Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 628(8006): 180-185, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480886

RESUMO

The gut microbiome has major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea and acute renal failure4,5 (haemolytic uremic syndrome). Although gut microorganisms can provide colonization resistance by outcompeting some pathogens or modulating host defence provided by the gut barrier and intestinal immune cells6,7, this phenomenon remains poorly understood. Here, we show that activation of the neurotransmitter receptor dopamine receptor D2 (DRD2) in the intestinal epithelium by gut microbial metabolites produced upon dietary supplementation with the essential amino acid L-tryptophan protects the host against Citrobacter rodentium, a mouse AE pathogen that is widely used as a model for EHEC infection8,9. We further find that DRD2 activation by these tryptophan-derived metabolites decreases expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Our results reveal a noncanonical colonization resistance pathway against AE pathogens that features an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization in the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches targeting DRD2 with dietary or pharmacological interventions to improve gut health and treat gastrointestinal infections, which afflict millions globally.


Assuntos
Citrobacter rodentium , Mucosa Intestinal , Receptores de Dopamina D2 , Triptofano , Animais , Feminino , Humanos , Masculino , Camundongos , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Carga Bacteriana/efeitos dos fármacos , Citrobacter rodentium/crescimento & desenvolvimento , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidade , Suplementos Nutricionais , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Escherichia coli O157/patogenicidade , Escherichia coli O157/fisiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Receptores de Dopamina D2/metabolismo , Triptofano/administração & dosagem , Triptofano/metabolismo , Triptofano/farmacologia
2.
Infect Immun ; 92(5): e0044023, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38591882

RESUMO

Extraintestinal pathogenic Escherichia coli (ExPEC) is a leading cause of worldwide morbidity and mortality, the top cause of antimicrobial-resistant (AMR) infections, and the most frequent cause of life-threatening sepsis and urinary tract infections (UTI) in adults. The development of an effective and universal vaccine is complicated by this pathogen's pan-genome, its ability to mix and match virulence factors and AMR genes via horizontal gene transfer, an inability to decipher commensal from pathogens, and its intimate association and co-evolution with mammals. Using a pan virulome analysis of >20,000 sequenced E. coli strains, we identified the secreted cytolysin α-hemolysin (HlyA) as a high priority target for vaccine exploration studies. We demonstrate that a catalytically inactive pure form of HlyA, expressed in an autologous host using its own secretion system, is highly immunogenic in a murine host, protects against several forms of ExPEC infection (including lethal bacteremia), and significantly lowers bacterial burdens in multiple organ systems. Interestingly, the combination of a previously reported autotransporter (SinH) with HlyA was notably effective, inducing near complete protection against lethal challenge, including commonly used infection strains ST73 (CFT073) and ST95 (UTI89), as well as a mixture of 10 of the most highly virulent sequence types and strains from our clinical collection. Both HlyA and HlyA-SinH combinations also afforded some protection against UTI89 colonization in a murine UTI model. These findings suggest recombinant, inactive hemolysin and/or its combination with SinH warrant investigation in the development of an E. coli vaccine against invasive disease.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Vacinas contra Escherichia coli , Escherichia coli Extraintestinal Patogênica , Proteínas Hemolisinas , Animais , Escherichia coli Extraintestinal Patogênica/genética , Escherichia coli Extraintestinal Patogênica/imunologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/imunologia , Camundongos , Proteínas Hemolisinas/imunologia , Proteínas Hemolisinas/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Vacinas contra Escherichia coli/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Feminino , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Sistemas de Secreção Tipo V/imunologia , Sistemas de Secreção Tipo V/genética , Modelos Animais de Doenças , Humanos
3.
BMC Immunol ; 25(1): 46, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034396

RESUMO

OBJECTIVES: The pathogenic microorganisms that cause intestinal diseases can significantly jeopardize people's health. Currently, there are no authorized treatments or vaccinations available to combat the germs responsible for intestinal disease. METHODS: Using immunoinformatics, we developed a potent multi-epitope Combination (combo) vaccine versus Salmonella and enterohemorrhagic E. coli. The B and T cell epitopes were identified by performing a conservancy assessment, population coverage analysis, physicochemical attributes assessment, and secondary and tertiary structure assessment of the chosen antigenic polypeptide. The selection process for vaccine development included using several bioinformatics tools and approaches to finally choose two linear B-cell epitopes, five CTL epitopes, and two HTL epitopes. RESULTS: The vaccine had strong immunogenicity, cytokine production, immunological properties, non-toxicity, non-allergenicity, stability, and potential efficacy against infections. Disulfide bonding, codon modification, and computational cloning were also used to enhance the stability and efficacy of expression in the host E. coli. The vaccine's structure has a strong affinity for the TLR4 ligand and is very durable, as shown by molecular docking and molecular modeling. The results of the immunological simulation demonstrated that both B and T cells had a heightened response to the vaccination component. CONCLUSIONS: The comprehensive in silico analysis reveals that the proposed vaccine will likely elicit a robust immune response against pathogenic bacteria that cause intestinal diseases. Therefore, it is a promising option for further experimental testing.


Assuntos
Epitopos de Linfócito B , Epitopos de Linfócito T , Vacinologia , Humanos , Epitopos de Linfócito T/imunologia , Vacinologia/métodos , Epitopos de Linfócito B/imunologia , Vacinas Combinadas/imunologia , Genômica/métodos , Escherichia coli Êntero-Hemorrágica/imunologia , Salmonella/imunologia , Animais , Biologia Computacional/métodos , Simulação de Acoplamento Molecular , Vacinas contra Escherichia coli/imunologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/imunologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/prevenção & controle , Antígenos de Bactérias/imunologia , Desenvolvimento de Vacinas/métodos , Vacinas Bacterianas/imunologia
4.
Microb Pathog ; 193: 106744, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876321

RESUMO

Antibiotic resistance and re-emergence of highly resistant pathogens is a grave concern everywhere and this has consequences for all kinds of human activities. Herein, we showed that N-palmitoylethanolamine-derived cationic lipid (cN16E) had a lower minimum inhibitory concentration (MIC) against both Gram-positive and Gram-negative bacteria when it was loaded with Butea monosperma seed lectin (BMSL). The analysis using lectin-FITC conjugate labelling indicated that the improved antibacterial activity of BMSL conjugation was due to bacterial cell surface glycan recognition. Live and dead staining experiments revealed that the BMSL-cN16E conjugate (BcN16E) exerts antibacterial activity by damaging the bacterial membrane. BcN16E antimicrobial activity was demonstrated using an infected zebrafish animal model because humans have 70 % genetic similarity to zebrafish. BcN16E therapeutic potential was established successfully by rescuing fish infected with uropathogenic Escherichia coli (UPEC). Remarkably, the rescued infected fish treated with BcN16E prevented reinfection without further therapy, indicating BcN16E immunomodulatory potential. Thus, the study examined the expression of immune-related genes, including tnfα, ifnγ, il-1ß, il-4, il-10, tlr-2, etc. There was a significant elevation in the expression of all these genes compared to control and fish treated with BMSL or cN16E alone. Interestingly, when the rescued zebrafish were reinfected with the same pathogen, the levels of expression of these genes were many folds higher than seen earlier. Radial immune diffusion analyses (RIA) using zebrafish serum revealed antibody production during the initial infection and treatment. Interestingly, reinfected fish had significant immunoprecipitation in RIA, a feature absent in the groups treated with cN16E, BMSL, and control. These results clearly show that the BcN16E complex not only rescued infected zebrafish but also conferred long-lasting protection in terms of immunomodulation that protects against multiple reinfections. The findings support that BcN16E has immense potential as a novel immunostimulant for various biomedical applications.


Assuntos
Imunomodulação , Testes de Sensibilidade Microbiana , Peixe-Zebra , Animais , Imunomodulação/efeitos dos fármacos , Modelos Animais de Doenças , Reinfecção/prevenção & controle , Antibacterianos/farmacologia , Lipídeos/sangue , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lectinas/farmacologia , Citocinas/metabolismo , Lectinas de Plantas/farmacologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/prevenção & controle , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia
5.
Can J Microbiol ; 70(4): 109-118, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134414

RESUMO

Enterotoxigenic Escherichia coli (ETEC) can cause intestinal inflammation and diarrhea in yaks, which has a negative impact on their economic value. In recent years, probiotics have gained increasing attention as a pure, natural, nontoxic, harmless, and residue-free additive. However, the underlying mechanisms by which probiotics safeguard against ETEC are not completely elucidated. This study aimed to investigate the protective effect of Enterococcus faecium (E. faecium) against ETEC infection in mice through oral gavage. Morphological changes were examined through light microscopy. The expressions of inflammatory cytokines (IL-1ß, IL-6, TNF-α, IL-10, NF-κB, and NLRP3), tight junction protein (ZO-1, Claudin-1), and pyroptosis (Caspase-1, Caspase-4, and gasdermin D (GSDMD)) were detected using immunohistochemistry and quantitative real-time PCR. The results indicate that ETEC infection triggers the activation of inflammation-related pathways (NF-κB) and NLRP3 inflammasome, leading to the expression of a large number of inflammatory cytokines. Additionally, the activation of NLRP3 leads to the release of GSDMD activation through Caspase-1, ultimately resulting in inflammatory injury and pyroptosis. Feeding mice E. faecium early resulted in an increase in the expression of tight junction protein, a reduction in inflammatory cytokines, and alleviation of inflammatory injury and pyroptosis in intestinal tissues. Our research indicates that E. faecium has the ability to antagonize ETEC and provide protection to the gastrointestinal mucosa in mice.


Assuntos
Enterococcus faecium , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Camundongos , Animais , NF-kappa B/genética , Escherichia coli Enterotoxigênica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Transdução de Sinais , Citocinas/genética , Citocinas/metabolismo , Infecções por Escherichia coli/prevenção & controle , Inflamação , Proteínas de Junções Íntimas
6.
BMC Public Health ; 24(1): 2041, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080627

RESUMO

INTRODUCTION: Exposure to Escherichia coli (E. coli) is a risk factor for diarrhoeal diseases, which pose a significant problem in refugee settlements. Refugee populations are exposed to faecal microorganisms through multiple pathways including sub-optimal sanitary facilities, contaminated drinking water, produce and food, flood water, bathing water, and soil among others. While these pathways are well-documented, specific exposure behaviours remain underexplored. We assessed exposure behaviour to E. coli among households in Imvepi refugee settlement, Uganda, and provided evidence-based recommendations for the design of interventions to reduce excreta-related disease in refugee settlements. METHODS: Guided by the Sanitation Safety Planning approach, we surveyed 426 households in Imvepi refugee settlement, Uganda, using a digitized questionnaire and an observation checklist. We collected data on the background characteristics and exposure behaviour of women and emancipated girls (minors living on their own, having borne a child, married, or pregnant). The outcome variable, E. coli exposure behaviour, was measured using a five-point Likert scale, assessing behaviours that increase the risk of exposure. Data were cleaned in Microsoft Excel and analyzed in Stata version 17. Descriptive statistics were performed to summarize the data. We used modified Poisson regression to determine the factors associated with the outcome. RESULTS: Over 59.4% (253) exhibited high-risk exposure behaviour. Residing in compound homes (Adjusted Prevalence Ratio (APR) = 0.72, 95% Confidence interval (CI): 0.58-0.90), being aged 35-49 years (APR = 0.76, 95% CI: 0.60-0.97), having household heads with post-primary education (APR = 0.54, 95% CI: 0.38-0.77), high knowledge (APR = 0.69, 95% CI: 0.59-0.80), and high-risk perceptions regarding exposure to E. coli (APR = 0.75, 95% CI: 0.64-0.88) were associated with a lower prevalence of high-risk E. coli exposure behaviours. Conversely, having sanitary facilities with excreta overflowing from the squat hole (APR = 1.26, 95% CI: 1.08-1.48) was associated with a higher prevalence of high-risk exposure behaviours. CONCLUSION: The study indicates a substantial prevalence of high-risk E. coli exposure behaviours in the refugee settlement.. There's a need to implement behaviour change interventions targeted at preventing or minimizing exposure, especially among households whose heads have low education attainment, those with young caretakers and those with limited knowledge and low-risk perceptions regarding exposure to E. coli.


Assuntos
Escherichia coli , Refugiados , Humanos , Refugiados/estatística & dados numéricos , Refugiados/psicologia , Feminino , Uganda/epidemiologia , Adulto , Escherichia coli/isolamento & purificação , Masculino , Adulto Jovem , Adolescente , Pessoa de Meia-Idade , Características da Família , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/prevenção & controle , Criança , Inquéritos e Questionários , Saneamento/normas , Fatores de Risco , Pré-Escolar , Exposição Ambiental/efeitos adversos
8.
Vaccine ; 42(7): 1757-1767, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38365487

RESUMO

Vaccines against Shiga toxin (Stx)-producing Escherichia coli (STEC) have not yet been developed. Two immunologically distinct serotypes of Stx (Stx1 and Stx2) are the main virulence factors of STEC. Thus, blocking their B subunits (StxB) from binding to the cell surface receptor globotriaosylceramide (Gb3) efficiently prevents the action of these toxins. We expressed Stx1B and Stx2B in E. coli inclusion bodies and reassembled them into pentamers by a stepwise dialysis. Stx1B pentamer fully protected mice against Stx1 challenge, but Stx2B pentamer failed to protect mice against Stx2 challenge. To explain those observations, we proposed that the pentamer of Stx2B readily dissociates into its constituent monomers, especially under in vivo conditions, thus being unable to induce pentamer-specific immunity. To increase pentamer stability, we fused the B subunit to a pentameric coiled-coil domain of the cartilage oligomeric matrix protein (COMP). This "five-to-five" fusion hybrid molecule (Stx2B-COMP) was shown to be protective against Stx2 challenge, demonstrating that the Stx2B subunit when leashed and bundled by a rigid pentameric coiled-coil domain mount a pentamer-specific immune response and efficiently neutralize the toxin both in vitro and in vivo. Our data strongly suggest that the Stx2B subunit moiety fluctuates between a pentameric and monomeric state within the fusion protein, which may increase the likelihood of the immune system recognizing the pentameric conformation for toxin neutralization.


Assuntos
Infecções por Escherichia coli , Vacinas , Camundongos , Animais , Escherichia coli , Infecções por Escherichia coli/prevenção & controle
9.
Gut Microbes ; 16(1): 2359691, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825856

RESUMO

The emergence of antimicrobial resistance (AMR) is a principal global health crisis projected to cause 10 million deaths annually worldwide by 2050. While the Gram-negative bacteria Escherichia coli is commonly found as a commensal microbe in the human gut, some strains are dangerously pathogenic, contributing to the highest AMR-associated mortality. Strains of E. coli that can translocate from the gastrointestinal tract to distal sites, called extraintestinal E. coli (ExPEC), are particularly problematic and predominantly afflict women, the elderly, and immunocompromised populations. Despite nearly 40 years of clinical trials, there is still no vaccine against ExPEC. One reason for this is the remarkable diversity in the ExPEC pangenome across pathotypes, clades, and strains, with hundreds of genes associated with pathogenesis including toxins, adhesins, and nutrient acquisition systems. Further, ExPEC is intimately associated with human mucosal surfaces and has evolved creative strategies to avoid the immune system. This review summarizes previous and ongoing preclinical and clinical ExPEC vaccine research efforts to help identify key gaps in knowledge and remaining challenges.


Assuntos
Infecções por Escherichia coli , Vacinas contra Escherichia coli , Escherichia coli Extraintestinal Patogênica , Humanos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Vacinas contra Escherichia coli/imunologia , Escherichia coli Extraintestinal Patogênica/genética , Animais
10.
Vaccine ; 42(10): 2707-2715, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503663

RESUMO

Avian pathogenic Escherichia coli (APEC) is primarily responsible for causing septicemia, pneumonitis, peritonitis, swollen head syndrome, and salpingitis in poultry, leading to significant losses in the poultry sector, particularly within the broiler industry. The removal of the lpxL and lpxM genes led to an eightfold decrease in the endotoxin levels of wild APEC strains. In this study, mutant strains of lpxL/lpxM and their O1, O2, and O78 wild-type strains were developed for an inactivated vaccine (referred to as the mutant vaccine and the wild-type vaccine, respectively), and the safety and effectiveness of these two prototype vaccines were assessed in white Leghorn chickens. Findings indicated that chickens immunized with the mutant vaccine showed a return of appetite sooner post-immunization and experienced earlier disappearance of nodules at the injection site compared to those immunized with the wild-type vaccine. Pathological examinations revealed that lesions were still present in the liver, lung, and injection site in chickens vaccinated with the wild-type vaccine 14 days post-vaccination (dpv), whereas no lesions were found in chickens vaccinated with the mutant vaccine at 14 dpv. There were no significant differences in antibody levels on the challenge day or in mortality or lesion scores between challenged birds immunized with either the mutant vaccine or the wild-type vaccine at the same dose. In this study, the safety of a single dose or overdose of the mutant vaccine and its efficacy at one dose were evaluated in broilers, and the results showed that the mutant vaccine had no adverse effects on or protected vaccinated broilers from challenge with the APEC O1, O2, or O78 strains. These results demonstrated that the mutant polyvalent inactivated vaccine is a competitive candidate against APEC O1, O2, and O78 infection compared to the wild-type vaccine.


Assuntos
Infecções por Escherichia coli , Vacinas contra Escherichia coli , Doenças das Aves Domésticas , Animais , Escherichia coli/genética , Galinhas , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Vacinas de Produtos Inativados/efeitos adversos
11.
Poult Sci ; 103(8): 103955, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917608

RESUMO

This systematic review aimed at investigating the role that biosecurity can have in preventing or controlling colibacillosis in broiler production. Primary studies with natural or experimental exposure to avian pathogenic Escherichia coli, evaluating any biosecurity measure to prevent or control colibacillosis in broiler chickens with at least one of the following outcomes: feed conversion ratio (FCR), condemnations at slaughter, and mortality due to colibacillosis, were included. A systematic search was carried out in 4 databases according to the Cochrane handbook and reported following the PRISMA 2020 directions. Studies (n = 3,886) were screened in a 2-phase process and data matching the inclusion criteria were extracted. Risk of bias assessment was performed. Four studies reporting biosecurity measures to prevent or control colibacillosis in broiler production were included. In all studies, only disinfection during either the pre-hatching period (n = 3) or the post-hatching period (n = 1) was evaluated as biosecurity measure in broiler production, as well as its effect on FCR (n = 2) and mortality (n = 4) due to colibacillosis. No studies with effects on condemnations at slaughter were found. Due to the heterogeneity of studies in regard to interventions and outcomes, meta-analysis was not carried out. The limited findings of this systematic review do not provide a comprehensive evidence to statistically evaluate the efficacy of biosecurity to prevent or control colibacillosis in broiler production. The scarcity of evidence found suggests that further and deeper investigations on the topic are needed, considering the variety of interventions related to biosecurity.


Assuntos
Criação de Animais Domésticos , Galinhas , Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/microbiologia , Criação de Animais Domésticos/métodos , Escherichia coli/fisiologia
12.
PLoS One ; 19(3): e0301029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517875

RESUMO

Colibacillosis, a disease caused by Escherichia coli in broiler chickens has serious implications on food safety, security, and economic sustainability. Antibiotics are required for treating the disease, while vaccination and biosecurity are used for its prevention. This systematic review and meta-analysis, conducted under the COST Action CA18217-European Network for Optimization of Veterinary Antimicrobial Treatment (ENOVAT), aimed to assess the efficacy of E. coli vaccination in broiler production and provide evidence-based recommendations. A comprehensive search of bibliographic databases, including, PubMed, CAB Abstracts, Web of Science and Agricola, yielded 2,722 articles. Following a defined protocol, 39 studies were selected for data extraction. Most of the studies were experimental infection trials, with only three field studies identified, underscoring the need for more field-based research. The selected studies reported various types of vaccines, including killed (n = 5), subunit (n = 8), outer membrane vesicles/protein-based (n = 4), live/live-attenuated (n = 16), and CpG oligodeoxynucleotides (ODN) (n = 6) vaccines. The risk of bias assessment revealed that a significant proportion of studies reporting mortality (92.3%) or feed conversion ratio (94.8%) as outcomes, had "unclear" regarding bias. The meta-analysis, focused on live-attenuated and CpG ODN vaccines, demonstrated a significant trend favoring both vaccination types in reducing mortality. However, the review also highlighted the challenges in reproducing colibacillosis in experimental setups, due to considerable variation in challenge models involving different routes of infection, predisposing factors, and challenge doses. This highlights the need for standardizing the challenge model to facilitate comparisons between studies and ensure consistent evaluation of vaccine candidates. While progress has been made in the development of E. coli vaccines for broilers, further research is needed to address concerns such as limited heterologous protection, practicability for application, evaluation of efficacy in field conditions and adoption of novel approaches.


Assuntos
Galinhas , Infecções por Escherichia coli , Doenças das Aves Domésticas , Vacinação , Animais , Galinhas/microbiologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Vacinação/veterinária , Escherichia coli/imunologia , Vacinas contra Escherichia coli/imunologia , Vacinas contra Escherichia coli/administração & dosagem
13.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38629856

RESUMO

Frequent incidence of postweaning enterotoxigenic Escherichia coli (ETEC) diarrhea in the swine industry contributes to high mortality rates and associated economic losses. In this study, a combination of butyric, caprylic, and capric fatty acid monoglycerides was investigated to promote intestinal integrity and host defenses in weanling pigs infected with ETEC. A total of 160 pigs were allotted to treatment groups based on weight and sex. Throughout the 17-d study, three treatment groups were maintained: sham-inoculated pigs fed a control diet (uninfected control [UC], n = 40), ETEC-inoculated pigs fed the same control diet (infected control [IC], n = 60), and ETEC-inoculated pigs fed the control diet supplemented with monoglycerides included at 0.3% of the diet (infected supplemented [MG], n = 60). After a 7-d acclimation period, pigs were orally inoculated on each of three consecutive days with either 3 mL of a sham-control (saline) or live ETEC culture (3 × 109 colony-forming units/mL). The first day of inoculations was designated as 0 d postinoculation (DPI), and all study outcomes reference this time point. Fecal, tissue, and blood samples were collected from 48 individual pigs (UC, n = 12; IC, n = 18; MG, n = 18) on 5 and 10 DPI for analysis of dry matter (DM), bacterial enumeration, inflammatory markers, and intestinal permeability. ETEC-inoculated pigs in both the IC and MG groups exhibited clear signs of infection including lower (P < 0.05) gain:feed and fecal DM, indicative of excess water in the feces, and elevated (P < 0.05) rectal temperatures, total bacteria, total E. coli, and total F18 ETEC during the peak-infection period (5 DPI). Reduced (P < 0.05) expression of the occludin, tumor necrosis factor α, and vascular endothelial growth factor A genes was observed in both ETEC-inoculated groups at the 5 DPI time point. There were no meaningful differences between treatments for any of the outcomes measured at 10 DPI. Overall, all significant changes were the result of the ETEC infection, not monoglyceride supplementation.


Infection caused by the bacterium known as enterotoxigenic Escherichia coli (ETEC) is a common disruptor of weaned pigs' health, leading to economic losses for the producers. To determine if nutritional supplementation could help protect against these losses, weaned pigs were assigned to one of three treatments: 1) uninfected and fed a standard nursery pig diet, 2) infected with ETEC and fed the same standard diet, or 3) infected with ETEC and fed the standard diet supplemented with a combination of butyric, caprylic, and capric fatty acid monoglycerides. Growth performance was tracked throughout the 17-d study and health outcomes were measured at the peak and resolution of ETEC infection. At the peak-infection time point, pigs that were infected with ETEC had lower fecal moisture content, greater fecal bacterial concentrations, and elevated body temperatures compared with uninfected pigs. Additionally, infection reduced expression of genes related to inflammation, angiogenesis, and the intestinal barrier during the peak-infection period. Overall, all significant changes were the result of the ETEC infection, and there were no meaningful differences observed between the different treatments.


Assuntos
Ração Animal , Suplementos Nutricionais , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Monoglicerídeos , Doenças dos Suínos , Animais , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/prevenção & controle , Escherichia coli Enterotoxigênica/fisiologia , Masculino , Feminino , Ração Animal/análise , Dieta/veterinária , Intestinos/microbiologia , Diarreia/veterinária , Diarreia/microbiologia , Fezes/microbiologia , Desmame
14.
Can J Vet Res ; 88(2): 38-44, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38595949

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is an important type of pathogenic bacteria that causes diarrhea in pigs. The objective of this study was to prepare a novel tetravalent vaccine to effectively prevent piglet diarrhea caused by E. coli. In order to realize the production of K88ac-K99-ST1-LTB tetravalent inactivated vaccine, the biological characteristics, stability, preservation conditions, and safety of the recombinant strain BL21(DE3) (pXKKSL4) were studied, and the vaccine efficacy and minimum immune dose were measured. The results indicated that the biological characteristics, target protein expression, and immunogenicity of the 1st to 10th generations of the strain were stable. Therefore, the basic seed generation was preliminarily set as the 1st to 10th generations. The results of the efficacy tests showed that the immune protection rate could reach 90% with 1 minimum lethal dose (MLD) virulent strain attack in mice. The immunogenicity was stable, and the minimum immune dose was 0.1 mL per mouse. Our research showed that the genetically engineered vaccine developed in this way could prevent piglet diarrhea caused by enterotoxigenic E. coli through adhesin and enterotoxin. In order to realize industrial production of the vaccine as soon as possible, we conducted immunological tests and production process research on the constructed K88ac-K99-ST1-LTB tetravalent inactivated vaccine. The results of this study provide scientific experimental data for the commercial production of vaccines and lay a solid foundation for their industrial production.


Escherichia coli entérotoxinogènes (ETEC) est un type important de bactéries pathogènes qui cause de la diarrhée chez les porcs. L'objectif de l'étude était de préparer un nouveau vaccin tétravalent pour prévenir efficacement la diarrhée causée par E. coli chez les porcelets. Afin de réaliser la production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB, les caractéristiques biologiques, la stabilité, les conditions de conservation, et la sécurité de la souche recombinante (BL21(DE3)(pXKKSL4) ont été étudiées et l'efficacité du vaccin et la dose immunitaire minimum ont été mesurées. Les résultats indiquent que les caractéristiques biologiques, l'expression des protéines cibles, et l'immunogénicité de la 1ère à la 10e génération de la souche étaient stables. Ainsi, la génération germinale de base a été établie de manière préliminaire comme étant de la 1ère à la 10e générations. Les résultats des tests d'efficacité ont démontré que le taux de protection immunitaire pouvait atteindre 90 % avec une attaque au moyen de 1 dose léthale minimale (MLD) d'une souche virulente chez les souris. L'immunogénicité était stable et la dose immunitaire minimum était de 0,1 mL par souris. Nos travaux ont démontré que le vaccin génétiquement élaboré développé de cette façon pourrait prévenir la diarrhée chez les porcelets causée par des E. coli entérotoxigénique via les adhésines et les entérotoxines. Afin d'atteindre la production industrielle de ce vaccin aussitôt que possible, nous avons mené des tests immunologiques et de la recherche sur le processus de production du vaccin tétravalent inactivé K88ac-K99-ST1-LTB. Les résultats de la présente étude fournissent des données scientifiques expérimentales pour la production commerciale de vaccins et jettent une base solide pour leur production industrielle.(Traduit par Docteur Serge Messier).


Assuntos
Toxinas Bacterianas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Vacinas contra Escherichia coli , Doenças dos Roedores , Doenças dos Suínos , Animais , Suínos , Camundongos , Enterotoxinas , Vacinas Combinadas , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Diarreia/prevenção & controle , Diarreia/veterinária , Diarreia/microbiologia , Proteínas de Escherichia coli/genética , Vacinas de Produtos Inativados , Anticorpos Antibacterianos , Doenças dos Suínos/microbiologia
15.
Nutrients ; 16(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38674854

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a commonly encountered foodborne pathogen that can cause hemorrhagic enteritis and lead to hemolytic uremic syndrome (HUS) in severe cases. Bifidobacterium is a beneficial bacterium that naturally exists in the human gut and plays a vital role in maintaining a healthy balance in the gut microbiota. This study investigated the protective effects of B. longum K5 in a mouse model of EHEC O157:H7 infection. The results indicated that pretreatment with B. longum K5 mitigated the clinical symptoms of EHEC O157:H7 infection and attenuated the increase in myeloperoxidase (MPO) activity in the colon of the mice. In comparison to the model group, elevated serum D-lactic acid concentrations and diamine oxidase (DAO) levels were prevented in the K5-EHEC group of mice. The reduced mRNA expression of tight junction proteins (ZO-1, Occludin, and Claudin-1) and mucin MUC2, as well as the elevated expression of virulence factors Stx1A and Stx2A, was alleviated in the colon of both the K5-PBS and K5-EHEC groups. Additionally, the increase in the inflammatory cytokine levels of TNF-α and IL-1ß was inhibited and the production of IL-4 and IL-10 was promoted in the K5-EHEC group compared with the model group. B. longum K5 significantly prevented the reduction in the abundance and diversity of mouse gut microorganisms induced by EHEC O157:H7 infection, including blocking the decrease in the relative abundance of Roseburia, Lactobacillus, and Oscillibacter. Meanwhile, the intervention with B. longum K5 promoted the production of acetic acid and butyric acid in the gut. This study provides insights into the use of B. longum K5 for developing probiotic formulations to prevent intestinal diseases caused by pathogenic bacterial infections.


Assuntos
Bifidobacterium longum , Colo , Infecções por Escherichia coli , Escherichia coli O157 , Microbioma Gastrointestinal , Probióticos , Animais , Camundongos , Probióticos/farmacologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/microbiologia , Colo/microbiologia , Colo/metabolismo , Modelos Animais de Doenças , Mucina-2/metabolismo , Citocinas/metabolismo , Peroxidase/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo
16.
Nat Commun ; 15(1): 3021, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589401

RESUMO

Preterm birth is currently the leading cause of neonatal morbidity and mortality. Genetic, immunological and infectious causes are suspected. Preterm infants have a higher risk of severe bacterial neonatal infections, most of which are caused by Escherichia coli an in particular E. coli K1strains. Women with history of preterm delivery have a high risk of recurrence and therefore constitute a target population for the development of vaccine against E. coli neonatal infections. Here, we characterize the immunological, microbiological and protective properties of a live attenuated vaccine candidate in adult female mice and their pups against after a challenge by K1 and non-K1 strains of E. coli. Our results show that the E. coli K1 E11 ∆aroA vaccine induces strong immunity, driven by polyclonal bactericidal antibodies. In our model of meningitis, mothers immunized prior to mating transfer maternal antibodies to pups, which protect newborn mice against various K1 and non-K1 strains of E. coli. Given the very high mortality rate and the neurological sequalae associated with neonatal E. coli K1 meningitis, our results constitute preclinical proof of concept for the development of a live attenuated vaccine against severe E. coli infections in women at risk of preterm delivery.


Assuntos
Infecções por Escherichia coli , Doenças do Recém-Nascido , Meningite , Nascimento Prematuro , Lactente , Adulto , Recém-Nascido , Feminino , Animais , Camundongos , Humanos , Escherichia coli/genética , Vacinas Atenuadas , Nascimento Prematuro/prevenção & controle , Recém-Nascido Prematuro , Infecções por Escherichia coli/prevenção & controle , Doenças do Recém-Nascido/etiologia , Anticorpos , Meningite/etiologia
17.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38198728

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the major bacterial infections, causing substantial economic losses globally in the swine industry. This study aimed to investigate the impact of low Saccharomyces cerevisiae fermentation postbiotics (SCFP), high SCFP, essential oil (EO), or their combination on the growth performance and health of weanling pigs during ETEC infection. Forty-eight male weanling pigs were randomly allocated to five groups: 1) control group (CON-basal diet, n = 16); 2) low SCFP group (LSC-basal diet + 1.25 g/kg SCFP, n = 8); 3) high SCFP group (HSC-basal diet + 2 g/kg SCFP, n = 8); 4) essential oil group (EO-basal diet + 0.4 g/kg EO, n = 8); 5) the SCFP and EO combination group (SE-basal diet + 1.25 g/kg SCFP + 0.4 g/kg EO, n = 8). On day 15 of the trial, pigs in CON were divided into positive control (PC) and negative control (NC), and all pigs, except in NC, were challenged with ETEC. Under the normal condition, dietary LSC, HSC, EO, and EO all increased average daily gain (ADG) (P < 0.05), and decreased F:G ratio (P < 0.05) accompanied by decreased malondialdehyde (MDA) and increases in catalase (CAT), total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC) indicating enhanced anti-oxidative capacity, as well as decreased IL-2, IL-8, INF-γ, indicating mitigated systemic inflammation. During ETEC infection, all treatments alleviated ETEC-induced ADG reduction, diarrhea, damages in intestinal permeability and morphology, and down-regulation of tight junctions (Claudin1, ZO-1, and Occludin), while HSC and EO exhibited additional protections. All treatments increased CAT, T-SOD, and T-AOC, and decreased MDA in serum and jejunal mucosa at similar degrees (P < 0.05). Moreover, all treatments alleviated ETEC-induced inflammation as shown by decreased IL-6, TNF-α, INF-γ, and increased IL-4 and IL-10 in serum or jejunal mucosa (P < 0.05), and enhanced the immunity by increased serum IgG and mucosal sIgA (P < 0.05). HSC and SE further reduced mucosal INF-γ and TNF-α than LSC or EO aligning with their additional protection against diarrhea during ETEC infection. Additionally, the key gut bacteria (e.g., Terrisporobacter) related to the benefits of SCFP and EO were identified. In sum, all treatments enhanced growth performance and protected against ETEC-induced intestinal damage through the regulation of redox and immune homeostasis. HSP and SE offered extra protection during disease for their additional control of inflammation. Our study provided new insight into the use of feed additives in the context of animal health states.


Weanling pigs are vulnerable to a variety of stressors and pathogen infections. Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea and growth retardation in weanling pigs. The postbiotics, Saccharomyces cerevisiae fermentation postbiotics (SCFP), and essential oil (EO, mainly thymol, and cinnamaldehyde) were reported to exert health benefits in different sites of the intestine. However, whether SCFP and EO have dose and synergistic effects on weanling pigs, especially against ETEC infection, is incompletely understood. Our research has revealed that SCFP, EO, and their combination all enhanced the growth performance and intestinal barrier function, and reduced diarrhea of piglets, albeit to varying degrees, under both health conditions and ETEC infection. We further elucidated the disparity in the regulation of redox and immune homeostasis by SCFP, EO, and their combination contributing to their different action in distinct states. This has led to a reevaluation of the function of additives in the context of gut health and disease susceptibility.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Óleos Voláteis , Doenças dos Suínos , Suínos , Masculino , Animais , Saccharomyces cerevisiae , Fator de Necrose Tumoral alfa , Óleos Voláteis/farmacologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Diarreia/microbiologia , Diarreia/veterinária , Dieta/veterinária , Inflamação/veterinária , Superóxido Dismutase , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologia , Ração Animal/análise , Desmame
18.
Microbiol Spectr ; 12(4): e0415323, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364078

RESUMO

Enterotoxigenic Escherichia coli (ETEC) strains that produce various adhesins and one or two enterotoxins are the leading causes of children's diarrhea and travelers' diarrhea. MecVax, a multivalent ETEC vaccine candidate, consists of two proteins, an adhesin multiepitope fusion antigen (MEFA) that stimulates antibodies to the seven most important ETEC adhesins (CFA/I and CS1-CS6) and a toxoid fusion antigen which stimulates antibodies against ETEC enterotoxins (heat-labile toxin and heat-stable toxin). CFA MEFA-II, another polyvalent MEFA protein, has been demonstrated to stimulate antibodies to another five important ETEC adhesins (CS7, CS12, CS14, CS17, and CS21). We hypothesize that MecVax coverage and efficacy can be expanded if MecVax could stimulate antibodies to all 12 adhesins. In this study, we supplemented MecVax with CFA MEFA-II, examined broad immunity to the 12 targeted ETEC adhesins and 2 ETEC toxins (STa, LT) in mice, and assessed mouse antibody functions for inhibiting the adherence of the 12 adhesins and neutralizing the enterotoxicity of 2 toxins, thus assessing the potential application of a broadly protective pan-ETEC vaccine. Mice intramuscularly immunized with MecVax and CFA MEFA-II developed robust antibody responses to the 12 ETEC adhesins and 2 toxins; furthermore, mouse serum antibodies showed functional activities against the adherence from each of the targeted adhesins and the enterotoxicity of either toxin. Data also indicated that CFA MEFA-II was antigenically compatible with MecVax. These results demonstrated that the inclusion of CFA MEFA-II further expands MecVax broad immunogenicity and protection coverage, suggesting the feasibility of developing a vaccine against all important diarrheal ETEC strains.IMPORTANCEThere are no vaccines licensed for Enterotoxigenic Escherichia coli (ETEC), a leading cause of children's diarrhea and the most common cause of travelers' diarrhea. Since ETEC strains produce over 25 adhesins and 2 distinctive enterotoxins, heterogeneity is a key obstacle to vaccine development. MecVax, a multivalent ETEC vaccine candidate, induces protective antibodies against the seven most important adhesins (CFA/I and CS1-CS6) associated with two-thirds of ETEC clinical cases. However, ETEC prevalence shifts chronically and geographically, and other adhesins are also associated with clinical cases. MecVax would become a pan-ETEC vaccine if it also protects against the remaining important adhesins. This study demonstrated that MecVax supplemented with adhesin protein CFA MEFA-II induces functional antibodies against 12 important ETEC adhesins (CFA/I, CS1-CS7, CS12, CS14, CS17, and CS21), enabling the development of a more broadly protective ETEC vaccine and further validating the application of the MEFA vaccinology platform for multivalent vaccine development.


Assuntos
Toxinas Bacterianas , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Vacinas contra Escherichia coli , Criança , Animais , Camundongos , Humanos , Toxinas Bacterianas/metabolismo , Escherichia coli Enterotoxigênica/metabolismo , Diarreia/prevenção & controle , Infecções por Escherichia coli/prevenção & controle , Anticorpos Antibacterianos , Viagem , Enterotoxinas , Vacinas contra Escherichia coli/metabolismo , Adesinas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
19.
NPJ Biofilms Microbiomes ; 10(1): 42, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697985

RESUMO

Post-weaning diarrhoea (PWD) in piglets presents a widespread problem in industrial pig production and is often caused by enterotoxigenic E. coli (ETEC) strains. Current solutions, such as antibiotics and medicinal zinc oxide, are unsustainable and are increasingly being prohibited, resulting in a dire need for novel solutions. Thus, in this study, we propose and evaluate a protein-based feed additive, comprising two bivalent heavy chain variable domain (VHH) constructs (VHH-(GGGGS)3-VHH, BL1.2 and BL2.2) as an alternative solution to manage PWD. We demonstrate in vitro that these constructs bind to ETEC toxins and fimbriae, whilst they do no affect bacterial growth rate. Furthermore, in a pig study, we show that oral administration of these constructs after ETEC challenge reduced ETEC proliferation when compared to challenged control piglets (1-2 log10 units difference in gene copies and bacterial count/g faeces across day 2-7) and resulted in week 1 enrichment of three bacterial families (Prevotellaceae (estimate: 1.12 ± 0.25, q = 0.0054), Lactobacillaceae (estimate: 2.86 ± 0.52, q = 0.0012), and Ruminococcaceae (estimate: 0.66 ± 0.18, q = 0.049)) within the gut microbiota that appeared later in challenged control piglets, thus pointing to an earlier transition towards a more mature gut microbiota. These data suggest that such VHH constructs may find utility in industrial pig production as a feed additive for tackling ETEC and reducing the risk of PWD in piglet populations.


Assuntos
Diarreia , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Microbioma Gastrointestinal , Doenças dos Suínos , Desmame , Animais , Suínos , Diarreia/microbiologia , Diarreia/prevenção & controle , Diarreia/veterinária , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Ração Animal , Fezes/microbiologia
20.
Prev Vet Med ; 230: 106258, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955116

RESUMO

Colibacillosis is one of the most important infectious diseases in modern poultry production. The complex nature of colibacillosis has made it challenging to produce an effective vaccine. As a control measure for colibacillosis outbreak in Finland, a vaccination program with a commercial colibacillosis vaccine and later also an autogenous vaccine was started for parent flocks in 2017. In this retrospective observational study from years 2016-2019, we evaluated first week and total mortality of broiler flocks (n= 6969) originating from parents with different colibacillosis vaccination status. Broiler flocks were divided into three groups according to vaccination status of their parent flocks. First group were flocks from parents with no colibacillosis vaccines; second group was flocks from parents vaccinated with commercial vaccine only; and third group was flocks from parents with both commercial and autogenous vaccine. Bayesian modelling was used to predict posterior distributions of first week mortality and total mortality of the broiler flocks. Results of the modelling revealed that broiler flocks from unvaccinated parents had the highest mortality rates (mean first week mortality 1.40 % and mean total mortality 4.33 %, respectively) whereas flocks from parents with a combination of commercial and autogenous vaccinations had the lowest mortality rates (mean first week mortality 0,91 % and mean total mortality 3,14 %). The mortalities from broilers flocks from parents with only commercial vaccine fell in between these groups. Also, standard deviations of mortality rates were lower in broilers from parents with commercial or both vaccines. This demonstrates that in addition to lowering the mean mortality rates, the vaccinations made high mortality broiler flocks less common. Best performance was obtained when autogenous vaccine was combined to the commercial vaccine. The autogenous vaccine consists of the same type of Escherichia coli strain that was causing most colibacillosis cases during the study period in Finland. This study adds to the evidence of benefits of colibacillosis vaccines during outbreaks. It also demonstrates the importance of the knowledge of the types of APEC strains causing outbreaks to produce effective autogenous vaccines.


Assuntos
Galinhas , Doenças das Aves Domésticas , Vacinação , Animais , Finlândia/epidemiologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/mortalidade , Doenças das Aves Domésticas/microbiologia , Estudos Retrospectivos , Vacinação/veterinária , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/mortalidade , Infecções por Escherichia coli/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA