Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Uirusu ; 68(1): 51-62, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-31105135

RESUMO

Arenavirus is a genetic term for viruses belonging to the family Arenaviridae and is presented from lymphocytic choriomeningitis virus (LCMV), which shows almost no pathogenicity to humans, to Lassa virus, Junin virus, Machupo virus, Chapare virus, Lujo virus, Sabia virus, and Guanarito virus, which shows high pathogenicity to humans. These viruses except for LCMV are risk group 4 pathogens specified by World Health Organization. Based on this designation, it is designated as Class I pathogens in Japan. Although there have been no reports excluding one imported case of the Lassa fever patient, it is not surprising whenever imported cases occur in our country. Considering the disease severity and mortality rate, it is an urgent matter to develop vaccines and therapeutic drugs in endemic areas, and maintenances of these are also important in countries other than endemic areas. However, basic research on highly pathogenic arenavirus infections and development of therapeutic drugs are not easily progressed, because handling in highly safe research facilities is indispensable. In this article, we will outline the current knowledge from the recent basic research on arenavirus to the development situation of antivirals against arenaviruses.


Assuntos
Antivirais , Infecções por Arenaviridae/tratamento farmacológico , Infecções por Arenaviridae/virologia , Arenavirus/classificação , Arenavirus/patogenicidade , Descoberta de Drogas , África Ocidental/epidemiologia , Infecções por Arenaviridae/epidemiologia , Infecções por Arenaviridae/prevenção & controle , Arenavirus/genética , Arenavirus/fisiologia , Surtos de Doenças , Descoberta de Drogas/tendências , Genoma Viral/genética , Humanos , Pesquisa/tendências , Transcrição Gênica , Vacinas Virais , Vírion
2.
J Virol ; 90(6): 3187-97, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26739049

RESUMO

UNLABELLED: Hemorrhagic fever arenaviruses (HFAs) pose important public health problems in regions where they are endemic. Concerns about human-pathogenic arenaviruses are exacerbated because of the lack of FDA-licensed arenavirus vaccines and because current antiarenaviral therapy is limited to an off-label use of ribavirin that is only partially effective. We have recently shown that the noncoding intergenic region (IGR) present in each arenavirus genome segment, the S and L segments (S-IGR and L-IGR, respectively), plays important roles in the control of virus protein expression and that this knowledge could be harnessed for the development of live-attenuated vaccine strains to combat HFAs. In this study, we further investigated the sequence plasticity of the arenavirus IGR. We demonstrate that recombinants of the prototypic arenavirus lymphocytic choriomeningitis virus (rLCMVs), whose S-IGRs were replaced by the S-IGR of Lassa virus (LASV) or an entirely nonviral S-IGR-like sequence (Ssyn), are viable, indicating that the function of S-IGR tolerates a high degree of sequence plasticity. In addition, rLCMVs whose L-IGRs were replaced by Ssyn or S-IGRs of the very distantly related reptarenavirus Golden Gate virus (GGV) were viable and severely attenuated in vivo but able to elicit protective immunity against a lethal challenge with wild-type LCMV. Our findings indicate that replacement of L-IGR by a nonviral Ssyn could serve as a universal molecular determinant of arenavirus attenuation. IMPORTANCE: Hemorrhagic fever arenaviruses (HFAs) cause high rates of morbidity and mortality and pose important public health problems in regions where they are endemic. Implementation of live-attenuated vaccines (LAVs) will represent a major step to combat HFAs. Here we document that the arenavirus noncoding intergenic region (IGR) has a high degree of plasticity compatible with virus viability. This observation led us to generate recombinant LCMVs containing nonviral synthetic IGRs. These rLCMVs were severely attenuated in vivo but able to elicit protective immunity against a lethal challenge with wild-type LCMV. These nonviral synthetic IGRs can be used as universal molecular determinants of arenavirus attenuation for the rapid development of safe and effective, as well as stable, LAVs to combat HFA.


Assuntos
DNA Intergênico , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/patogenicidade , Mutagênese Insercional , Recombinação Genética , Vacinas Virais/imunologia , Animais , Infecções por Arenaviridae/patologia , Infecções por Arenaviridae/prevenção & controle , Modelos Animais de Doenças , Vírus Lassa/genética , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Análise de Sobrevida , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
3.
J Virol ; 89(14): 7373-84, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25972555

RESUMO

UNLABELLED: Several members of the Arenaviridae family cause hemorrhagic fever disease in humans and pose serious public health problems in their geographic regions of endemicity as well as a credible biodefense threat. To date, there have been no FDA-approved arenavirus vaccines, and current antiarenaviral therapy is limited to an off-label use of ribavirin that is only partially effective. Arenaviruses are enveloped viruses with a bisegmented negative-stranded RNA genome. Each genome segment uses an ambisense coding strategy to direct the synthesis of two viral polypeptides in opposite orientations, separated by a noncoding intergenic region. Here we have used minigenome-based approaches to evaluate expression levels of reporter genes from the nucleoprotein (NP) and glycoprotein precursor (GPC) loci within the S segment of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). We found that reporter genes are expressed to higher levels from the NP than from the GPC locus. Differences in reporter gene expression levels from the NP and GPC loci were confirmed with recombinant trisegmented LCM viruses. We then used reverse genetics to rescue a recombinant LCMV (rLCMV) containing a translocated viral S segment (rLCMV/TransS), where the viral NP and GPC open reading frames replaced one another. The rLCMV/TransS showed slower growth kinetics in cultured cells and was highly attenuated in vivo in a mouse model of lethal LCMV infection, but immunization with rLCMV/TransS conferred complete protection against a lethal challenge with wild-type LCMV. Attenuation of rLCMV/TransS was associated with reduced NP expression levels. These results open a new avenue for the development of arenavirus live attenuated vaccines based on rearrangement of their viral genome. IMPORTANCE: Several arenaviruses cause severe hemorrhagic fever in humans and also pose a credible bioterrorism threat. Currently, no FDA-licensed vaccines are available to combat arenavirus infections and antiarenaviral therapy is limited to the off-label use of ribavirin, which is only partially effective and associated with side effects. Here we describe, for the first time, the generation of a recombinant LCMV where the viral protein products encoded by the S RNA segment (NP and GPC) were swapped to generate rLCMV/TransS. rLCMV/TransS exhibited reduced viral multiplication in cultured cells and was highly attenuated in vivo while conferring protection, upon a single immunization dose, against a lethal challenge with wild-type LCMV. Our studies provide a proof of concept for the rational development of safe and protective live attenuated vaccine candidates based on genome reorganization for the treatment of pathogenic arenavirus infections in humans.


Assuntos
Rearranjo Gênico , Genoma Viral , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/imunologia , Vacinas Virais/imunologia , Vacinas Virais/isolamento & purificação , Animais , Infecções por Arenaviridae/prevenção & controle , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genes Reporter , Coriomeningite Linfocítica/prevenção & controle , Vírus da Coriomeningite Linfocítica/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Genética Reversa , Análise de Sobrevida , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Vacinas Virais/genética , Cultura de Vírus , Replicação Viral
4.
J Virol ; 89(16): 8428-43, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041296

RESUMO

UNLABELLED: Certain members of the Arenaviridae family are category A agents capable of causing severe hemorrhagic fevers in humans. Specific antiviral treatments do not exist, and the only commonly used drug, ribavirin, has limited efficacy and can cause severe side effects. The discovery and development of new antivirals are inhibited by the biohazardous nature of the viruses, making them a relatively poorly understood group of human pathogens. We therefore adapted a reverse-genetics minigenome (MG) rescue system based on Junin virus, the causative agent of Argentine hemorrhagic fever, for high-throughput screening (HTS). The MG rescue system recapitulates all stages of the virus life cycle and enables screening of small-molecule libraries under biosafety containment level 2 (BSL2) conditions. The HTS resulted in the identification of four candidate compounds with potent activity against a broad panel of arenaviruses, three of which were completely novel. The target for all 4 compounds was the stage of viral entry, which positions the compounds as potentially important leads for future development. IMPORTANCE: The arenavirus family includes several members that are highly pathogenic, causing acute viral hemorrhagic fevers with high mortality rates. No specific effective treatments exist, and although a vaccine is available for Junin virus, the causative agent of Argentine hemorrhagic fever, it is licensed for use only in areas where Argentine hemorrhagic fever is endemic. For these reasons, it is important to identify specific compounds that could be developed as antivirals against these deadly viruses.


Assuntos
Antivirais/farmacologia , Infecções por Arenaviridae/prevenção & controle , Arenavirus/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Internalização do Vírus/efeitos dos fármacos , Antivirais/isolamento & purificação , Humanos , Vírus Junin/genética , Genética Reversa/métodos
5.
J Virol ; 89(21): 10924-33, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-26292327

RESUMO

UNLABELLED: Several arenaviruses cause hemorrhagic fever disease in humans and represent important public health problems in the regions where these viruses are endemic. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is an important neglected human pathogen. There are no licensed arenavirus vaccines and current antiarenavirus therapy is limited to the use of ribavirin that is only partially effective. Therefore, there is an unmet need for novel antiarenaviral therapeutics. Here, we report the generation of a novel recombinant LCM virus and its use to develop a cell-based high-throughput screen to rapidly identify inhibitors of LCMV multiplication. We used this novel assay to screen a library of 30,400 small molecules and identified compound F3406 (chemical name: N-[3,5-bis(fluoranyl)phenyl]-2-[5,7-bis(oxidanylidene)-6-propyl-2-pyrrolidin-1-yl-[1,3]thiazolo[4,5-d]pyrimidin-4-yl]ethanamide), which exhibited strong anti-LCMV activity in the absence of cell toxicity. Mechanism-of-action studies revealed that F3406 inhibited LCMV cell entry by specifically interfering with the pH-dependent fusion in the endosome compartment that is mediated by LCMV glycoprotein GP2 and required to release the virus ribonucleoprotein into the cell cytoplasm to initiate transcription and replication of the virus genome. We identified residue M437 within the transmembrane domain of GP2 as critical for virus susceptibility to F3406. IMPORTANCE: Hemorrhagic fever arenaviruses (HFA) are important human pathogens that cause high morbidity and mortality in areas where these viruses are endemic. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. Concerns posed by arenavirus infections are aggravated by the lack of U.S. Food and Drug Administration-licensed arenavirus vaccines and current antiarenaviral therapy being limited to the off-label use of ribavirin that is only partially effective. Here we describe a novel recombinant LCMV and its use to develop a cell-based assay suitable for HTS to rapidly identify inhibitors arenavirus multiplication. The concepts and experimental strategies we describe in this work provide the bases for the rapid identification and characterization of novel anti-HFA therapeutics.


Assuntos
Infecções por Arenaviridae/prevenção & controle , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/fisiologia , Pirimidinonas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Tiazóis/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/fisiologia , Animais , Western Blotting , Chlorocebus aethiops , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Plasmídeos/genética , Pirimidinonas/análise , Tiazóis/análise , Células Vero , Replicação Viral/efeitos dos fármacos
6.
J Virol ; 89(7): 3523-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25589652

RESUMO

UNLABELLED: Arenaviruses have a significant impact on public health and pose a credible biodefense threat, but the development of safe and effective arenavirus vaccines has remained elusive, and currently, no Food and Drug Administration (FDA)-licensed arenavirus vaccines are available. Here, we explored the use of a codon deoptimization (CD)-based approach as a novel strategy to develop live-attenuated arenavirus vaccines. We recoded the nucleoprotein (NP) of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) with the least frequently used codons in mammalian cells, which caused lower LCMV NP expression levels in transfected cells that correlated with decreased NP activity in cell-based functional assays. We used reverse-genetics approaches to rescue a battery of recombinant LCMVs (rLCMVs) encoding CD NPs (rLCMV/NP(CD)) that showed attenuated growth kinetics in vitro. Moreover, experiments using the well-characterized mouse model of LCMV infection revealed that rLCMV/NP(CD1) and rLCMV/NP(CD2) were highly attenuated in vivo but, upon a single immunization, conferred complete protection against a subsequent lethal challenge with wild-type (WT) recombinant LCMV (rLCMV/WT). Both rLCMV/NP(CD1) and rLCMV/NP(CD2) were genetically and phenotypically stable during serial passages in FDA vaccine-approved Vero cells. These results provide proof of concept of the safety, efficacy, and stability of a CD-based approach for developing live-attenuated vaccine candidates against human-pathogenic arenaviruses. IMPORTANCE: Several arenaviruses cause severe hemorrhagic fever in humans and pose a credible bioterrorism threat. Currently, no FDA-licensed vaccines are available to combat arenavirus infections, while antiarenaviral therapy is limited to the off-label use of ribavirin, which is only partially effective and is associated with side effects. Here, we describe the generation of recombinant versions of the prototypic arenavirus LCMV encoding codon-deoptimized viral nucleoproteins (rLCMV/NP(CD)). We identified rLCMV/NP(CD1) and rLCMV/NP(CD2) to be highly attenuated in vivo but able to confer protection against a subsequent lethal challenge with wild-type LCMV. These viruses displayed an attenuated phenotype during serial amplification passages in cultured cells. Our findings support the use of this approach for the development of safe, stable, and protective live-attenuated arenavirus vaccines.


Assuntos
Infecções por Arenaviridae/prevenção & controle , Códon , Vírus da Coriomeningite Linfocítica/crescimento & desenvolvimento , Vírus da Coriomeningite Linfocítica/imunologia , Vacinas Virais/imunologia , Animais , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/patologia , Infecções por Arenaviridae/virologia , Chlorocebus aethiops , Modelos Animais de Doenças , Expressão Gênica , Instabilidade Genômica , Vírus da Coriomeningite Linfocítica/genética , Masculino , Camundongos , Análise de Sobrevida , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/isolamento & purificação , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação , Células Vero , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/isolamento & purificação , Cultura de Vírus , Replicação Viral
7.
PLoS Pathog ; 9(4): e1003212, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23592977

RESUMO

Vaccination is one of the most valuable weapons against infectious diseases and has led to a significant reduction in mortality and morbidity. However, for most viral hemorrhagic fevers caused by arenaviruses, no prophylactic vaccine is available. This is particularly problematic as these diseases are notoriously difficult to diagnose and treat. Lassa fever is globally the most important of the fevers caused by arenaviruses, potentially affecting millions of people living in endemic areas, particularly in Nigeria. Annually, an estimated 300,000 humans are infected and several thousands succumb to the disease. The successful development of the vaccine "Candid#1" against Junin virus, the causative agent of Argentine hemorrhagic fever, proved that an effective arenavirus vaccine can be developed. Although several promising studies toward the development of a Lassa fever vaccine have been published, no vaccine candidate has been tested in human volunteers or patients. This review summarizes the immunology and other aspects of existing experimental arenavirus vaccine studies, discusses the reasons for the lack of a vaccine, and proposes a plan for overcoming the final hurdles toward clinical trials.


Assuntos
Infecções por Arenaviridae/prevenção & controle , Arenavirus/imunologia , Febres Hemorrágicas Virais/prevenção & controle , Vacinas Virais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/virologia , Arenavirus/classificação , Ensaios Clínicos como Assunto , Descoberta de Drogas , Febres Hemorrágicas Virais/imunologia , Febres Hemorrágicas Virais/virologia , Humanos , Vírus Junin/imunologia , Vacinação , Vacinas Atenuadas/imunologia
8.
J Gen Virol ; 94(Pt 6): 1175-1188, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23364194

RESUMO

Arenaviruses are important human pathogens with no Food and Drug Administration (FDA)-licensed vaccines available and current antiviral therapy being limited to an off-label use of the nucleoside analogue ribavirin of limited prophylactic efficacy. The development of reverse genetics systems represented a major breakthrough in arenavirus research. However, rescue of recombinant arenaviruses using current reverse genetics systems has been restricted to rodent cells. In this study, we describe the rescue of recombinant arenaviruses from human 293T cells and Vero cells, an FDA-approved line for vaccine development. We also describe the generation of novel vectors that mediate synthesis of both negative-sense genome RNA and positive-sense mRNA species of lymphocytic choriomeningitis virus (LCMV) directed by the human RNA polymerases I and II, respectively, within the same plasmid. This approach reduces by half the number of vectors required for arenavirus rescue, which could facilitate virus rescue in cell lines approved for human vaccine production but that cannot be transfected at high efficiencies. We have shown the feasibility of this approach by rescuing both the Old World prototypic arenavirus LCMV and the live-attenuated vaccine Candid#1 strain of the New World arenavirus Junín. Moreover, we show the feasibility of using these novel strategies for efficient rescue of recombinant tri-segmented both LCMV and Candid#1.


Assuntos
Infecções por Arenaviridae/virologia , Arenavirus/genética , Genética Reversa/métodos , Vacinas Virais/genética , Animais , Infecções por Arenaviridae/prevenção & controle , Arenavirus/imunologia , Chlorocebus aethiops , Cricetinae , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Células HEK293 , Humanos , Células Vero , Vacinas Virais/imunologia , Cultura de Vírus
9.
Exp Biol Med (Maywood) ; 248(19): 1624-1634, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37937408

RESUMO

Brazilian mammarenavirus, or Sabiá virus (SABV), is a New World (NW) arenavirus associated with fulminant hemorrhagic disease in humans and the sole biosafety level 4 microorganism ever isolated in Brazil. Since the isolation of SABV in the 1990s, studies on viral biology have been scarce, with no available countermeasures against SABV infection or disease. Here we provide a comprehensive review of SABV biology, including key aspects of SABV replication, and comparisons with related Old World and NW arenaviruses. SABV is most likely a rodent-borne virus, transmitted to humans, through exposure to urine and feces in peri-urban areas. Using protein structure prediction methods and alignments, we analyzed shared and unique features of SABV proteins (GPC, NP, Z, and L) that could be explored in search of therapeutic strategies, including repurposing intended application against arenaviruses. Highly conserved catalytic activities present in L protein could be targeted for broad-acting antiviral activity among arenaviruses, while protein-protein interactions, such as those between L and the matrix protein Z, have evolved in NW arenaviruses and should be specific to SABV. The nucleoprotein (NP) also shares targetable interaction interfaces with L and Z and exhibits exonuclease activity in the C-terminal domain, which may be involved in multiple aspects of SABV replication. Envelope glycoproteins GP1 and GP2 have been explored in the development of promising cross-reactive neutralizing antibodies and vaccines, some of which could be repurposed for SABV. GP1 remains a challenging target in SABV as evolutive pressures render it the most variable viral protein in terms of both sequence and structure, while antiviral strategies targeting the Z protein remain to be validated. In conclusion, the prediction and analysis of protein structures should revolutionize research on viruses such as SABV by facilitating the rational design of countermeasures while reducing dependence on sophisticated laboratory infrastructure for experimental validation.


Assuntos
Infecções por Arenaviridae , Arenavirus do Novo Mundo , Humanos , Proteínas Virais/genética , Infecções por Arenaviridae/prevenção & controle , Antivirais , Biologia Molecular
10.
Med Sci (Paris) ; 39(11): 855-861, 2023 Nov.
Artigo em Francês | MEDLINE | ID: mdl-38018929

RESUMO

Arenaviruses are a global threat, causing thousands of deaths each year in several countries around the world. Despite strong efforts in the development of vaccine candidates, vaccines against Lassa fever or Bolivian and Venezuelan hemorrhagic fevers are yet to be licensed for a use in humans. In this synthesis, we present the arenaviruses causing fatal diseases in humans and the main vaccine candidates that have been developed over the past decades with an emphasis on the measles-Lassa vaccine, the first Lassa vaccine ever tested in humans, and on the MOPEVAC platform that can potentially be used as a pan-arenavirus vaccine platform.


Title: Les fièvres hémorragiques causées par les arénavirus : de récentes avancées vaccinales. Abstract: Le développement de vaccins contre les arénavirus est un enjeu global. En effet, plusieurs milliers de personnes meurent chaque année de la fièvre de Lassa en Afrique occidentale et les virus Machupo, Guanarito ou Chapare continuent de ré-émerger en Amérique du Sud. Pourtant, il n'existe à ce jour aucun vaccin validé pour une utilisation dans l'espèce humaine pour lutter contre ces arénavirus. Dans cette synthèse, nous présentons les différents arénavirus causant des maladies mortelles chez l'espèce humaine et les principaux candidats vaccins développés au cours des dernières décennies contre ces virus. Nous décrivons plus particulièrement le vaccin rougeole-Lassa, premier vaccin contre la fièvre de Lassa à avoir été testé dans l'espèce humaine, et la plateforme MOPEVAC qui permet de générer avec succès des vaccins mono- ou multivalents contre potentiellement tous les arénavirus pathogènes connus.


Assuntos
Infecções por Arenaviridae , Arenavirus , Febres Hemorrágicas Virais , Febre Lassa , Vacinas Virais , Humanos , Febres Hemorrágicas Virais/prevenção & controle , Febre Lassa/prevenção & controle , Infecções por Arenaviridae/prevenção & controle , Vacinas Virais/uso terapêutico
11.
J Virol ; 85(4): 1473-83, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21123388

RESUMO

The New World arenavirus Junin virus (JUNV) is the causative agent of Argentine hemorrhagic fever (AHF), which is associated with high morbidity and significant mortality. Several pathogenic strains of JUNV have been documented, and a highly attenuated vaccine strain (Candid #1) was generated and used to vaccinate the human population at risk. The identification and functional characterization of viral genetic determinants associated with AHF and Candid #1 attenuation would contribute to the elucidation of the mechanisms contributing to AHF and the development of better vaccines and therapeutics. To this end, we used reverse genetics to rescue the pathogenic Romero and the attenuated Candid #1 strains of JUNV from cloned cDNAs. Both recombinant Candid #1 (rCandid #1) and Romero (rRomero) had the same growth properties and phenotypic features in cultured cells and in vivo as their corresponding parental viruses. Infection with rRomero caused 100% lethality in guinea pigs, whereas rCandid #1 infection was asymptomatic and provided protection against a lethal challenge with Romero. Notably, Romero and Candid #1 trans-acting proteins, L and NP, required for virus RNA replication and gene expression were exchangeable in a minigenome rescue assay. These findings support the feasibility of studies aimed at determining the contribution of each viral gene to JUNV pathogenesis and attenuation. In addition, we rescued Candid #1 viruses with three segments that efficiently expressed foreign genes introduced into their genomes. This finding opens the way for the development of a safe multivalent arenavirus vaccine.


Assuntos
DNA Complementar/genética , Febre Hemorrágica Americana/imunologia , Febre Hemorrágica Americana/patologia , Vírus Junin/patogenicidade , Recombinação Genética , Vacinas Atenuadas , Vacinas Virais , Animais , Anticorpos Antivirais/sangue , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/patologia , Infecções por Arenaviridae/prevenção & controle , Infecções por Arenaviridae/virologia , Sequência de Bases , Linhagem Celular , Chlorocebus aethiops , Clonagem Molecular , Cricetinae , Feminino , Genótipo , Cobaias , Febre Hemorrágica Americana/prevenção & controle , Febre Hemorrágica Americana/virologia , Humanos , Imunização , Vírus Junin/genética , Vírus Junin/imunologia , Vírus Junin/fisiologia , Dados de Sequência Molecular , Fenótipo , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Células Vero , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia , Replicação Viral
12.
J Virol ; 85(1): 112-22, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20980515

RESUMO

The Arenaviridae are a diverse and globally distributed collection of viruses that are maintained primarily by rodent reservoirs. Junin virus (JUNV) and Lassa virus (LASV) can both cause significant outbreaks of severe and often fatal human disease throughout their respective areas of endemicity. In an effort to improve upon the existing live attenuated JUNV Candid1 vaccine, we generated a genetically homogenous stock of this virus from cDNA copies of the virus S and L segments by using a reverse genetics system. Further, these cDNAs were used in combination with LASV cDNAs to successfully generate two recombinant Candid1 JUNV/LASV chimeric viruses (via envelope glycoprotein [GPC] exchange). It was found that while the GPC extravirion domains were readily exchangeable, homologous stable signal peptide (SSP) and G2 transmembrane and cytoplasmic tail domains were essential for correct GPC maturation and production of infectious chimeric viruses. The switching of the JUNV and LASV G1/G2 ectodomains within the Candid1 vaccine background did not alter the attenuated phenotype of the vaccine strain in a lethal mouse model. These recombinant chimeric viruses shed light on the fundamental requirements of arenavirus GPC maturation and may serve as a strategy for the development of bivalent JUNV and LASV vaccine candidates.


Assuntos
Glicoproteínas/genética , Vírus Junin/genética , Vírus Lassa/genética , Recombinação Genética , Proteínas do Envelope Viral/genética , Vacinas Virais , Animais , Infecções por Arenaviridae/mortalidade , Infecções por Arenaviridae/prevenção & controle , Infecções por Arenaviridae/virologia , Chlorocebus aethiops , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Vírus Junin/metabolismo , Vírus Junin/patogenicidade , Vírus Lassa/metabolismo , Vírus Lassa/patogenicidade , Camundongos , Sinais Direcionadores de Proteínas/genética , Sinais Direcionadores de Proteínas/fisiologia , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
13.
Uirusu ; 62(2): 229-38, 2012.
Artigo em Japonês | MEDLINE | ID: mdl-24153233

RESUMO

Arenaviruses are the collective name for viruses, which belong to the family Arenaviridae. They replicate in the cytoplasm of cells, and were named after the sandy (Latin, arenosus) appearance of the ribosomes often seen in thin sections of virions under electron microscope. Several arenaviruses, such as Lassa virus in West Africa, and Junin, Guanarito, Sabia, Machupo, and Chapare viruses in South America, cause sever viral hemorrhagic fevers (VHF) in humans and represent a serious public health problem. These viruses are categorized as category 1 pathogens thus should be handles in a BSL4 laboratory. Recently, Lujo virus was isolated as a newly discovered novel arenavirus associated with a VHF outbreak in southern Africa in 2008. Although, we have no VHF patients caused by arenaviruses in Japan, except for a single imported Lassa fever case in 1987, it is possible that VHF patients occur as imported cases as for other VHF in the future. Therefore, it is necessary to develop the diagnostics and therapeutics in consideration of patient's severe symptoms and high mortality even in the disease-free countries. In this review, we will broadly discuss the current knowledge from the basic researches to diagnostics and vaccine developments for arenavirus diseases.


Assuntos
Infecções por Arenaviridae/virologia , Arenavirus/genética , Animais , Infecções por Arenaviridae/diagnóstico , Infecções por Arenaviridae/prevenção & controle , Infecções por Arenaviridae/transmissão , Arenavirus/patogenicidade , Técnicas de Laboratório Clínico , Estruturas Genéticas , Genoma Viral/genética , Humanos , Receptores Virais , Genética Reversa , Proteínas Virais , Vacinas Virais , Vírion
14.
Methods Mol Biol ; 2524: 223-233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821475

RESUMO

Reverse genetics systems provide a powerful tool to generate recombinant arenavirus expressing reporters to facilitate the investigation of the arenavirus life cycle and also for the discovery of antiviral countermeasures. The plasmid-encoded viral ribonucleoprotein components initiate the transcription and replication of a plasmid-driven full-length viral genome, resulting in infectious virus. Thereby, this approach is ideal for the generation of recombinant arenaviruses expressing reporter genes that can be used as valid surrogates for virus replication. By splitting the small viral segment (S) into two viral segments (S1 and S2), each of them encoding a reporter gene, recombinant tri-segmented arenavirus can be rescued. Bi-reporter-expressing recombinant tri-segmented arenaviruses represent an excellent tool to study the biology of arenaviruses, including the identification and characterization of both prophylactic and therapeutic countermeasures for the treatment of arenaviral infections. In this chapter, we describe a detailed protocol on the generation and in vitro characterization of recombinant arenaviruses containing a tri-segment genome expressing two reporter genes based on the prototype member in the family, lymphocytic choriomeningitis virus (LCMV). Similar experimental approaches can be used for the generation of bi-reporter-expressing tri-segment recombinant viruses for other members in the arenavirus family.


Assuntos
Infecções por Arenaviridae , Genética Reversa , Infecções por Arenaviridae/genética , Infecções por Arenaviridae/prevenção & controle , Genes Reporter , Humanos , Vírus da Coriomeningite Linfocítica/genética , Genética Reversa/métodos , Replicação Viral/genética
15.
Sci Adv ; 8(6): eabk2691, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138904

RESUMO

Upon virus infection, CD8+ T cell accumulation is tightly controlled by simultaneous proliferation and apoptosis. However, it remains unclear how TCR signal coordinates these events to achieve expansion and effector cell differentiation. We found that T cell-specific deletion of nuclear helicase Dhx9 led to impaired CD8+ T cell survival, effector differentiation, and viral clearance. Mechanistically, Dhx9 acts as the key regulator to ensure LCK- and CD3ε-mediated ZAP70 phosphorylation and ERK activation to protect CD8+ T cells from apoptosis before proliferative burst. Dhx9 directly regulates Id2 transcription to control effector CD8+ T cell differentiation. The DSRM and OB_Fold domains are required for LCK binding and Id2 transcription, respectively. Dhx9 expression is predominantly increased in effector CD8+ T cells of COVID-19 patients. Therefore, we revealed a previously unknown regulatory mechanism that Dhx9 protects activated CD8+ T cells from apoptosis and ensures effector differentiation to promote antiviral immunity independent of nuclear sensor function.


Assuntos
Antivirais/farmacologia , Infecções por Arenaviridae/prevenção & controle , Linfócitos T CD8-Positivos/imunologia , COVID-19/prevenção & controle , RNA Helicases DEAD-box/metabolismo , Imunidade Inata , Proteínas de Neoplasias/metabolismo , Animais , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/metabolismo , Infecções por Arenaviridae/patologia , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/patologia , Diferenciação Celular , RNA Helicases DEAD-box/genética , Humanos , Ativação Linfocitária , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos , Proteínas de Neoplasias/genética , SARS-CoV-2/fisiologia , Replicação Viral
16.
J Virol ; 84(19): 9947-56, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20668086

RESUMO

Arenaviruses cause severe human disease ranging from aseptic meningitis following lymphocytic choriomeningitis virus (LCMV) infection to hemorrhagic fever syndromes following infection with Guanarito virus (GTOV), Junin virus (JUNV), Lassa virus (LASV), Machupo virus (MACV), Sabia virus (SABV), or Whitewater Arroyo virus (WWAV). Cellular immunity, chiefly the CD8(+) T-cell response, plays a critical role in providing protective immunity following infection with the Old World arenaviruses LASV and LCMV. In the current study, we evaluated whether HLA class I-restricted epitopes that are cross-reactive among pathogenic arenaviruses could be identified for the purpose of developing an epitope-based vaccination approach that would cross-protect against multiple arenaviruses. We were able to identify a panel of HLA-A*0201-restricted peptides derived from the same region of the glycoprotein precursor (GPC) of LASV (GPC spanning residues 441 to 449 [GPC(441-449)]), LCMV (GPC(447-455)), JUNV (GPC(429-437)), MACV (GPC(444-452)), GTOV (GPC(427-435)), and WWAV (GPC(428-436)) that displayed high-affinity binding to HLA-A*0201 and were recognized by CD8(+) T cells in a cross-reactive manner following LCMV infection or peptide immunization of HLA-A*0201 transgenic mice. Immunization of HLA-A*0201 mice with the Old World peptide LASV GPC(441-449) or LCMV GPC(447-455) induced high-avidity CD8(+) T-cell responses that were able to kill syngeneic target cells pulsed with either LASV GPC(441-449) or LCMV GPC(447-455) in vivo and provided significant protection against viral challenge with LCMV. Through this study, we have demonstrated that HLA class I-restricted, cross-reactive epitopes exist among diverse arenaviruses and that individual epitopes can be utilized as effective vaccine determinants for multiple pathogenic arenaviruses.


Assuntos
Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/prevenção & controle , Arenavirus do Velho Mundo , Vacinas Virais/administração & dosagem , Sequência de Aminoácidos , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/virologia , Antígenos Virais/genética , Infecções por Arenaviridae/genética , Arenavirus do Novo Mundo/genética , Arenavirus do Novo Mundo/imunologia , Arenavirus do Novo Mundo/patogenicidade , Arenavirus do Velho Mundo/genética , Arenavirus do Velho Mundo/imunologia , Arenavirus do Velho Mundo/patogenicidade , Linfócitos T CD8-Positivos/imunologia , Reações Cruzadas , Citotoxicidade Imunológica , Epitopos/administração & dosagem , Epitopos/genética , Antígenos HLA-A/genética , Antígeno HLA-A2 , Humanos , Vírus Lassa/genética , Vírus Lassa/imunologia , Vírus Lassa/patogenicidade , Vírus da Coriomeningite Linfocítica/genética , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos , Camundongos Transgênicos , Vacinas Virais/genética , Vacinas Virais/imunologia
17.
PLoS Pathog ; 5(12): e1000695, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20019801

RESUMO

Arenaviruses are the causative pathogens of severe hemorrhagic fever and aseptic meningitis in humans, for which no licensed vaccines are currently available. Pathogen heterogeneity within the Arenaviridae family poses a significant challenge for vaccine development. The main hypothesis we tested in the present study was whether it is possible to design a universal vaccine strategy capable of inducing simultaneous HLA-restricted CD8+ T cell responses against 7 pathogenic arenaviruses (including the lymphocytic choriomeningitis, Lassa, Guanarito, Junin, Machupo, Sabia, and Whitewater Arroyo viruses), either through the identification of widely conserved epitopes, or by the identification of a collection of epitopes derived from multiple arenavirus species. By inoculating HLA transgenic mice with a panel of recombinant vaccinia viruses (rVACVs) expressing the different arenavirus proteins, we identified 10 HLA-A02 and 10 HLA-A03-restricted epitopes that are naturally processed in human antigen-presenting cells. For some of these epitopes we were able to demonstrate cross-reactive CD8+ T cell responses, further increasing the coverage afforded by the epitope set against each different arenavirus species. Importantly, we showed that immunization of HLA transgenic mice with an epitope cocktail generated simultaneous CD8+ T cell responses against all 7 arenaviruses, and protected mice against challenge with rVACVs expressing either Old or New World arenavirus glycoproteins. In conclusion, the set of identified epitopes allows broad, non-ethnically biased coverage of all 7 viral species targeted by our studies.


Assuntos
Infecções por Arenaviridae/terapia , Arenaviridae/imunologia , Vacinas Virais/imunologia , Animais , Antígenos Virais/uso terapêutico , Infecções por Arenaviridae/prevenção & controle , Linfócitos T CD8-Positivos/imunologia , Reações Cruzadas/imunologia , Epitopos/uso terapêutico , Antígenos HLA-A/uso terapêutico , Febres Hemorrágicas Virais/prevenção & controle , Febres Hemorrágicas Virais/terapia , Humanos , Imunização , Camundongos , Camundongos Transgênicos , Resultado do Tratamento
18.
Cell Mol Immunol ; 18(1): 138-149, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541182

RESUMO

Mechanistic target of rapamycin complex 1 (mTORC1) regulates CD8+ T-cell differentiation and function. Despite the links between PI3K-AKT and mTORC1 activation in CD8+ T cells, the molecular mechanism underlying mTORC1 activation remains unclear. Here, we show that both the kinase activity and the death domain of DAPK1 are required for maximal mTOR activation and CD8+ T-cell function. We found that TCR-induced activation of calcineurin activates DAPK1, which subsequently interacts with TSC2 via its death domain and phosphorylates TSC2 to mediate mTORC1 activation. Furthermore, both the kinase domain and death domain of DAPK1 are required for CD8+ T-cell antiviral responses in an LCMV infection model. Together, our data reveal a novel mechanism of mTORC1 activation that mediates optimal CD8+ T-cell function and antiviral activity.


Assuntos
Antivirais/farmacologia , Infecções por Arenaviridae/prevenção & controle , Linfócitos T CD8-Positivos/imunologia , Proteínas Quinases Associadas com Morte Celular/fisiologia , Ativação Linfocitária , Vírus da Coriomeningite Linfocítica/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/virologia , Diferenciação Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
19.
Virus Genes ; 40(3): 320-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20148301

RESUMO

The Junín virus strain Candid#1 was developed as a live attenuated vaccine for Argentine hemorrhagic fever. In this article, we report sequence information of the L and S RNAs of Junín virus Candid#1 and XJ#44 strains, and show the comparisons with the XJ13 wild-type strain and with other Junín virus strains, like Romero, IV4454 and MC2 strains, and other closely and distantly related arenaviruses. Comparisons of the nucleotide and amino acid sequences of all genes of three strains from the same vaccine genealogy, revealed different point mutations that could be associated with the attenuated phenotype. A 91% of the mutations found are consistent with a hypothesis of progressive attenuation of virulence from XJ13 to XJ#44 and to Candid#1; 39% of mutations were observed in XJ#44 and conserved in Candid#1, while another 52% of the mutations appeared only in Candid#1 strain. The remaining 9% corresponded to reverse mutations in the L gene. In summary, the present work shows a set of mutations that could be related to the virulence attenuation phenomenon. This information will serve as a starting point to study this biological phenomenon, provided that a reverse genetics system for Junín virus is developed to allow the generation of infectious virions with specific mutations.


Assuntos
Vírus Junin/genética , Vírus Junin/patogenicidade , Vacinas Virais , Infecções por Arenaviridae/prevenção & controle , Sequência de Bases , Análise por Conglomerados , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Mutação Puntual , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência , Vacinas Atenuadas
20.
Curr Opin Virol ; 44: 66-72, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32721864

RESUMO

Several mammarenaviruses can cause severe hemorrhagic fever disease with a very high case fatality rate, representing important threats to human health within the viruses' endemic regions. To date, there are no United States (US) Food and Drug Administration (FDA)-licensed vaccines available to combat mammarenavirus infections in humans, and current anti-mammarenavirus therapy is limited to off-label use of the guanosine analog ribavirin, which has limited efficacy and has been associated with significant side effects. Vaccination is one of the most effective ways to prevent viral diseases, and live-attenuated vaccines (LAVs) have been shown to often provide long-term protection against a subsequent natural infection by the corresponding virulent form of the virus. The development of mammarenavirus reverse genetics systems has provided investigators with a powerful approach for the investigation of the molecular and cell biology of mammarenaviruses and also for the generation of recombinant viruses containing predetermined mutations in their genome for their implementation as LAVs for the treatment of mammarenavirus infections. In this review, we summarize the current knowledge on the mammarenavirus molecular and cell biology, and the use of reverse genetic approaches for the generation of recombinant mammarenaviruses. Moreover, we briefly discus some novel LAV approaches for the treatment of mammarenavirus infections based on the use of reverse genetics approaches.


Assuntos
Infecções por Arenaviridae/prevenção & controle , Arenaviridae/genética , Arenaviridae/imunologia , Genética Reversa/métodos , Vacinas Virais/genética , Vacinas Virais/imunologia , Animais , Genoma Viral , Humanos , Camundongos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA