos , Fenóis
16.
Curr Opin Allergy Clin Immunol ; 24(2): 88-93, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359080

RESUMO

PURPOSE OF REVIEW: To review recent evidence on allergen immunotherapy (AIT) as a model of personalized medicine in the treatment of children and adolescents with respiratory allergies. RECENT FINDINGS: Meta-analysis and systematic review studies continue to point out that AIT is an effective treatment for children with respiratory allergies. Molecular allergy allows the understanding of patient sensitization profiles that frequently change the prescription of AIT. There is still a lack of evidence showing that this personalized prescription of AIT is associated with better clinical outcomes. The nasal allergen challenge has extended the indications of AIT for a new group of subjects with local allergic rhinitis. Patient selection of allergens involved in the increasingly personalized composition of extracts to be used in AIT increasingly characterizes it as personalized medicine. SUMMARY: Despite the numerous studies carried out to identify the best biomarker to evaluate the response to AIT, there is still much disagreement, and clinical assessment (symptoms, quality of life, among others) continues to be the best way to evaluate the therapeutic success of AIT.


Assuntos
Alérgenos , Dessensibilização Imunológica , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Dessensibilização Imunológica/métodos , Criança , Alérgenos/imunologia , Alérgenos/administração & dosagem , Adolescente , Hipersensibilidade Respiratória/terapia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/diagnóstico , Rinite Alérgica/terapia , Rinite Alérgica/imunologia , Qualidade de Vida , Resultado do Tratamento
17.
Immun Inflamm Dis ; 12(3): e1225, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38533918

RESUMO

BACKGROUND: The dosage of ovalbumin (OVA) during the sensitization stage is considered a crucial factor in the development of airway hyperresponsiveness (AHR). However, the inconsistent dosages of sensitizing OVA used in current studies and the lack of research on their impact on AHR are notable limitations. METHODS: We examined the impact of increasing sensitizing doses of OVA in a murine asthma model, which entailed initial sensitization with OVA followed by repeated exposure to OVA aerosols. BALB/c mice were primed with doses of OVA (0, 10, 20, 50, and 100 µg) plus 1 mg Alum on Days 0 and 7, and were challenged with OVA aerosols (10 mg/mL for 30 min) between Days 14 and 17. Antigen-induced AHR to methacholine (MCh), as well as histological changes, eosinophilic infiltration, and epithelial injury were assessed. RESULTS: The result indicated that there are striking OVA dose-related differences in antigen-induced AHR to MCh. The most intense antigen-induced AHR to MCh was observed with sensitization at 50 µg, while weaker responses were seen at 10, 20, and 100 µg. Meanwhile, there was a significant increase in eosinophil count with sensitization at 50 µg. The changes of AHR were correlated with total cells count, lymphocytes count, eosinophils count, and basophils count in bronchoalveolar lavage fluid; however, it did not correlate with histological changes such as cellular infiltration into bronchovascular bundles and goblet cell hyperplasia of the bronchial epithelium. CONCLUSION: Overall, this study demonstrated that sensitization with 50 µg of OVA resulted in the most significant AHR compared to other dosages. These findings may offer valuable insights for future research on mouse asthma modeling protocols.


Assuntos
Asma , Hiper-Reatividade Brônquica , Hipersensibilidade Respiratória , Animais , Camundongos , Ovalbumina , Aerossóis e Gotículas Respiratórios , Asma/patologia , Cloreto de Metacolina
18.
J Allergy Clin Immunol Pract ; 12(4): 904-907, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38097177

RESUMO

Airway hyper-responsiveness (AHR) is a tenet of the persistent asthma phenotype along with reversible airway obstruction and type 2 (T2) inflammation. Indirect acting challenges such as mannitol are more closely related to the underlying T2 inflammatory process as compared with direct challenges. In this review article, we summarise the current literature and explore the future role of mannitol AHR in clinical remission with biologics.


Assuntos
Asma , Hipersensibilidade Respiratória , Humanos , Asma/tratamento farmacológico , Inflamação , Terapia Biológica , Manitol/uso terapêutico
19.
Eur Rev Med Pharmacol Sci ; 28(3): 1060-1065, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38375711

RESUMO

OBJECTIVE: Asthma is characterized by airway hyperresponsiveness due to chronic inflammation in the airways. One of the main cells involved in airway inflammation is eosinophils. In the current study, a bronchial provocation test (BPT) was performed to demonstrate airway hyperresponsiveness. We investigated the relationship between BPT and blood eosinophil count and the cut-off value of blood eosinophil count. PATIENTS AND METHODS: In this study, we retrospectively evaluated the data of 246 patients who visited our immunology and allergy clinic, a tertiary reference center, with asthma symptoms between May 2017 and March 2020 and underwent BPT with methacholine for the diagnosis of asthma. The cases were grouped according to the level of BPT positivity and negativity. RESULTS: Of 246 patients, BPT was positive in 90 (36.6%) and negative in 156 (63.4%). The blood eosinophil measurement of the BPT-positive cases was found to be statistically significantly higher than that of the BPT-negative cases (135 vs. 119 cells/µl, respectively, p=0.029). When BPT is grouped according to positivity levels, there was no statistically significant difference in blood eosinophil measurements between subgroups (p=0.174). As a result of the evaluations, the cut-off point obtained for the blood eosinophil count was determined as ≥226 cells/µl. For the blood eosinophil count, for the cut-off value of ≥226 cells/µl, sensitivity was 30.0%, specificity 87.7%, positive predictive value 58.7%, and negative predictive value 68.3%. CONCLUSIONS: This study shows that BPT positivity is associated with blood eosinophil count. The cut-off value (≥226 cells/µl) determined for blood eosinophil count may be helpful when planning BPT and evaluating the diagnosis of asthma.


Assuntos
Asma , Hipersensibilidade Respiratória , Humanos , Eosinófilos , Testes de Provocação Brônquica , Estudos Retrospectivos , Contagem de Leucócitos , Inflamação
20.
Eur Respir Rev ; 33(172)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657996

RESUMO

Common airborne allergens (pollen, animal dander and those from fungi and insects) are the main triggers of type I allergic disorder in the respiratory system and are associated with allergic rhinitis, allergic asthma, as well as immunoglobulin E (IgE)-mediated allergic bronchopulmonary aspergillosis. These allergens promote IgE crosslinking, vasodilation, infiltration of inflammatory cells, mucosal barrier dysfunction, extracellular matrix deposition and smooth muscle spasm, which collectively cause remodelling of the airways. Fungus and insect (house dust mite and cockroaches) indoor allergens are particularly rich in proteases. Indeed, more than 40 different types of aeroallergen proteases, which have both IgE-neutralising and tissue-destructive activities, have been documented in the Allergen Nomenclature database. Of all the inhaled protease allergens, 85% are classed as serine protease activities and include trypsin-like, chymotrypsin-like and collagenolytic serine proteases. In this article, we review and compare the allergenicity and proteolytic effect of allergen serine proteases as listed in the Allergen Nomenclature and MEROPS databases and highlight their contribution to allergic sensitisation, disruption of the epithelial barrier and activation of innate immunity in allergic airways disease. The utility of small-molecule inhibitors of allergen serine proteases as a potential treatment strategy for allergic airways disease will also be discussed.


Assuntos
Alérgenos , Imunidade Inata , Serina Proteases , Humanos , Alérgenos/imunologia , Serina Proteases/metabolismo , Serina Proteases/imunologia , Animais , Poluição do Ar em Ambientes Fechados/efeitos adversos , Inibidores de Serina Proteinase/uso terapêutico , Exposição por Inalação/efeitos adversos , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA