Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.020
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 213(2): 187-203, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38829131

RESUMO

The RING finger (RNF) family, a group of E3 ubiquitin ligases, plays multiple essential roles in the regulation of innate immunity and resistance to viral infection in mammals. However, it is still unclear whether RNF proteins affect the production of IFN-I and the replication of avian influenza virus (AIV) in ducks. In this article, we found that duck RNF216 (duRNF216) inhibited the duRIG-I signaling pathway. Conversely, duRNF216 deficiency enhanced innate immune responses in duck embryonic fibroblasts. duRNF216 did not interacted with duRIG-I, duMDA5, duMAVS, duSTING, duTBK1, or duIRF7 in the duck RIG-I pathway. However, duRNF216 targeted duTRAF3 and inhibited duMAVS in the recruitment of duTRAF3 in a dose-dependent manner. duRNF216 catalyzed K48-linked polyubiquitination of duck TRAF3, which was degraded by the proteasome pathway. Additionally, AIV PB1 protein competed with duTRAF3 for binding to duRNF216 to reduce degradation of TRAF3 by proteasomes in the cytoplasm, thereby slightly weakening duRNF216-mediated downregulation of IFN-I. Moreover, although duRNF216 downregulated the IFN-ß expression during virus infection, the expression level of IFN-ß in AIV-infected duck embryonic fibroblasts overexpressing duRNF216 was still higher than that in uninfected cells, which would hinder the viral replication. During AIV infection, duRNF216 protein targeted the core protein PB1 of viral polymerase to hinder viral polymerase activity and viral RNA synthesis in the nucleus, ultimately strongly restricting viral replication. Thus, our study reveals a new mechanism by which duRNF216 downregulates innate immunity and inhibits AIV replication in ducks. These findings broaden our understanding of the mechanisms by which the duRNF216 protein affects AIV replication in ducks.


Assuntos
Patos , Imunidade Inata , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Transdução de Sinais , Ubiquitina-Proteína Ligases , Replicação Viral , Animais , Patos/imunologia , Patos/virologia , Replicação Viral/imunologia , Transdução de Sinais/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/fisiologia , Imunidade Inata/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Fibroblastos/imunologia , Fibroblastos/virologia , Proteínas Aviárias/imunologia , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Ubiquitinação , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/imunologia
2.
J Biol Chem ; 300(6): 107395, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768812

RESUMO

B2 haplotype major histocompatibility complex (MHC) has been extensively reported to confer resistance to various avian diseases. But its peptide-binding motif is unknown, and the presenting peptide is rarely identified. Here, we identified its peptide-binding motif (X-A/V/I/L/P/S/G-X-X-X-X-X-X-V/I/L) in vitro using Random Peptide Library-based MHC I LC-MS/MS analysis. To further clarify the structure basis of motif, we determined the crystal structure of the BF2∗02:01-PB2552-560 complex at 1.9 Å resolution. We found that BF2∗02:01 had a relatively wide antigen-binding groove, and the structural characterization of pockets was consistent with the characterization of peptide-binding motif. The wider features of the peptide-binding motif and increased number of peptides bound by BF2∗02:01 than BF2∗04:01 might resolve the puzzles for the presence of potential H9N2 resistance in B2 chickens. Afterward, we explored the H9N2 avian influenza virus (AIV)-induced cellular immune response in B2 haplotype chickens in vivo. We found that ratio of CD8+ T cell and kinetic expression of cytotoxicity genes including Granzyme K, interferon-γ, NK lysin, and poly-(ADP-ribose) polymerase in peripheral blood mononuclear cells were significantly increased in defending against H9N2 AIV infection. Especially, we selected 425 epitopes as candidate epitopes based on the peptide-binding motif and further identified four CD8+ T-cell epitopes on H9N2 AIV including NS198-106, PB2552-560, NP182-190, and NP455-463 via ELI-spot interferon-γ detections after stimulating memory lymphocytes with peptides. More importantly, these epitopes were found to be conserved in H7N9 AIV and H9N2 AIV. These findings provide direction for developing effective T cell epitope vaccines using well-conserved internal viral antigens in chickens.


Assuntos
Galinhas , Epitopos de Linfócito T , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Vírus da Influenza A Subtipo H9N2/imunologia , Animais , Epitopos de Linfócito T/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo
3.
J Virol ; 98(3): e0112923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305155

RESUMO

The global circulation of clade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) in poultry and wild birds, increasing mammal infections, continues to pose a public health threat and may even form a pandemic. An efficacious vaccine against H5Ny HPAIVs is crucial for emergency use and pandemic preparedness. In this study, we developed a parainfluenza virus 5 (PIV5)-based vaccine candidate expressing hemagglutinin (HA) protein of clade 2.3.4.4b H5 HPAIV, termed rPIV5-H5, and evaluated its safety and efficacy in mice and ferrets. Our results demonstrated that intranasal immunization with a single dose of rPIV5-H5 could stimulate H5-specific antibody responses, moreover, a prime-boost regimen using rPIV5-H5 stimulated robust humoral, cellular, and mucosal immune responses in mice. Challenge study showed that rPIV5-H5 prime-boost regimen provided sterile immunity against lethal clade 2.3.4.4b H5N1 virus infection in mice and ferrets. Notably, rPIV5-H5 prime-boost regimen provided protection in mice against challenge with lethal doses of heterologous clades 2.2, 2.3.2, and 2.3.4 H5N1, and clade 2.3.4.4h H5N6 viruses. These results revealed that rPIV5-H5 can elicit protective immunity against a diverse clade of highly pathogenic H5Ny virus infection in mammals, highlighting the potential of rPIV5-H5 as a pan-H5 influenza vaccine candidate for emergency use.IMPORTANCEClade 2.3.4.4b H5Ny highly pathogenic avian influenza viruses (HPAIVs) have been widely circulating in wild birds and domestic poultry all over the world, leading to infections in mammals, including humans. Here, we developed a recombinant PIV5-vectored vaccine candidate expressing the HA protein of clade 2.3.4.4b H5 virus. Intranasal immunization with rPIV5-H5 in mice induced airway mucosal IgA responses, high levels of antibodies, and robust T-cell responses. Importantly, rPIV5-H5 conferred complete protection in mice and ferrets against clade 2.3.4.4b H5N1 virus challenge, the protective immunity was extended against heterologous H5Ny viruses. Taken together, our data demonstrate that rPIV5-H5 is a promising vaccine candidate against diverse H5Ny influenza viruses in mammals.


Assuntos
Virus da Influenza A Subtipo H5N1 , Virus da Influenza A Subtipo H5N6 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Vírus da Parainfluenza 5 , Animais , Humanos , Camundongos , Furões/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Celular , Imunidade Humoral , Imunidade nas Mucosas , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N6/química , Virus da Influenza A Subtipo H5N6/classificação , Virus da Influenza A Subtipo H5N6/genética , Virus da Influenza A Subtipo H5N6/imunologia , Influenza Aviária/imunologia , Influenza Aviária/prevenção & controle , Influenza Aviária/transmissão , Influenza Aviária/virologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Preparação para Pandemia/métodos , Vírus da Parainfluenza 5/genética , Vírus da Parainfluenza 5/imunologia , Vírus da Parainfluenza 5/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Administração Intranasal , Aves Domésticas/virologia , Imunoglobulina A/imunologia , Linfócitos T/imunologia
5.
Microb Pathog ; 195: 106871, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39163919

RESUMO

The H9N2 avian influenza virus (AIV) is spreading worldwide. Presence of H9N2 virus tends to increase the chances of infection with other pathogens which can lead to more serious economic losses. In a previous study, a regulated delayed lysis Salmonella vector was used to deliver a DNA vaccine named pYL233 encoding M1 protein, mosaic HA protein and chicken GM-CSF adjuvant. To further increase its efficiency, chitosan as a natural adjuvant was applied in this study. The purified plasmid pYL233 was coated with chitosan to form a DNA containing nanoparticles (named CS233) by ionic gel method and immunized by intranasal boost immunization in birds primed by oral administration with Salmonella strain. The CS233 DNA nanoparticle has a particle size of about 150 nm, with an encapsulation efficiency of 93.2 ± 0.12 % which protected the DNA plasmid from DNase I digestion and could be stable for a period of time at 37°. After intranasal boost immunization, the CS233 immunized chickens elicited higher antibody response, elevated CD4+ T cells and CD8+ T cells activation and increased T-lymphocyte proliferation, as well as increased productions of IL-4 and IFN-γ. After challenge, chickens immunized with CS233 resulted in the lowest levels of pulmonary virus titer and viral shedding as compared to the other challenge groups. The results showed that the combination of intranasal immunization with chitosan-coated DNA vaccine and oral immunization with regulatory delayed lytic Salmonella strain could enhance the immune response and able to provide protection against H9N2 challenge.


Assuntos
Administração Intranasal , Anticorpos Antivirais , Galinhas , Quitosana , Imunidade Celular , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Aviária , Plasmídeos , Vacinas de DNA , Eliminação de Partículas Virais , Animais , Vírus da Influenza A Subtipo H9N2/imunologia , Vírus da Influenza A Subtipo H9N2/genética , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Influenza Aviária/prevenção & controle , Influenza Aviária/imunologia , Galinhas/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Anticorpos Antivirais/sangue , Plasmídeos/genética , Nanopartículas , Imunização Secundária , Linfócitos T CD8-Positivos/imunologia , Adjuvantes Imunológicos/administração & dosagem , Interferon gama , Interleucina-4 , Adjuvantes de Vacinas , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Linfócitos T CD4-Positivos/imunologia , Salmonella/imunologia , Salmonella/genética
6.
Protein Expr Purif ; 223: 106541, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38971212

RESUMO

Avian influenza poses a significant global health threat, with the potential for widespread pandemics and devastating consequences. Hemagglutinin (HA), a critical surface glycoprotein of influenza viruses, plays a pivotal role in viral entry and serves as a primary target for subunit vaccine development. In this study, we successfully cloned, expressed, and purified hemagglutinin from the circulating strain of H5N1 influenza virus using a robust molecular biology approach. The cloning process involved insertion of the synthetic HA gene into the pET21b vector, confirmed through double digestion and sequencing. SDS-PAGE analysis confirmed the presence of the expected 60 kDa protein band post-induction. Following expression, the protein was subjected to purification via Ni-NTA affinity chromatography, yielding pure protein fractions. Native PAGE analysis confirmed the protein's oligomeric forms, essential for optimal antigenicity. Western blot analysis further validated protein identity using anti-His and anti-HA antibodies. MALDI-TOF analysis confirmed the protein's sequence integrity, while hemagglutination assay demonstrated its biological activity in binding to N-acetyl neuraminic acid. These findings underscore the potential of recombinant hemagglutinin as a valuable antigen for diagnosis and biochemical assays as well as for vaccine development against avian influenza. In conclusion, this study represents a critical guide for bacterial production of H5N1 HA, which can be a cost-effective and simpler strategy compared to mammalian protein expression. Further research into optimizing vaccine candidates and production methods will be essential in combating the ongoing threat of avian influenza pandemics.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Virus da Influenza A Subtipo H5N1 , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Hemaglutinação , Influenza Aviária/prevenção & controle , Influenza Aviária/virologia , Influenza Aviária/imunologia , Influenza Aviária/genética , Clonagem Molecular , Expressão Gênica , Multimerização Proteica , Humanos , Aves
7.
Avian Pathol ; 53(5): 390-399, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38563198

RESUMO

Avian influenza (AI), caused by H9N2 subtype avian influenza virus (AIV), poses a serious threat to poultry farming and public health due to its transmissibility and pathogenicity. The PB2 protein is a major component of the viral RNA polymerase complex. It is of great importance to identify the antigenic determinants of the PB2 protein to explore the function of the PB2 protein. In this study, the PB2 sequence of H9N2 subtype AIV, from 1090 to 1689 bp, was cloned and expressed. The recombinant PB2 protein with cutting gel was used to immunize BALB/c mice. After cell fusion, the hybridoma cell lines secreting monoclonal antibodies (mAbs) targeting the PB2 protein were screened by indirect ELISA and western blotting, and the antigenic epitopes of mAbs were identified by constructing truncated overlapping fragments in the PB2 protein of H9N2 subtype AIV. The results showed that three hybridoma cell lines (4B7, 4D10, and 5H1) that stably secreted mAbs specific to the PB2 protein were screened; the heavy chain of 4B7 was IgG2α, those of 4D10 and 5H1 were IgG1, and all three mAbs had kappa light chain. Also, the minimum B-cell epitope recognized was 475LRGVRVSK482 and 528TITYSSPMMW537. Homology analysis showed that these two epitopes were conserved among the different subtypes of AIV strains and located on the surface of the PB2 protein. The above findings provide an experimental foundation for further investigation of the function of the PB2 protein and developing monoclonal antibody-based diagnostic kits.


Assuntos
Anticorpos Monoclonais , Epitopos de Linfócito B , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Camundongos Endogâmicos BALB C , Proteínas Virais , Vírus da Influenza A Subtipo H9N2/imunologia , Vírus da Influenza A Subtipo H9N2/genética , Animais , Anticorpos Monoclonais/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Camundongos , Influenza Aviária/virologia , Influenza Aviária/imunologia , Epitopos de Linfócito B/imunologia , Hibridomas , RNA Polimerase Dependente de RNA/genética , Anticorpos Antivirais/imunologia , Galinhas/virologia , Feminino
8.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731436

RESUMO

In our research, we explored a natural substance called Oxymatrine, found in a traditional Chinese medicinal plant, to fight against a common bird flu virus known as H9N2. This virus not only affects birds but can also pose a threat to human health. We focused on how this natural compound can help in stopping the virus from spreading in cells that line the lungs of birds and potentially humans. Our findings show that Oxymatrine can both directly block the virus and boost the body's immune response against it. This dual-action mechanism is particularly interesting because it indicates that Oxymatrine might be a useful tool in developing new ways to prevent and treat this type of bird flu. Understanding how Oxymatrine works against the H9N2 virus could lead to safer and more natural ways to combat viral infections in animals and humans, contributing to the health and well-being of society. The H9N2 Avian Influenza Virus (AIV) is a persistent health threat because of its rapid mutation rate and the limited efficacy of vaccines, underscoring the urgent need for innovative therapies. This study investigated the H9N2 AIV antiviral properties of Oxymatrine (OMT), a compound derived from traditional Chinese medicine, particularly focusing on its interaction with pulmonary microvascular endothelial cells (PMVECs). Employing an array of in vitro assays, including 50% tissue culture infectious dose, Cell Counting Kit-8, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blot, we systematically elucidated the multifaceted effects of OMT. OMT dose-dependently inhibited critical antiviral proteins (PKR and Mx1) and modulated the expression of type I interferons and key cytokines (IFN-α, IFN-ß, IL-6, and TNF-α), thereby affecting TLR3 signaling and its downstream elements (NF-κB and IRF-3). OMT's antiviral efficacy extended beyond TLR3-mediated responses, suggesting its potential as a versatile antiviral agent. This study not only contributes to the growing body of research on the use of natural compounds as antiviral agents but also underscores the importance of further investigating the broader application of OMT for combating viral infections.


Assuntos
Antivirais , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Matrinas , Transdução de Sinais , Receptor 3 Toll-Like , Animais , Cães , Humanos , Antivirais/farmacologia , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Influenza Aviária/tratamento farmacológico , Influenza Aviária/imunologia , Células Madin Darby de Rim Canino , Transdução de Sinais/efeitos dos fármacos , Receptor 3 Toll-Like/metabolismo
9.
J Virol ; 96(18): e0123322, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36098512

RESUMO

Highly pathogenic avian influenza viruses (HPAIVs) of the Goose/Guangdong (Gs/Gd) lineage are an emerging threat to wild birds. In the 2016-2017 H5N8 outbreak, unexplained variability was observed in susceptible species, with some reports of infected birds dying in high numbers and other reports of apparently subclinical infections. This experimental study was devised to test the hypothesis that previous infection with a less-virulent HPAIV (i.e., 2014 H5N8) provides long-term immunity against subsequent infection with a more-virulent HPAIV (i.e., 2016 H5N8). Therefore, two species of wild ducks-the more-susceptible tufted duck (Aythya fuligula) and the more-resistant mallard (Anas platyrhynchos)-were serially inoculated, first with 2014 H5N8 and after 9 months with 2016 H5N8. For both species, a control group of birds was first sham inoculated and after 9 months inoculated with 2016 H5N8. Subsequent infection with the more-virulent 2016 H5N8 caused no clinical signs in tufted ducks that had previously been infected with 2014 H5N8 (n = 6) but caused one death in tufted ducks that had been sham inoculated (n = 7). In mallards, 2016 H5N8 infection caused significant body weight loss in previously sham-inoculated birds (n = 8) but not in previously infected birds (n = 7). IMPORTANCE This study showed that ducks infected with a less-virulent HPAIV developed immunity that was protective against a subsequent infection with a more-virulent HPAIV 9 months later. Following 2014 H5N8 infection, the proportion of birds with detectable influenza nucleoprotein antibody declined from 100% (8/8) in tufted ducks and 78% (7/9) in mallards after 1 month to 33% (2/6) in tufted ducks and 29% (2/7) in mallards after 9 months. This finding helps predict the expected impact that an HPAIV outbreak may have on wild bird populations, depending on whether they are immunologically naive or have survived previous infection with HPAIV.


Assuntos
Animais Selvagens , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Patos , Vírus da Influenza A Subtipo H5N8/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Intervalo Serial de Infecção
10.
J Virol ; 96(5): e0040821, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33853954

RESUMO

PA-X is a nonstructural protein of influenza A virus (IAV), which is encoded by the polymerase acidic (PA) N-terminal region that contains a C-terminal +1 frameshifted sequence. IAV PA-X protein modulates virus-induced host innate immune responses and viral pathogenicity via suppression of host gene expression or cellular shutoff, through cellular mRNA cleavage. Highly pathogenic avian influenza viruses (HPAIV) of the H5N1 subtype naturally infect different avian species, they have an enormous economic impact in the poultry farming, and they also have zoonotic and pandemic potential, representing a risk to human public health. In the present study, we describe a novel bacterium-based approach to identify amino acid residues in the PA-X protein of the HPAIV A/Viet Nam/1203/2004 H5N1 that are important for its ability to inhibit host protein expression or cellular shutoff activity. Identified PA-X mutants displayed a reduced shutoff activity compared to that of the wild-type A/Viet Nam/1203/2004 H5N1 PA-X protein. Notably, this new bacterium-based screening allowed us to identify amino acid residues widely distributed over the entire N-terminal region of PA-X. Furthermore, we found that some of the residues affecting A/Viet Nam/1203/2004 H5N1 PA-X host shutoff activity also affect PA polymerase activity in a minigenome assay. This information could be used for the rational design of new and more effective compounds with antiviral activity against IAV. Moreover, our results demonstrate the feasibility of using this bacterium-based approach to identify amino acid residues important for the activity of viral proteins to inhibit host gene expression. IMPORTANCE Highly pathogenic avian influenza viruses continue to pose a huge threat to global animal and human health. Despite of the limited genome size of Influenza A virus (IAV), the virus encodes eight main viral structural proteins and multiple accessory nonstructural proteins, depending on the IAV type, subtype, or strain. One of the IAV accessory proteins, PA-X, is encoded by the polymerase acidic (PA) protein and is involved in pathogenicity through the modulation of IAV-induced host inflammatory and innate immune responses. However, the molecular mechanism(s) of IAV PA-X regulation of the host immune response is not well understood. Here, we used, for the first time, a bacterium-based approach for the identification of amino acids important for the ability of IAV PA-X to induce host shutoff activity and describe novel residues relevant for its ability to inhibit host gene expression, and their contribution in PA polymerase activity.


Assuntos
Aminoácidos , Expressão Gênica , Interações Hospedeiro-Patógeno , Virus da Influenza A Subtipo H5N1 , Proteínas Repressoras , Proteínas não Estruturais Virais , Aminoácidos/genética , Aminoácidos/imunologia , Animais , Bactérias/virologia , Aves/imunologia , Expressão Gênica/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Vietnã , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia
11.
Proc Natl Acad Sci U S A ; 117(1): 337-345, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871151

RESUMO

Out of the 14 avian ß-defensins identified in the Gallus gallus genome, only 3 are present in the chicken egg, including the egg-specific avian ß-defensin 11 (Gga-AvBD11). Given its specific localization and its established antibacterial activity, Gga-AvBD11 appears to play a protective role in embryonic development. Gga-AvBD11 is an atypical double-sized defensin, predicted to possess 2 motifs related to ß-defensins and 6 disulfide bridges. The 3-dimensional NMR structure of the purified Gga-AvBD11 is a compact fold composed of 2 packed ß-defensin domains. This fold is the archetype of a structural family, dubbed herein as avian-double-ß-defensins (Av-DBD). We speculate that AvBD11 emanated from a monodomain gene ancestor and that similar events might have occurred in arthropods, leading to another structural family of less compact DBDs. We show that Gga-AvBD11 displays antimicrobial activities against gram-positive and gram-negative bacterial pathogens, the avian protozoan Eimeria tenella, and avian influenza virus. Gga-AvBD11 also shows cytotoxic and antiinvasive activities, suggesting that it may not only be involved in innate protection of the chicken embryo, but also in the (re)modeling of embryonic tissues. Finally, the contribution of either of the 2 Gga-AvBD11 domains to these biological activities was assessed, using chemically synthesized peptides. Our results point to a critical importance of the cationic N-terminal domain in mediating antibacterial, antiparasitic, and antiinvasive activities, with the C-terminal domain potentiating the 2 latter activities. Strikingly, antiviral activity in infected chicken cells, accompanied by marked cytotoxicity, requires the full-length protein.


Assuntos
Proteínas Aviárias/genética , Embrião de Galinha/imunologia , Galinhas/fisiologia , Desenvolvimento Embrionário/imunologia , beta-Defensinas/genética , Sequência de Aminoácidos , Animais , Proteínas Aviárias/ultraestrutura , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/veterinária , Bioensaio , Embrião de Galinha/crescimento & desenvolvimento , Embrião de Galinha/microbiologia , Embrião de Galinha/parasitologia , Coccidiose/imunologia , Coccidiose/parasitologia , Coccidiose/veterinária , Eimeria tenella/imunologia , Evolução Molecular , Genoma , Imunidade Inata/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , Ressonância Magnética Nuclear Biomolecular , Filogenia , Domínios Proteicos/genética , Domínios Proteicos/imunologia
12.
J Gen Virol ; 102(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33544070

RESUMO

Influenza A viruses encode several accessory proteins that have host- and strain-specific effects on virulence and replication. The accessory protein PA-X is expressed due to a ribosomal frameshift during translation of the PA gene. Depending on the particular combination of virus strain and host species, PA-X has been described as either acting to reduce or increase virulence and/or virus replication. In this study, we set out to investigate the role PA-X plays in H9N2 avian influenza viruses, focusing on the natural avian host, chickens. We found that the G1 lineage A/chicken/Pakistan/UDL-01/2008 (H9N2) PA-X induced robust host shutoff in both mammalian and avian cells and increased virus replication in mammalian, but not avian cells. We further showed that PA-X affected embryonic lethality in ovo and led to more rapid viral shedding and widespread organ dissemination in vivo in chickens. Overall, we conclude PA-X may act as a virulence factor for H9N2 viruses in chickens, allowing faster replication and wider organ tropism.


Assuntos
Vírus da Influenza A Subtipo H9N2/metabolismo , Influenza Aviária/virologia , Influenza Humana/virologia , Proteínas Repressoras/metabolismo , Proteínas não Estruturais Virais/metabolismo , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Galinhas , Citocinas/genética , Citocinas/imunologia , Humanos , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/patogenicidade , Influenza Aviária/genética , Influenza Aviária/imunologia , Influenza Humana/genética , Influenza Humana/imunologia , Pulmão/imunologia , Pulmão/virologia , Camundongos , Proteínas Repressoras/genética , Proteínas não Estruturais Virais/genética , Fatores de Virulência/genética , Replicação Viral , Eliminação de Partículas Virais
13.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999029

RESUMO

The highly pathogenic avian influenza virus (HPAIV) H5N1 A/goose/Guangdong/1996 lineage (Gs/GD) is endemic in poultry across several countries in the world and has caused sporadic lethal infections in humans. Vaccines are important in HPAIV control both for poultry and in prepandemic preparedness for humans. This study assessed inactivated prepandemic vaccine strains in a One Health framework across human and agricultural and wildlife animal health, focusing on the genetic and antigenic diversity of field H5N1 Gs/GD viruses from the agricultural sector and assessing cross-protection in a chicken challenge model. Nearly half (47.92%) of the 48 combinations of vaccine and challenge viruses examined had bird protection of 80% or above. Most vaccinated groups had prolonged mean death times (MDT), and the virus-shedding titers were significantly lower than those of the sham-vaccinated group (P ≤ 0.05). The antibody titers in the prechallenge sera were not predictive of protection. Although vaccinated birds had higher titers of hemagglutination-inhibiting (HI) antibodies against the homologous vaccine antigen, most of them also had lower or no antibody titer against the challenge antigen. The comparison of all parameters and homologous or closely related vaccine and challenge viruses gave the best prediction of protection. Through additional analysis, we identified a pattern of epitope substitutions in the hemagglutinin (HA) of each challenge virus that impacted protection, regardless of the vaccine used. These changes were situated in the antigenic sites and/or reported epitopes associated with virus escape from antibody neutralization. As a result, this study highlights virus diversity, immune response complexity, and the importance of strain selection for vaccine development to control H5N1 HPAIV in the agricultural sector and for human prepandemic preparedness. We suggest that the engineering of specific antigenic sites can improve the immunogenicity of H5 vaccines.IMPORTANCE The sustained circulation of highly pathogenic avian influenza virus (HPAIV) H5N1 A/goose/Guangdong/1996 (Gs/GD) lineage in the agricultural sector and some wild birds has led to the evolution and selection of distinct viral lineages involved in escape from vaccine protection. Our results using inactivated vaccine candidates from the human pandemic preparedness program in a chicken challenge model identified critical antigenic conformational epitopes on H5 hemagglutinin (HA) from different clades that were associated with antibody recognition and escape. Even though other investigators have reported epitope mapping in the H5 HA, much of this information pertains to epitopes reactive to mouse antibodies. Our findings validate changes in antigenic epitopes of HA associated with virus escape from antibody neutralization in chickens, which has direct relevance to field protection and virus evolution. Therefore, knowledge of these immunodominant regions is essential to proactively develop diagnostic tests, improve surveillance platforms to monitor AIV outbreaks, and design more efficient and broad-spectrum agricultural and human prepandemic vaccines.


Assuntos
Proteção Cruzada/imunologia , Gansos/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Influenza Aviária/prevenção & controle , Vacinas de Produtos Inativados/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Variação Antigênica , Galinhas/imunologia , Epitopos , Gansos/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/genética , Vacinação/veterinária , Eliminação de Partículas Virais
14.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32611751

RESUMO

Low-pathogenicity avian influenza A(H9N2) viruses, enzootic in poultry populations in Asia, are associated with fewer confirmed human infections but higher rates of seropositivity compared to A(H5) or A(H7) subtype viruses. Cocirculation of A(H5) and A(H7) viruses leads to the generation of reassortant viruses bearing A(H9N2) internal genes with markers of mammalian adaptation, warranting continued surveillance in both avian and human populations. Here, we describe active surveillance efforts in live poultry markets in Vietnam in 2018 and compare representative viruses to G1 and Y280 lineage viruses that have infected humans. Receptor binding properties, pH thresholds for HA activation, in vitro replication in human respiratory tract cells, and in vivo mammalian pathogenicity and transmissibility were investigated. While A(H9N2) viruses from both poultry and humans exhibited features associated with mammalian adaptation, one human isolate from 2018, A/Anhui-Lujiang/39/2018, exhibited increased capacity for replication and transmission, demonstrating the pandemic potential of A(H9N2) viruses.IMPORTANCE A(H9N2) influenza viruses are widespread in poultry in many parts of the world and for over 20 years have sporadically jumped species barriers to cause human infection. As these viruses continue to diversify genetically and antigenically, it is critical to closely monitor viruses responsible for human infections, to ascertain if A(H9N2) viruses are acquiring properties that make them better suited to infect and spread among humans. In this study, we describe an active poultry surveillance system established in Vietnam to identify the scope of influenza viruses present in live bird markets and the threat they pose to human health. Assessment of a recent A(H9N2) virus isolated from an individual in China in 2018 is also reported, and it was found to exhibit properties of adaptation to humans and, importantly, it shows similarities to strains isolated from the live bird markets of Vietnam.


Assuntos
Evolução Molecular , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/imunologia , Influenza Aviária/virologia , Influenza Humana/virologia , Fenótipo , Replicação Viral/genética , Animais , Ásia , China , Modelos Animais de Doenças , Feminino , Variação Genética , Humanos , Influenza Aviária/imunologia , Influenza Aviária/transmissão , Influenza Humana/imunologia , Influenza Humana/transmissão , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Aves Domésticas/virologia , Doenças das Aves Domésticas/virologia , Vietnã
15.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32238581

RESUMO

Highly pathogenic avian influenza A(H5N8) viruses first emerged in China in 2010 and in 2014 spread throughout Asia and to Europe and the United States via migrating birds. Influenza A(H5N8) viruses were first detected in the Netherlands in 2014 and caused five outbreaks in poultry farms but were infrequently detected in wild birds. In 2016, influenza A(H5N8) viruses were reintroduced into the Netherlands, resulting in eight poultry farm outbreaks. This outbreak resulted in numerous dead wild birds with severe pathology. Phylogenetic analysis showed that the polymerase genes of these viruses had undergone extensive reassortment between outbreaks. Here, we investigated the differences in virulence between the 2014-15 and the 2016-17 outbreaks by characterizing the polymerase complex of influenza A(H5N8) viruses from both outbreaks. We found that viruses from the 2014-15 outbreak had significantly higher polymerase complex activity in both human and avian cell lines than did those from the 2016-17 outbreak. No apparent differences in the balance between transcription and replication of the viral genome were observed. Interestingly, the 2014-15 polymerase complexes induced significantly higher levels of interferon beta (IFN-ß) than the polymerase complexes of the 2016-17 outbreak viruses, mediated via retinoic acid-inducible gene I (RIG-I). Inoculation of primary duck cells with recombinant influenza A(H5N8) viruses, including viruses with reassorted polymerase complexes, showed that the polymerase complexes from the 2014-15 outbreak induced higher levels of IFN-ß despite relatively minor differences in replication capacity. Together, these data suggest that despite the lower levels of polymerase activity, the higher 2016-17 influenza A(H5N8) virus virulence may be attributed to the lower level of activation of the innate immune system.IMPORTANCE Compared to the 2014-15 outbreak, the 2016-17 outbreak of influenza A(H5N8) viruses in the Netherlands and Europe was more virulent; the number of dead or diseased wild birds found and the severity of pathological changes were higher during the 2016-17 outbreak. The polymerase complex plays an important role in influenza virus virulence, and the gene segments of influenza A(H5N8) viruses reassorted extensively between the outbreaks. In this study, the 2014-15 polymerase complexes were found to be more active, which is counterintuitive with the observed higher virulence of the 2016-17 outbreak viruses. Interestingly, the 2014-15 polymerase complexes also induced higher levels of IFN-ß. These findings suggest that the higher virulence of influenza A(H5N8) viruses from the 2016-17 outbreak may be related to the lower induction of IFN-ß. An attenuated interferon response could lead to increased dissemination, pathology, and mortality, as observed in (wild) birds infected during the 2016-2017 outbreak.


Assuntos
Proteínas Aviárias , Surtos de Doenças , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Interferon beta , RNA Polimerase Dependente de RNA , Proteínas Virais , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/imunologia , Coturnix , Cães , Patos , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/imunologia , Influenza Aviária/epidemiologia , Influenza Aviária/genética , Influenza Aviária/imunologia , Interferon beta/genética , Interferon beta/imunologia , Células Madin Darby de Rim Canino , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
16.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321814

RESUMO

Low-pathogenic avian influenza viruses (LPAIVs) are genetically highly variable and have diversified into multiple evolutionary lineages that are primarily associated with wild-bird reservoirs. Antigenic variation has been described for mammalian influenza viruses and for highly pathogenic avian influenza viruses that circulate in poultry, but much less is known about antigenic variation of LPAIVs. In this study, we focused on H13 and H16 LPAIVs that circulate globally in gulls. We investigated the evolutionary history and intercontinental gene flow based on the hemagglutinin (HA) gene and used representative viruses from genetically distinct lineages to determine their antigenic properties by hemagglutination inhibition assays. For H13, at least three distinct genetic clades were evident, while for H16, at least two distinct genetic clades were evident. Twenty and ten events of intercontinental gene flow were identified for H13 and H16 viruses, respectively. At least two antigenic variants of H13 and at least one antigenic variant of H16 were identified. Amino acid positions in the HA protein that may be involved in the antigenic variation were inferred, and some of the positions were located near the receptor binding site of the HA protein, as they are in the HA protein of mammalian influenza A viruses. These findings suggest independent circulation of H13 and H16 subtypes in gull populations, as antigenic patterns do not overlap, and they contribute to the understanding of the genetic and antigenic variation of LPAIVs naturally circulating in wild birds.IMPORTANCE Wild birds play a major role in the epidemiology of low-pathogenic avian influenza viruses (LPAIVs), which are occasionally transmitted-directly or indirectly-from them to other species, including domestic animals, wild mammals, and humans, where they can cause subclinical to fatal disease. Despite a multitude of genetic studies, the antigenic variation of LPAIVs in wild birds is poorly understood. Here, we investigated the evolutionary history, intercontinental gene flow, and antigenic variation among H13 and H16 LPAIVs. The circulation of subtypes H13 and H16 seems to be maintained by a narrower host range, in particular gulls, than the majority of LPAIV subtypes and may therefore serve as a model for evolution and epidemiology of H1 to H12 LPAIVs in wild birds. The findings suggest that H13 and H16 LPAIVs circulate independently of each other and emphasize the need to investigate within-clade antigenic variation of LPAIVs in wild birds.


Assuntos
Variação Antigênica/genética , Vírus da Influenza A/genética , Influenza Aviária/genética , Animais , Animais Selvagens/virologia , Aves , Charadriiformes/virologia , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Especificidade de Hospedeiro/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Influenza Aviária/imunologia , Influenza Aviária/virologia , Filogenia , Filogeografia/métodos
17.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33115873

RESUMO

Influenza A viruses continue to circulate among wild birds and poultry worldwide, posing constant pandemic threats to humans. Effective control of emerging influenza viruses requires new broadly protective vaccines. Live attenuated influenza vaccines with truncations in nonstructural protein 1 (NS1) have shown broad protective efficacies in birds and mammals, which correlate with the ability to induce elevated interferon responses in the vaccinated hosts. Given the extreme diversity of influenza virus populations, we asked if we could improve an NS1-truncated live attenuated influenza vaccine developed for poultry (PC4) by selecting viral subpopulations with enhanced interferon-inducing capacities. Here, we deconstructed a de novo population of PC4 through plaque isolation, created a large library of clones, and assessed their interferon-inducing phenotypes. While most of the clones displayed the parental interferon-inducing phenotype in cell culture, few clones showed enhanced interferon-inducing phenotypes in cell culture and chickens. The enhanced interferon-inducing phenotypes were linked to either a deletion in NS1 (NS1Δ76-86) or a substitution in polymerase basic 2 protein (PB2-D309N). The NS1Δ76-86 deletion disrupted the putative eukaryotic translation initiation factor 4GI-binding domain and promoted the synthesis of biologically active interferons. The PB2-D309N substitution enhanced the early transcription of interferon mRNA, revealing a novel role for the 309D residue in suppression of interferon responses. We combined these mutations to engineer a novel vaccine candidate that induced additive amounts of interferons and stimulated protective immunity in chickens. Therefore, viral subpopulation screening approaches can guide the design of live vaccines with strong immunostimulatory properties.IMPORTANCE Effectiveness of NS1-truncated live attenuated influenza vaccines relies heavily on their ability to induce elevated interferon responses in vaccinated hosts. Influenza viruses contain diverse particle subpopulations with distinct phenotypes. We show that live influenza vaccines can contain underappreciated subpopulations with enhanced interferon-inducing phenotypes. The genomic traits of such virus subpopulations can be used to further improve the efficacy of the current live vaccines.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Interferons/imunologia , RNA Polimerase Dependente de RNA/genética , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Galinhas , Imunidade Inata , Vírus da Influenza A/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Influenza Aviária/imunologia , Influenza Aviária/prevenção & controle , Interferons/genética , Mutação , Fenótipo , RNA Polimerase Dependente de RNA/imunologia , Vacinação/veterinária , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Proteínas não Estruturais Virais/imunologia , Proteínas Virais/imunologia
18.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32102887

RESUMO

Ducks usually show little or no clinical signs following highly pathogenic avian influenza virus infection. In order to analyze whether the microbiota could contribute to the control of influenza virus replication in ducks, we used a broad-spectrum oral antibiotic treatment to deplete the microbiota before infection with a highly pathogenic H5N9 avian influenza virus. Antibiotic-treated ducks and nontreated control ducks did not show any clinical signs following H5N9 virus infection. We did not detect any significant difference in virus titers neither in the respiratory tract nor in the brain nor spleen. However, we found that antibiotic-treated H5N9 virus-infected ducks had significantly increased intestinal virus excretion at days 3 and 5 postinfection. This was associated with a significantly decreased antiviral immune response in the intestine of antibiotic-treated ducks. Our findings highlight the importance of an intact microbiota for an efficient control of avian influenza virus replication in ducks.IMPORTANCE Ducks are frequently infected with avian influenza viruses belonging to multiple subtypes. They represent an important reservoir species of avian influenza viruses, which can occasionally be transmitted to other bird species or mammals, including humans. Ducks thus have a central role in the epidemiology of influenza virus infection. Importantly, ducks usually show little or no clinical signs even following infection with a highly pathogenic avian influenza virus. We provide evidence that the microbiota contributes to the control of influenza virus replication in ducks by modulating the antiviral immune response. Ducks are able to control influenza virus replication more efficiently when they have an intact intestinal microbiota. Therefore, maintaining a healthy microbiota by limiting perturbations to its composition should contribute to the prevention of avian influenza virus spread from the duck reservoir.


Assuntos
Influenza Aviária/imunologia , Influenza Aviária/microbiologia , Influenza Aviária/terapia , Influenza Aviária/virologia , Microbiota/fisiologia , Replicação Viral/fisiologia , Animais , Animais Selvagens/virologia , Antibacterianos/uso terapêutico , Antivirais , Patos/microbiologia , Patos/virologia , Células Epiteliais , Humanos , Íleo/patologia , Vírus da Influenza A/imunologia , Intestinos/microbiologia , Pulmão/patologia , Microbiota/efeitos dos fármacos , Poli I-C/uso terapêutico , Sistema Respiratório/virologia , Carga Viral
19.
PLoS Pathog ; 15(2): e1007531, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30731004

RESUMO

Virus ecology and evolution play a central role in disease emergence. However, their relative roles will vary depending on the viruses and ecosystems involved. We combined field studies, phylogenetics and experimental infections to document with unprecedented detail the stages that precede initial outbreaks during viral emergence in nature. Using serological surveys we showed that in the absence of large-scale outbreaks, horses in Mongolia are routinely exposed to and infected by avian influenza viruses (AIVs) circulating among wild birds. Some of those AIVs are genetically related to an avian-origin virus that caused an epizootic in horses in 1989. Experimental infections showed that most AIVs replicate in the equine respiratory tract without causing lesions, explaining the absence of outbreaks of disease. Our results show that AIVs infect horses but do not spread, or they infect and spread but do not cause disease. Thus, the failure of AIVs to evolve greater transmissibility and to cause disease in horses is in this case the main barrier preventing disease emergence.


Assuntos
Cavalos/imunologia , Influenza Aviária/genética , Animais , Animais Selvagens , Ásia , Evolução Biológica , Aves , Surtos de Doenças , Transmissão de Doença Infecciosa/veterinária , Evolução Molecular , Cavalos/genética , Humanos , Influenza Aviária/imunologia , Influenza Humana , Infecções por Orthomyxoviridae/veterinária , Filogenia
20.
Vet Res ; 52(1): 8, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33436086

RESUMO

Since 2014, clade 2.3.4.4 has become the dominant epidemic branch of the Asian lineage H5 subtype highly pathogenic avian influenza virus (HPAIV) in southern and eastern China, while the H5N6 subtype is the most prevalent. We have shown earlier that lack of glycosylation at position 158 of the hemagglutinin (HA) glycoprotein due to the T160A mutation is a key determinant of the dual receptor binding property of clade 2.3.4.4 H5NX subtypes. Our present study aims to explore other effects of this site among H5N6 viruses. Here we report that N-linked glycosylation at site 158 facilitated the assembly of virus-like particles and enhanced virus replication in A549, MDCK, and chicken embryonic fibroblast (CEF) cells. Consistently, the HA-glycosylated H5N6 virus induced higher levels of inflammatory factors and resulted in stronger pathogenicity in mice than the virus without glycosylation at site 158. However, H5N6 viruses without glycosylation at site 158 were more resistant to heat and bound host cells better than the HA-glycosylated viruses. H5N6 virus without glycosylation at this site triggered the host immune response mechanism to antagonize the viral infection, making viral pathogenicity milder and favoring virus spread. These findings highlight the importance of glycosylation at site 158 of HA for the pathogenicity of the H5N6 viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/metabolismo , Influenza Aviária/virologia , Células A549/virologia , Animais , Embrião de Galinha/virologia , Galinhas , Glicosilação , Testes de Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/fisiologia , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Influenza Aviária/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA